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Highlight：

Optimizing regional allocation of CO2 emissions considering output under overall efficiency

1. The study develops a three-stage empirical system to identify the CO2 emissions allocation scheme at the provincial level.
2. Chinese construction industry panel data during 2005-2017 is used in the empirical study.
3. CO2 emissions need to be reduced by ca. 10% on the base of 2017.

4. 86.7% of the provinces have a relatively large capacity for CO2 emissions reduction.
5. The East region of China is a key area, accounting for 44.0% of the total amount of CO2 emissions reduction for the country.
6. About 1/3 of the provinces face major pressure to reduce CO2 emissions by more than 10% on the basis of 2017.
7. The study demonstrates empirically how emission reduction effectiveness can be improved.
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1 Optimizing regional allocation of CO2  emissions considering output under overall
2 efficiency
3 Abstract
4 Reduction of CO2 emissions is a strategic priority for the construction industry, however
5 current schemes do not provide the level of performance that is required. There is also a  lack
6 of understanding of how to allocate CO2  emissions targets within regions. Therefore, this
7 research  study  develops  a  three-stage  empirical  system   to  identify  the  CO2    emissions
8 allocation scheme for  the Chinese construction  industry at  the  provincial  level.  The results
9 indicate that (a) the construction industry’s CO2  emissions need to be reduced by ca. 10%
10 from the base level in 2017; (b) 86.7% of the provinces have a relatively large capacity for CO2
11 emissions reduction; (c) China’s East region accounts for 44.0% of the total amount for CO2
12 emissions reduction; and (d) about one-third of the provinces face enormous pressure to
13 reduce CO2 emissions by more than 10% on the base of 2017. This research study provides
14 unique insights and guidance to support assessment of the regional allocation of CO2
15 emissions for the construction industry, which is a valuable reference for other countries and
16 industries.
17 Keywords: CO2 emissions allocation; overall efficiency; construction industry; data
18 envelopment analysis; Inverse DEA
19 1 Introduction
20 In recent years, global greenhouse gas (GHG) emissions have unfortunately continued to
21 rise. During the period 1990-2014, global greenhouse gas emissions increased from 33.8 to
22 48.9 billion tons. This represents an increase of 45%, which includes a 52% increase in CO2
23 emissions that accounts for 85% of total GHG emissions [1]. The built environment and
24 building construction sectors are the main source of CO2 emissions, accounting for around 40%
25 of global CO2 emissions. In 2018, CO2 emissions from the construction industry have reached
26 the highest level since 2013 and are still increasing [2]. Therefore, the construction industry is

22

27 the key sector where CO2 emissions need to be reduced.
28 China is currently the largest construction sector in the world. The construction industry
29 has been and will continue to be one of the pillar industries of the national economy. In 2018,
30 the value of the construction industry in China amounted to USD $893.6 billion [3].
31 Consequently, it is now essential that China is able to balance the relationship between CO2
32 emissions reduction and the continued development of the construction industry. In this
33 context, the Stern Review [4] highlighted that the reasonable allocation of CO2 emissions is a
34 valuable political tool for tackling climate change and achieving a low carbon transition, which
35 can provide a feasible solution for CO2 emissions reduction of construction industry. In 2015,
36 China announced that its CO2 emissions per unit of GDP would be reduced to a range of 35-40%
37 of the 2005 level by 2030. It is useful to note that this implementation target is on a national
38 level and needs to be refined to a higher level of geographical granularity. In order to improve
39 the effectiveness of CO2 emissions reduction, there is therefore a need to refine the national
40 target and develop a regional-based CO2 emissions allocation scheme for the construction
41 industry for both China and elsewhere.
42 However, there are certain defects in the existing allocation methods that are available,
43 which may not strike the required balance between CO2 emissions reduction and industrial
44 development. Latterly, most of the research studies allocate CO2 emissions based on the
45 fairness principle, while the efficiency principle has more recently received increasing attention.
46 Based on these two principles, previous studies have developed various methods to allocate
47 CO2 emissions at different levels. Data Envelopment Analysis (DEA) is a typical method to
48 allocate CO2 emissions from the efficiency perspective. In this regard, Gomes and Lins [5]

49 proposed the Sum Gains DEA (ZSG-DEA) model to identify the CO2 emissions allocation
50 scheme among the non-Annex I and Annex I countries. Similarly, Chiu et al. [6] explored a fair
51 and more efficient CO2 emissions allocation scheme among 24 European Union countries. In
52 recent work, Fang et al [7] integrated multi-criteria allocation principles and indicators into the
53 ZSG-DEA model and applied it to develop an optimal CO2 emissions allocation scheme for
54 application in China at the provincial level. These research studies converted all inefficient
55 Decision-Making Units (DMUs) into efficient DMUs by decreasing the CO2  emissions but
56 without any limit. This enabled optimal system efficiency but did not take into account the  risk
57 of excessive reductions in output, which may cause irrationality for the CO2 emissions
58 allocation scheme.
59 In order to overcome the aforementioned defect identified for current strategies, this
60 research study develops a three-stage approach to develop the CO2 emissions allocation
61 scheme for the Chinese construction industry at the provincial level. As a consequence of
62 allowing decision makers to set output reduction thresholds independently, this approach
63 achieves an effective control over output reduction, thereby improving rationality of the CO2
64 emissions allocation scheme. This research aims to enrich the existing theoretical system of
65 CO2 emission reduction target allocation through improving on existing methods. The study
66 has policy implications for China's construction industry as well as other countries and different
67 industries to achieve greenhouse gas emission targets.
68 The structure of this article is as follows: Section 2 reviews the literature on CO2 emissions
69 of construction, CO2 emissions allocation and the application of InvDEA. Section 3 describes
70 the three-stage method to calculate provincial CO2 emission quota. Section 4 and Section 5

71 present the results and discussions respectively. Section 6 provides the conclusion of this
72 study.
73 2 Literature review
74 2.1 CO2 emissions of construction
75 Currently, research on CO2 emissions of the construction industry is mainly focused on
76 CO2 emissions measurement and analysis of the influencing factors. In this regard various
77 methods have been employed to measure CO2 emissions by scholars. Acquaye and Duffy [8]
78 employed the input-output analysis technique to evaluate the greenhouse gas emissions
79 intensity of the construction industry in Ireland. Using the same method, Nassen et al. [9]
80 assessed CO2 emissions of the construction industry in Sweden. Whereas Zhang and Wang
81 [10] used a life-cycle-based method to measure CO2 emissions of the Chinese construction
82 industry during the period 2005-2012. Also, from the perspective of building life cycle,
83 Gustavsson et al. [11] measured primary CO2 emissions for a timber-framed apartment
84 building.
85 In regard to analysis of the influencing factors, scholars have  mainly examined the effect
86 of building materials, energy consumption, restrictions, and economic levels on CO2 emissions
87 of the construction industry. Lu et al. [12] analyzed the impact of seven key drivers, including
88 building material consumption and energy intensity on the Chinese construction industry CO2
89 emissions during the period 1994-2012. Wu et al. [13] provided an analysis on the effect of
90 economic output on CO2 emissions of the Chinese construction industry using a decoupling
91 method. Whereas Xu et al. [14] employed the log mean Divisia index (LMDI) to study the
92 drivers of CO2 emissions in China during the period 1990-2009. Finally, Xu and Lin [15] applied

93 the Vector Autoregressive model to provide an analysis on main driving factors affecting CO2
94 emissions change and the researchers concluded that optimizing the energy structure can
95 effectively promote CO2 emissions reduction.
96 It can be observed that previous research has established a reliable method for
97 measuring CO2 emissions and analyzing the influencing factors in the construction industry.
98 However, there appears to be a gap in the knowledge base regarding CO2 emissions
99 allocation and CO2 emissions prediction.
100 2.2 CO2 emissions allocation method
101 Existing CO2 emissions allocation methods include indicator, optimization, game theoretic
102 and hybrid methods [16, 17]. The indicator method allocates CO2 emissions based on a
103 specific indicator. Due to its simplicity and practicality, the indicator method has been widely
104 used for CO2 emissions allocation. Zetterberg et al. [18] used economic analysis to evaluate
105 three CO2 emissions allocation methods for the grandfather, auction, and benchmark levels.
106 Zhou et al. [19] identified the Chinese provincial CO2 emissions reduction goal based on five
107 categories of indicators, such as population, CO2 emissions and others. Moreover, Luzzati and
108 Gucciardi [20] cited European countries as a case to explain the trustworthiness of the
109 comprehensive indicator method. However, the allocation results rely too much on selection of
110 the indicator, leading to the concern of reliability. Meanwhile, the CO2 emissions allocation
111 scheme based on the indicator method is usually more favorable to one group of entities
112 unfairly.
113 The optimization method allocates CO2 emissions from an efficiency perspective.
114 Nordhaus and Yang [21] developed the Regional Integrated model of Climate and the

115 Economy (RICE model) to explore the optimal emission paths of GHGs in different regions.
116 Filar and Gaertner [22] also proposed a mathematical programming technology to assign CO2
117 emissions worldwide on the basis of maximizing economic utility. The above methods have the
118 advantage of integrating climate and economy, but they are very complicated to operate. Later,
119 with the broad use of the DEA method in the efficiency evaluation considering undesirable
120 output, researchers began to pay attention to using this method for CO2 emissions allocation.
121 In this regard, Gomes and Lins [5] proposed a ZSG-DEA model to allocate CO2 emissions by
122 setting a cap on emissions. Thereafter, this model has been employed for CO2 emissions
123 allocation in different regions or industries [23-26]. It is worth noting that the DEA method was
124 initially developed for efficiency evaluation rather than resource allocation. Therefore, when
125 allocating CO2 emissions with the DEA method, changes in input and output cannot be
126 effectively identified, which may harm the rationality of the allocation scheme.
127 The game theoretic method ascertains the optimal CO2 emissions allocation plan through
128 considering the negotiation between different emissions reduction units. Filar and Gaertner [22]
129 used the Shapley value based on the game theoretic method to study the global CO2
130 allocation scheme. Furthermore, Zhang et al. [27] conducted a study on the CO2 emissions
131 allocation with a game theoretic method. Liao et al. [28] also employed the Shapley value to
132 evaluate CO2  emissions allocation quotas of three power stations located in Shanghai, China.
133 The  game  theoretic  method  has  the  advantage  of  incorporating  the  negotiations among
134 different entities in CO2 emissions allocation, but it is also complicated and lacks transparency.
135 The hybrid method refers to the use of multiple methods to allocate CO2 emissions, which
136 has the advantage of considering different criteria simultaneously. For example, Zhou et al. [29]

137 applied a DEA method with multiple abatement factors to study the CO2 emissions allocation
138 of Chinese cities. However, compared with the other three methods, the hybrid method is more
139 complex   in   the   calculation   process,   lower   performance   for   operability   and   more
140 time-consuming in data collection, which may compromise the accuracy of the allocation
141 scheme.
142 Recently, with the increasing attention on the efficiency principle [16], the optimization
143 method has attracted the attention of scholars. Due to its simplicity and practicality, the DEA
144 method has been extensively used to study CO2 emissions allocation. It is worth highlighting
145 that CO2 emission allocation in the DEA model actually involves changes of input and output,
146 which is not only the positive efficiency measurement, but also the solution to the inverse DEA
147 problem. Indeed, applying the InvDEA model to allocate CO2 emissions can improve the
148 accuracy of allocation under the perspective of efficiency and consequently this method has
149 received extensive attention in the literature [30].
150 2.3 The application of InvDEA
151 DEA is an efficiency analysis method based on the relative comparison between the
152 evaluated objects. It has unique features for dealing with multi-input and multi-output problems
153 and has been extensively applied in different regions, industries and departments [31, 32]. The
154 purpose of efficiency evaluation is not only to reveal the level of efficiency but more importantly
155 to find a way to improve efficiency. Previous studies have found that the improvement of
156 resource allocation may potentially improve efficiency levels [33-35]. Although the DEA
157 method can be used to calculate the efficiency of DMUs effectively by finding the optimal
158 solution, it could not observe the impact of resource allocation changes on efficiency. In recent

159 years and with the deepening of DEA focused research, the problem of inverse DEA has
160 attracted the attention of scholars. The inverse DEA problem is basically the inverse of the
161 DEA problem and therefore its principle is inverse optimization. The reverse DEA method aims
162 to solve the following problems: For a group of DMUs, assuming that the current level of
163 efficiency remains the same, how much can the output increase if the inputs increase by a
164 certain amount? Or, if outputs are increased by a certain amount, how much should inputs
165 increase [36]? Consequently, use of the InvDEA method provides a new perspective for
166 dealing with resource allocation problems at current efficiency levels.
167 The current application of inverse DEA mainly includes efficiency prediction and resource
168 allocation. In the prediction of efficiency and through adopting 22 chain stores in a home
169 decoration company in Taiwan as the study objects, Lin [37] studied the efficiency
170 measurement and income problem with the fuzzy DEA model and the InvDEA model, thereby
171 providing a reference for decision-makers to clarify the efficiency and income of the new store.
172 Frija et al. [38] estimated the demand for agriculture irrigation water for individual farmers in
173 Tunisia with the InvDEA model. Furthermore, Gattoufi et al. [39] employed the InvDEA model
174 to the case of bank consolidation decisions and proposed recommendations for the combined
175 banks' input-output levels to achieve the expected efficiency targets. Lim [40] combined the
176 inverse optimization problem with the DEA time series application and applied the InvDEA
177 model to the case of expected production frontier changes. Whereas other researchers [41-43]
178 used the banking industry as a case to study the impact of corporate restructuring or mergers
179 on operational efficiency with the InvDEA model. Chen et al. [44] developed an InvDEA model
180 considering undesirable outputs on the basis of the sustainable perspective and applied the

181 model to predict the level of sustainable development investment in China. In regard to
182 investigating resource allocation, Lertworasirikul et al. [45] proposed a linear programming
183 InvDEA model, and applied this model in the resource allocation of motorcycle parts
184 companies. Later, Ghiyasi [46] developed the InvDEA model for the case of Variable Returns
185 to Scale (VRS). As a result of combining the InvDEA model with artificial neural networks,
186 Modhej et al. [47] improved the ability of the model to process large data sets and successfully
187 applied the model to 600 banks in Iran.
188 It can be observed that application of the InvDEA model provides significant advantages
189 for processing efficiency prediction and resource allocation problems, especially for dealing
190 with resource allocation problems at current efficiency levels. Therefore, the InvDEA model is
191 an ideal tool for enabling CO2 emissions allocation as part of supporting the overall scheme
192 efficiency since the negative impact of CO2 emissions reduction on outputs can be limited.
193 2.4 Gap in the knowledge base
194 As elucidated from the comprehensive literature review, the gap in the knowledge base
195 can be summarized as follows: (1) Previous methods for CO2 emissions allocation have not
196 considered the risk of the excessive reduction in output, which may have a negative impact on
197 the rationality of the allocation scheme. (2) There is still a limited focus on the CO2 emissions
198 allocation scheme for the construction industry.
199 In order to narrow the gap, this research study has conducted the following empirical
200 investigation: (1) The output reduction threshold was introduced into the model to limit the
201 excessive reduction in output, thereby improving the rationality of the CO2 emissions allocation.
202 (2) Based on the perspective of system efficiency, an optimized CO2 emissions allocation

203 scheme for the Chinese construction industry was identified leading to overall efficiency.
204 3 Methodology
205 The overall methodology follows a three-stage approach, as shown in Fig. 1, and the main
206 characteristics of each stage are as follows. Stage 1: According to the Guidelines for National
207 Greenhouse Gas Inventories released in 2006 [48], the research study calculated CO2
208 emissions for the Chinese construction industry during the period 2005-2017, and identified
209 the total amount of the construction industry’s CO2 emissions reduction based on Chinese
210 government's emissions reduction goals. Stage 2: From the perspective of efficiency, this
211 study  used  the  DEA-BCC  model  to  evaluate  the  construction  industry’s  CO2   emissions
212 reduction capacity for 30 provinces in China in order to identify the priority of CO2 emissions
213 reduction, and inefficient DMUs were selected as reduction objects. Stage 3: The InvDEA
214 model was employed to allocate the total amount of CO2 emission reduction to each inefficient
215 DMU, thereby identifying the CO2 emissions allocation scheme.
216 < Insert Fig. 1 here >
217 Fig. 1. Framework of the research methodology
218 The data used in this research study were derived from the China Statistical Year Book
219 (2006-2018) [49], China Energy Statistical Year Book (2006-2018) [50], China Statistical
220 Yearbook on Construction (2006-2018) [51] and other relevant statistical year-books for
221 various provinces of China. Considering the availability and completeness of the data, the
222 research study selected 30 provinces in China as study objects.
223 3.1 Carbon emission coefficient method
224 This research study used the carbon emission coefficient method to calculate the CO2

225 emissions of the Chinese construction industry from 2005 to 2017. This method is
226 recommended by the United Nations Intergovernmental Panel on Climate Change (IPCC) [48],
227 since it has high computational accuracy and has been widely used for CO2 emissions
228 measurement [33-35, 52].𝑖=1



229 

CO2 = ∑𝑛

𝐸𝑖 × 𝑁𝐶𝑉𝑖 × 𝐶𝐸𝐹𝑖 × 𝐶𝑂𝐹𝑖 × (44)
12

(1)
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	Where i represents the i-th energy source, Ei represents the terminal consumption of the

	231
	
i-th energy source, NCVi represents the average low calorific value of the i-th energy source,

	232
	
CEFi represents the carbon emission factor, COFi represents the carbon oxidation rate, and

	233
	
44/12 is the carbon conversion coefficient. According to China's relevant statistical information,

	234
	
Zhang et al. [53] obtained the carbon emission coefficient of each energy by formula (1), as

	235
	
shown in Table A-1 in the Appendix.

	236
	
3.2 DEA-BCC model and super efficiency DEA model

	237
	
It is assumed that there are n DMUs. For any DMUj (𝑗 = 1, … 𝑛), the input is defined as

	238
	𝑥𝑖𝑗(𝑖 = 1, … 𝑀), the desirable output as 𝑜𝑟𝑗(𝑟 = 1, … , 𝑅) and undesirable output as 𝑢𝑜𝑝𝑗(𝑝 =

	239
	
1,2, … , 𝑃). In this research study, the DEA-BCC model is employed as the basic model of the

	240
	
InvDEA model, and the directional distance function (DDF) is used to deal with the undesirable

	241
	
output.

	242
	→	(𝑋𝑘, 𝑂𝑘, 𝑈𝑂𝑘, 𝑔𝑜, −𝑔𝑢𝑜) = max →
𝐷 𝐷𝐷𝐹	𝛽𝑘

	243
	
𝑠. 𝑡.



𝑛
244	∑ 𝜆𝑗𝑥𝑖𝑗 ≤ 𝑥𝑖𝑘, i = 1,2, … M
𝑗=1


245

𝑛
∑ 𝜆𝑗𝑜𝑟𝑗 ≥ (1 +→ ) 𝑜𝑟𝑘, r = 1,2, … , R
𝛽𝑘

𝑗=1

246

𝑛
∑ 𝜆𝑗𝑢𝑜𝑝𝑗 = (1 −→ ) 𝑢𝑜𝑝𝑘, p = 1,2, … , P
𝛽𝑘


247
248

𝑗=1


n
∑	λj = 1 , j = 1,2, … n
j=1

λj ≥ 0	(2)

249


When →
𝐷 𝐷𝐷𝐹


(𝑋𝑘, 𝑂𝑘, 𝑈𝑂𝑘, 𝑔𝑜, −𝑔𝑢𝑜) = 0, it represents that the DMU is efficient, otherwise


250 the DMU is inefficient. As for the inefficient DMU, its DDF could be improved by reducing CO2
251 emissions, while the DDF of the efficient DMU cannot be improved further. Considering this, in
252 the study of Emrouznejad et al. [30], only inefficient DMUs are selected as CO2  emissions
253 reduction  objects.  It  is  worth  noting  that,  when  the  above  DEA-BCC  model  is  used for
254 efficiency evaluation,  multi  DMUs  may be  efficient.  Ignoring  the  CO2   emissions reduction
255 capacity of multi efficient DMUs may have a negative impact on the rationality of the CO2
256 emissions allocation. Therefore, it is essential to further evaluate the CO2  emissions reduction
257 capacity of efficient DMUs.
258 Based on the study of Emrouznejad et al. [30], we proposed the following process to
259 evaluate the CO2 emissions reduction capacity of efficient DMUs. Firstly, the super efficiency
260 DEA model was used to calculate the super efficiency value of  efficient DMUs. Secondly, the
261 inputs of each efficient DMU were augmented with the corresponding super efficiency value.
262 Finally, the efficiency frontier of the DEA-BCC model was kept unchanged and the following
263 was	calculated	for	efficient	DMUs	whose	inputs	has	been	adjusted

264 


→
𝐷 𝐷𝐷𝐹


(𝑋𝑘, 𝑂𝑘, 𝑈𝑂𝑘, 𝑔𝑜, −𝑔𝑢𝑜) . Therefore, the super efficiency DEA model is as follows.

265 
266 


→
𝐷 𝐷𝐷𝐹


(𝑋𝑘, 𝑂𝑘, 𝑈𝑂𝑘, 𝑔𝑜, −𝑔𝑢𝑜) = max →
𝛽𝑘

𝑠. 𝑡.

𝑛
267	∑ 𝜆𝑗𝑥𝑖𝑗 ≤ 𝑥𝑖𝑘, i = 1,2, … M
𝑗=1
𝑗≠𝑘
𝑛

268

∑ 𝜆𝑗𝑜𝑟𝑗 ≥ (1 +→ ) 𝑜𝑟𝑘, r = 1,2, … , R
𝛽𝑘

𝑗=1
𝑗≠𝑘
𝑛

269

∑ 𝜆𝑗𝑢𝑜𝑝𝑗 = (1 −→ ) 𝑢𝑜𝑝𝑘, p = 1,2, … , P
𝛽𝑘


270
271

𝑗=1
𝑗≠𝑘




n j=1∑




λj = 1 , j = 1,2, … n, j ≠ k

λj ≥ 0	(3)


272 When evaluating the efficiency of a certain DMU, the super efficiency DEA would firstly
273 exclude the DMU. This is the main difference between the super efficiency DEA model and the
274 DEA-BCC  model.  Therefore,  as  for  the  inefficient  DMU,  the  efficiency  value  will remain
275 unchanged while the efficiency value of the efficient DMU would become larger. As shown in
276 Fig. 2, when evaluating the efficiency of B1, B1  is excluded from the DMU set. At that time,
277 A1-C1-D1 turns to be the new efficiency frontier. The distance between B1 and B2 represents
278 the extent value of augment in B1’s inputs, and B1’s super efficiency value is OB2/OB1, which is
279 more than 1. When the efficiency frontier of the DEA-BCC model remains unchanged, there is
280 a need to adjust the inputs with the super efficiency value, which will enable the efficient DMUs
281 to  move away from  the efficiency frontier  (as  shown  in  Fig. 3).  This  change  provides the
282 condition for improving the DDF of efficient DMUs in order to identify their CO2  emissions
283 reduction amount.

	284
	< Insert Fig. 2 here >

	285
	
Fig. 2. Super efficiency DEA model

	286
	
< Insert Fig. 3 here >



287 Fig. 3. Efficient DMUs in DEA-BCC model after adjustment
288 3.3 InvDEA model
289 The InvDEA model proposed by Emrouznejad et al. [30] was introduced in stage 3. In
290 addition and in order to achieve the overall scheme efficiency, CO2 emissions reduction should
291 not deteriorate the efficiency of DMUs. Considering this situation, this research study makes
292 the following assumptions:
293 Assumption 1: The reduction of CO2 emissions does not change the efficiency frontier.
294 In the DEA model, the efficiency of the DMU is determined by its distance from the
295 efficiency frontier. The change of efficiency frontier would cause a change of the efficiency
296 evaluation criteria, thus the efficiency values of DMUs before and after the reduction of CO2
297 emissions  cannot be compared. In  this  situation, the  overall efficiency of the CO2  emissions
298 allocation scheme may not be achieved. Meanwhile, the change of efficiency frontier also
299 increases the difficulty of calculation in the model. Therefore, the assumption is introduced in
300 the InvDEA model.
301 Assumption 2: The reduction of CO2 emissions does not deteriorate the efficiency of
302 DMUs.
303 Since the concept of the low-carbon economy was proposed in 2003 [54], many countries
304 have been actively exploring a feasible path for economic low-carbon transformation. It is
305 worth noting that a low-carbon economy refers to not only reducing greenhouse gas emissions
306 but  also  providing  a  win-win  situation  for  both  economic  and  social  development  and
307 ecological protection. Therefore, we introduce Assumption 2 in the model.
308 Assumption 3: Desirable outputs have a specific threshold.

309 In theory, there are countless paths for an inefficient DMU to approach the efficiency
310 frontier.  However,  some of  these paths  may lead to  an  excessive  reduction  of   desirable
311 outputs in the DMU. For example, there may be situations to reduce CO2 emissions, in which
312 the  production  scale  is  reduced,  thereby resulting  in  an  excessive  reduction  in desirable
313 outputs. To avoid these situations, a threshold needs to be introduced. Meanwhile, in reality, as
314 one of the main industries in China [55], the construction sector has made major contributions
315 to the development of the national economy. In order to ensure that environmental pollution is
316 being reduced while the economy maintains steady growth, the Chinese government may
317 potentially set a threshold for outputs reduction of the construction industry when formulating
318 relevant policies. This is consistent with the view of Emrouznejad et al. [30] and to allow the
319 model to be more reasonable, this research study has adopted assumption 3.
320 On the basis of the above assumption, the InvDEA model is constructed as follows:

𝑚	𝑅
321	𝑚𝑖𝑛 ∑ ∑ 𝛼𝑖𝑘 − ∑ ∑ 𝛽𝑟𝑘


322

𝑘∈𝐿 𝑖=1

𝑘∈𝐿 𝑟=1

s.t.

323	∑ 𝜆𝑘 𝑥𝑖𝑗 − 𝛼𝑖𝑘 ≤ 0, ∀𝑘 ∈ 𝐿, 𝑖 = 1, … , 𝑚𝑗

𝑗∈𝐹
324	∑ 𝜆𝑘𝑜𝑟𝑗 − (1 + 𝛽̂𝑘)𝛽𝑟𝑘  ≥ 0, ∀𝑘 ∈ 𝐿, 𝑟 = 1, … , 𝑅𝑗

𝑗∈𝐹
325	∑ 𝜆𝑘𝑢𝑜𝑝𝑗 − (1 − 𝛽̂𝑘)γ𝑝𝑘  = 0, ∀𝑘 ∈ 𝐿, 𝑝 = 1, … , 𝑃𝑗


326

𝑗∈𝐹


∑ 𝜆𝑘 = 1, ∀𝑘 ∈ 𝐿𝑗


𝑗∈𝐹

	327
	∑ 𝛾𝑝𝑗 = 𝑎𝑝, 𝑝 = 1, … , 𝑃

	328
	𝑗∈𝐿

0 ≤ 𝛼𝑖𝑘 ≤ 𝑥𝑖𝑘, ∀𝑘 ∈ 𝐿, 𝑖 = 1, … , 𝑀

	329
	(1 − 𝑐𝑟𝑘)𝑜𝑟𝑘 ≤ 𝛽𝑟𝑘, ∀𝑘 ∈ 𝐿, 𝑟 = 1, … , 𝑅



330	0 ≤ 𝛾𝑝𝑘 ≤ 𝑢𝑜𝑝𝑘, ∀𝑘 ∈ 𝐿, 𝑝 = 1, … , 𝑃
331	𝜆𝑘   ≥ 0, ∀𝑗  ∈ 𝐹𝑘, 𝑘 ∈ 𝐿	(3)𝑗

332 Where 𝛼𝑖𝑘, 𝛽𝑟𝑘 and 𝛾𝑝𝑘 represent the level of the i-th input, the r-th desirable output
333 and the p-th undesirable output respectively, after the DMUk reduces its undesirable output.
334 𝑐𝑟𝑘  is a policy threshold to limit the reduction of undesirable outputs.  𝑎𝑝  is the sum of 𝛾𝑝𝑗  (𝑗  ∈
335 𝐿), representing the pth undesirable output level of all inefficient DMUs in L. In addition,  𝛽̂𝑘    is
336 a parameter that ensures that the efficiency value of the DMUs in L does not decrease after

337 

the reduction  of  CO2  emissions  [30],  meeting  this  condition  of  0 ≤ 𝛽̂𝑘  ≤→∗,  where
𝛽𝑘


→∗
𝛽𝑘


is the


338 optimal solution for model (2).
339 In this research study, we selected the DEA-BCC model as the basic model of the InvDEA
340 model. It indicates that the InvDEA model is also formulated under the variable return to scale
341 (VRS)  assumption,  rather   than   the  constant   return  to  scale  (CRS)   assumption.  If the
342 assumption changes from VRS to CRS, the efficiency frontier of InvDEA model would change
343 from multi-segment linear to linear and move forward. Due to this change, except when DMUs
344 are efficient under the CRS assumption, the distance between other DMUs’ and efficiency
345 frontier would increase, indicating that the CO2  emissions reduction space of these DMUs
346 would  expand. Therefore,  compared with the  VRS assumption,  DMUs in the InvDEA model
347 under CRS assumption may have a larger space for CO2 emissions reduction overall. Actually,
348 in the production process, not all DMUs’ return to scale keeps constant. Considering this,
349 allocating CO2  emissions under  the VRS assumption  would be more reasonable. Therefore,
350 this study proposed the InvDEA model under VRS assumption to allocate CO2 emissions.

351 3.4 Dataset and indicators
352 This research study used a comprehensive indicator system with multiple inputs and
353 multiple outputs to evaluate the efficiency of the Chinese construction industry. The indicator
354 system consists of three parts, namely the inputs, desirable outputs and undesirable outputs.
355 Reasonable  indicators  are  critical to the  accurate  measurement of  efficiency.  In  order  to
356 ensure the rationality of the indicator selection, we conducted a systematic review on the
357 previous studies relating to the construction industry efficiency, as shown in Table 1.
358 Table 1
359 Evaluation indicators system of construction industry in previous studies































Equipment, (4) Energy	space of buildings completedAuthors
Year
Input indicators
Output indicators
Li and Liu [56]
2010
(1) Labor, (2) Capital
(1) Gross value added
Wang et al. [57]
2011
(1) Labor, (2) Capital
(1) Gross value added
Liu et al. [58]
2013
(1) Labor, (2) Capital
(1) Value added


(1) Labor, (2) Capital, (3)
(1) Total income of enterprises, (2)
Li et al. [59]
2014
Number of enterprises, (4)
Floor space of buildings


Value of machine per laborer
completed


(1) Capital, (2) Operational
(1) Total amount of profits and
Shi et al. [60]
2016	taxes, (2) Profits of settlement of
input
projects
Hu and Liu [61]
(1) Labor, (2) Construction
2016	(1) Gross value added
work done, (3) Energy
Hu and Liu [62]
(1) Labor, (2) Construction	(1) Gross value added, (2) CO2
2017
work done	emissions
Hu et al. [63]
(1) Labor, (2) Construction	(1) Gross value added, (2) CO2
2017
work done	emissions
Chen et al. [64]
(1) Labor, (2) Equipment	(1) Value added, (2) Gross output
2018
value, (3) Total pre-tax profits
Hu and Liu [65]
(1) Labor, (2) Capital, (3)
2018	(1) Gross value added
Equipment
Zhang et al. [53]
(1) Labor, (2) Capital, (3)	(1) Gross output value, (2) Total
2018
Equipment, (4) Energy	profits, (3) CO2 emissions
Huo et al. [55]
(1) Labor, (2) Capital, (3)	(1) Gross output value, (2) Floor
2018


360 Analysis of the related literature identifies that the efficiency evaluation indicator system
361 for the construction industry, with labor, capital and equipment as input indicators, as well as

362 total output value as  the  output  indicator, has been  widely used. Along with the increasingly
363 prominent  environmental  problems  and  corresponding  energy  crisis,  the  efficiency  of the
364 construction industry in regard to environmental factors and energy consumption has received
365 significant attention. Referring to previous studies, this research has established an evaluation
366 indicator system for Chinese construction industry efficiency on the basis of the research
367 question, as illustrated in Table A-2 in the Appendix.
368 Input indicators consist of the number of employees, the total power of machinery and
369 equipment owned, total assets and energy consumption, representing the input level of labor,
370 equipment, capital and energy of the construction industry respectively.  The desirable output
371 indicator is gross output value, reflecting the total income of the construction industry. The
372 undesirable  output  indicator is CO2  emissions, representing  the  environmental costs of  the
373 construction industry. The  descriptive statistics of the Chinese  construction  industry in 2017
374 are shown in Table 2.
375 Table 2
376 Descriptive statistics of the Chinese construction industry in 2017Indicators	Units
Mean
SD
Min.
Max.
Number of engaged persons	CNY 10,000
184.1980
195.2284
7.42
792.89
Total assets of construction
104 kw
6812.9154
5442.0272
271.02
23158.96
Total power of machinery and
CNY 10,000
849.3400
777.8883
29.40
3415.40
Energy consumption of
10,000 tons
248.5147
160.7572
50.12
750.03
Gross output value of
CNY 10,000
7126.5210
6704.5240
322.76
27956.71
CO2 emissions	Tons
228.3467
163.5353
23.68
672.36




enterprises equipment owned construction construction

377 4 Empirical results
378 4.1 CO2 emissions reduction total amount calculation
379 The CO2 emissions reduction goal of the Chinese government is to reduce its CO2
380 emissions per unit of GDP to a range of 35-40% of the 2005 level by 2030 [66]. Considering
381 that this is a target range, this research study used the upper bound of  40% as the emissions
382 reduction goal. The gross output value of construction (GVOC) is an indicator representing the
383 total output of the construction industry over a certain period of time, similar to the GDP
384 reflecting the sum output of the nation or region. Therefore, the CO2 emissions reduction  goal
385 of the Chinese construction industry can be described as the following: by 2030, the CO2
386 emissions per unit of GVOC will be reduced to 40% of the level in 2005.
387 This study uses the carbon emission coefficient method to calculate the CO2 emissions
388 during the period 2005-2017. In addition, to avoid the impact of price level changes, this study
389 used the Consumer Price Index (CPI) of China to transform the GVOC into the constant price
390 in 2010. As shown in Table 3, from 2005 to 2017, the CO2 emissions increased year by year,
391 but CO2 emissions / GVOC was generally in a state of decline, only a slight rebound in 2015
392 when compared to 2014, indicating that the CO2 emissions per unit of GVOC were in effective
393 control.  Among  them,  the  CO2  emissions  /  GVOC  in  2017  reached  0.0378.  If  the  CO2
394 emissions reduction goal were achieved in 2017, the CO2 emissions/GVOC in 2017 should be
395 0.0341,  which means  that  the CO2  emissions  in  2017 should  be  controlled below 6124.32
396 (10,000 tons). However, the actual total CO2  emissions are 6789.84 (10,000 tons). Therefore,
397 the total amount of CO2 emissions reduction is 665.52 (10,000 tons), accounting for about 10%
398 of total CO2 emissions in 2017.

399 
400 

Table 3
CO2  emission/GVOC in China from 2005 to 2017
Gross output value of




Consumer Price

Year

CO2 emission (10,000 tons)

construction (current prices-2010)

CO2 emissions/ GVOC

index (CPI) of China



















401 Based on the geographical location and economic development level of each province
(100 million yuan)

2005
3404.63
39913.57
0.0853
86.5673
2006
3677.94
47311.73
0.0777
87.8369
2007
3771.21
55467.94
0.0680
92.0238
2008
4262.29
63658.05
0.0670
97.4532
2009
4755.22
79360.45
0.0599
96.7834
2010
5556.43
96031.13
0.0579
100.0000
2011
6126.33
110987.90
0.0552
105.4706
2012
5992.73
126792.80
0.0473
108.2221
2013
6392.86
143434.30
0.0446
111.0703
2014
6500.15
155993.60
0.0417
113.2825
2015
6641.23
157360.30
0.0422
114.8685
2016
6425.31
165112.44
0.0389
117.1659
2017
6789.84
179598.89
0.0378
119.0406


402 and city, this research study divided 30 provinces  into three regions of East, Middle and West
403 China through adopting the approach by Zhu et al. [67], thereby enabling analysis of the
404 regional  differences  of  CO2   emissions  of  China’s  construction  industry  during  the period
405 2005-2017. The result of the division is shown in Fig. 4. Additionally, Fig. 5 highlights the trend
406 of CO2 emissions in the Chinese regional construction industry from 2005 to 2017. It can be
407 observed that CO2  emissions in the Middle and West regions are close, and except for the
408 year 2015, the CO2  emissions in these two regions are significantly lower than that in the East
409 region. As for the trend, the CO2  emissions in the East region showed a downward trend after
410 reaching a peak of 2703.3 (10,000 tons) in 2011, and the growth trend of CO2 emissions in the
411 West region slowed down after 2011, while the Middle region remained growing in this period.
412 The CO2 emissions data of China's provinces from 2005 to 2017 are shown in Appendix Table

	413
	B-2.
	

	414
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	415
	
	
Fig. 4. Geography of the three regions in China (East, Middle and West).

	416
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	417
	
	
Fig. 5. Regional construction industry CO2 emissions during 2005-2017



418 4.2 CO2 emissions reduction capacity evaluation
419 At this stage, the DEA-BCC model and super efficiency DEA model were employed in
420 combination to evaluate the CO2 emissions reduction capacity of the construction industry in
421 30 provinces in 2017. The measurement results are shown in Table 4. Original efficiency and
422 super efficiency were respectively measured by the DEA-BCC model and super efficiency
423 DEA, while adjusted efficiency was measured by the DEA-BCC model after the efficient DMUs’
424 inputs have been adjusted with a super efficiency value.
425 Table 4
426 The results of efficiency measurementDMUs
Original efficiency
Super efficiency
Adjusted efficiency
Beijing
1.0000
3.0207
0.8682
Tianjin
1.0000
1.0376
0.9679
Hebei
0.8692
0.8692
0.8692
Shanxi
0.8025
0.8025
0.8025
Inner Mongolia
1.0000
1.0012
0.6879
Liaoning
1.0000
1.6451
1.0000
Jilin
1.0000
1.0023
0.9967
Heilongjiang
1.0000
2.8221
0.9210
Shanghai
1.0000
1.0708
1.0000
Jiangsu
1.0000
2.2634
1.0000
Zhejiang
1.0000
1.4126
0.9101
Anhui
0.9101
0.9101
0.9101
Fujian
0.8852
0.8852
0.8852
Jiangxi
1.0000
1.0346
0.9743
Shandong
0.8076
0.8076
0.8076
Henan
0.8974
0.8974
0.8974



	Hubei
	1.0000
	1.0718
	0.9482

	Hunan
	1.0000
	1.0025
	0.9966

	Guangdong
	0.8895
	0.8895
	0.8895

	Guangxi
	1.0000
	1.7643
	0.8588

	Hainan
	1.0000
	3.5784
	0.9005

	Chongqing
	1.0000
	1.1126
	0.9478

	Sichuan
	0.8249
	0.8285
	0.8285

	Guizhou
	0.7353
	0.7353
	0.7353

	Yunnan
	0.7276
	0.7276
	0.7286

	Shaanxi
	0.9978
	0.9978
	0.9978

	Gansu
	0.7314
	0.7314
	0.7314

	Qinghai
	1.0000
	2.2543
	0.7213

	Ningxia
	0.8126
	0.8126
	0.8126

	Xinjiang
	1.0000
	1.0226
	1.0000


427 Based on the results of adjusted efficiency, 30 DMUs were divided into two groups as L
428 and F1. The adjusted efficiency value of the DMU in the L is less than 1, which means that their
429 DDFs can be improved, thereby indicating there is capacity for CO2  emissions reduction. The
430 value of the DMU in the F is 1, suggesting that it is on the production frontier, and there is no
431 reduction capacity for the DMUs in F.
432 4.3 An optimized CO2 emissions allocation scheme identification
433 In this stage, the research study applied the InvDEA model to allocate the total amount of
434 CO2  emissions reduction for the Chinese construction industry in the 27 provinces with a
435 relatively large CO2  emissions reduction capacity. In order to achieve the overall scheme
436 efficiency,  the  parameter  β̂k   was  introduced  in  the  InvDEA model  to  ensure  that  the  CO2
437 emissions reduction would not cause an efficiency decrease in the DMU. The construction
438 industry’s efficiency in this study is the productivity that considers CO2 emissions. In the real
439 production process, the reduction of undesirable outputs usually increases the efficiency level

1 L set: Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Jilin, Heilongjiang, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan, Guangdong, Guangxi, Hainan, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia
F set: Liaoning, Shanghai, Jiangsu, Xinjiang

440 
441 
442 
443 
444 
445 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 

of the industry considering environmental factors. Considering this reality, we defined that

β̂k  = 0.9 →∗ ,  representing  the  reduction  of  CO2  emissions  that  makes  the  direction  distance
βk

function of the DMU improve by 10%. This results in an increase in the efficiency of the construction industry when considering CO2 emissions. In addition, in order to make the model more reasonable, Section 3.4 assumes that there is a specific policy threshold for the expected output. As for the setting of the policy threshold, referring to the policy threshold setting of the desirable outputs of the Chinese manufacturing industry by Emrouznejad et al. [30], the crk was selected as 0.05, which means that the loss of the desirable outputs of the construction industry caused by CO2 emissions reduction is 5% at most. The specific result of CO2 emissions allocation is shown in Table 5.
As shown in Table 5, the reduction ratio for roughly one third of the provinces accounted for more than 10%. Among them, the reduction ratio for Fujian accounts for more than 35%, indicating that this province is facing severe pressure of CO2 emissions reduction and therefore it is urgent to explore the green transformation of the construction industry in this province. In addition, there are also four provinces, where despite their  β̂k  is more than 0.3,
but the reduction ratio is less than 10%, which are Inner Mongolia, Qinghai, Yunnan and

Guizhou. The six provinces of Heilongjiang, Jiangxi, Anhui, Shaanxi, Chongqing and Zhejiang

are the opposite. The  β̂k    of these provinces is less than 0.1, but the reduction ratio is greater than  10%  (β̂k    is  a  parameter  denoting  the  distance  between  the  DMU  and  the  production frontier, thereby reflecting the scope for technology improvement). Fig. 6 shows the total
emission reduction capacity in Eastern, Middle and Western China. According to the  diagram

results, the CO2  emissions reduction amount in the East region is 292.987 (10,000 tons),

462 accounting for 44.0% of the total CO2  emissions reduction, and indicating that the East region
463 is a crucial area for reduction. CO2  emissions reduction amount in the Middle and West
464 regions  accounted for  30.3% and 25.7%  of  CO2  emissions reduction, respectively. With the
465 use of the InvDEA model to allocate the CO2 emissions to the inefficient DMUs in the L set, the
466 overall optimal CO2  emissions allocation scheme of the Chinese construction industry can be
467 obtained, as shown in Fig. 7.
468 Table 5
469 The provincial quota of CO2 emission

Fujian
L
0.1187
0.1069
100.97
266.12
37.94%
Heilongjiang
L
0.0482
0.0433
6.98
30.50
22.87%
Jiangxi
L
0.0264
0.0237
19.06
85.02
22.42%
Guangxi
L
0.1644
0.1480
14.48
64.75
22.37%
Beijing
L
0.1519
0.1367
23.88
108.17
22.08%
Sichuan
L
0.2070
0.1863
59.60
279.80
21.30%
Anhui
L
0.0988
0.0889
65.55
329.12
19.92%
Shaanxi
L
0.0022
0.0019
14.34
94.76
15.13%
Chongqing
L
0.0551
0.0496
25.03
187.78
13.33%
Gansu
L
0.3673
0.3306
13.72
114.84
11.94%
Hebei
L
0.1505
0.1354
22.58
198.59
11.37%
Zhejiang
L
0.0988
0.0889
65.55
627.59
10.44%
Hainan
L
0.1105
0.0995
5.09
49.56
10.28%
Ningxia
L
0.2305
0.2075
7.38
74.40
9.92%
Yunnan
L
0.3724
0.3352
26.29
268.11
9.80%
Guangdong
L
0.1242
0.1118
23.16
236.89
9.78%
Qinghai
L
0.3864
0.3478
5.89
61.74
9.55%
Shandong
L
0.2382
0.2144
26.00
292.94
8.88%
Guizhou
L
0.3599
0.3239
18.45
213.29
8.65%
Shanxi
L
0.2461
0.2215
14.19
209.69
6.77%
Henan
L
0.1143
0.1029
25.34
385.49
6.57%
Hubei
L
0.0546
0.0492
25.52
392.45
6.50%
Inner Mongolia
L
0.4537
0.4084
19.01
357.48
5.32%
Jilin
L
0.0033
0.0030
10.07
327.48
3.07%



DMUs	Sets



→∗
𝛽𝑘


β̂k

The amount of CO2 emission reduction allocation

The amount of CO2
emission in 2017



Reductio n ratio

Tianjin
L
0.0331
0.0298
11.26
435.80
2.58%
Hunan
L
0.0034
0.0030
16.11
672.36
2.40%
Liaoning
F
0
0
0
23.68
0.00%
Shanghai
F
0
0
0
166.47
0.00%
Jiangsu
F
0
0
0
125.92
0.00%
Xinjiang
F
0
0
0
169.61
0.00%
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	471
	
Fig. 6. CO2 emissions reduction amount in three regions (unit: 10,000 tons)

	472
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	473
	
Fig. 7. CO2 emissions provincial quota in Chinese construction industry (unit: 10,000 tons)

	474
	
5 Discussion

	475
	
In order to achieve the overall scheme efficiency, a three-stage empirical approach has

	476
	
been applied in this research study to identify an optimized CO2 emissions allocation scheme

	477
	
for the Chinese construction industry.

	478
	
The results of the first stage show that the total CO2 emissions of the Chinese

	479
	
construction industry increased year by year during the period 2005-2017. Indeed, Wang and

	480
	
Feng [68] used the carbon emission coefficient method to calculate the energy-related CO2

	481
	
emissions from 2000 to 2014 and obtained the same conclusion. In addition, trends in the

	482
	
construction industry’s CO2 emissions for the three regions are different. The amount of CO2

	483
	
emissions in the East region peaked in the year 2011 and then began to decline. Compared

	484
	
with the Middle and West regions, the East region has more sound environmental

	485
	
protection-related laws and regulations, and has achieved effective control of CO2 emissions,

	486
	
thereby allowing a rapid decrease after the CO2 emissions peak has been initially reached.

	487
	
Since 2012, with the release of the report "Opinions on Accelerating the Development of

	488
	
Green Building", China's construction industry has changed its development mode and paid



489 more  attention  to  the  quality  and  efficiency   of   development   [2].   In   addition,   through
490 implementation of preferential policies, the utilization rate of green production capacity of the
491 construction industry in the West region is gradually improved [69]. Therefore, the growth trend
492 of CO2 emissions in the West region is gradually flattening, which indicates that this region has
493 further controlled the level of CO2 emissions. However, the West region has not been able to
494 significantly  reduce  CO2   emissions  to  the  same  level  achieved  in  the  East  region  and
495 consequently the West region still faces  challenges  in this  area. How  to break  through  this
496 challenge is the main problem that the West region needs to solve in regard to the future
497 low-carbon transformation of the construction industry. Unlike the East and West regions,  the
498 CO2 emissions in the Middle region were still growing. Consequently, the Middle region should
499 consider how to reach the peak of CO2 emissions as soon as possible.
500 In the second stage, it has been found that the Chinese construction industry is still
501 following the trajectory of the extensive industrial development model and consequently there
502 is significant scope for improvement in the level of CO2  emissions. The primary source of CO2
503 emissions of the construction industry is energy consumption [70]. Indeed, the 13th Five-Year
504 Development Plan of the Chinese Construction Industry identified the need to promote building
505 energy  conservation  and  green  building  development  [71],  thereby  providing  a  feasible
506 implementation path for the control  of  CO2  emissions. It has  also been found that  the  DMU
507 value of four provinces (namely Liaoning, Jiangsu, Shanghai and Xinjiang) is 1, and there is
508 therefore  no  capacity for  CO2  emission  reduction.  Jiangsu and  Shanghai  have small land
509 areas and high levels of economic development, and the construction industry has high CO2
510 emissions, but the industry has low carbon intensity and high carbon emission efficiency [35,

511 72, 73]. The "Low Carbon Development Report" issued by Jiangsu and Shanghai Ministry of
512 Ecological   Environment   identifies   that  through  orderly  promoting   the  construction  and
513 management of low-carbon buildings, energy-saving transformation of existing buildings can
514 be achieved. It can be observed that both provinces have fulfilled the CO2  emission reduction
515 targets  set  by the  state  ahead  of  time. Therefore,  there  is  no  capacity for  CO2  emission
516 reduction.
517 In the third stage, it has been found that the Chinese construction industry has ample
518 scope for CO2 emissions reduction, and the East region is a crucial area for the reduction. The
519 economic development level of the East region is high, and the laws and regulations of the
520 East region are sound. Also, the technical level is high in this area, so it is more likely to
521 achieve the CO2 emission reduction targets set by the state and the province. Therefore, the
522 relatively developed areas in the East have significant capacity for emission reduction. This is
523 consistent with previous studies [74]. At the same time, it was found that the relation between
524 β̂k    and the CO2  emissions reduction capacity is not very strong. The results highlight that the
525 scope  for  technological  progress  in  Inner  Mongolia  is  obviously larger  than  that  in other
526 provinces, but the capacity for CO2  emission reduction is only about 5% of its total amount.
527 This  study suggests  that this  may be  affected by the  output  threshold  set  in  the research
528 process, and the introduction of threshold reduces β̂k    and CO2  emission reduction capacity.
529 The reason for this phenomenon may be the impact of the scale effect. Therefore, we propose
530 that optimizing the scale of the construction industry is also a feasible path for CO2  emissions
531 reduction. In addition, the study found that Fujian leads the way among all provinces, with the
532 reduction ratio of 37.94%. In this regard, Su et al. [75] found that due to the change of energy

533 consumption and the negative attitude of industrial enterprises towards energy conservation
534 and CO2  emission reduction, it is a difficult task for Fujian to  achieve CO2  emission reduction
535 targets as scheduled. After the reform in China and the opening up process, Fujian's economy
536 grew rapidly, and it was close to the level of medium-sized developed countries in 2008.
537 However, Fujian now needs to reduce CO2  emission intensity while maintaining a high GDP
538 growth rate, which is a huge challenge [76].
539 In addition, in order to illustrate the advance of Method II proposed in this study, the DEA
540 Method  (Method  I)   was   adopted  to  allocate  the   carbon  dioxide  emissions   of  China's
541 construction industry without considering the policy threshold and super efficiency, and the
542 distribution results of the two methods are compared and analyzed. As can be seen from Table
543 6, 86.7% of the provinces and cities in the allocation results of Method II were selected as CO2
544 emission reduction targets, while in the allocation results of Method I, the value was only 40%.
545 This indicates that Method II can identify the DMU emission reduction capacity more effectively
546 than Method I. In addition, in the allocation results of Method I, the CO2  emission reduction
547 ratio of Shaanxi exceeds 60%. In contrast, in the distribution results of Method II, the CO2
548 emission reduction ratio of various provinces and cities is more concentrated. Among them, 60%
549 of  the provinces  and cities  are  in the range of  0  to  20%,  and  no  provinces  and cities cut
550 emissions by more than 40%. In conclusion, Method II can more effectively identify the CO2
551 emission reduction capacity of the decision unit and reduce the occurrence of extreme values
552 in the allocation results.
553 Table 6
554 The comparative analysis of two methods
Method I	Method II

DMUs



Reduction ratio	Set	Reduction ratio	Set




	Beijing
	0.00%
	F
	22.08%
	L

	Tianjin
	0.00%
	F
	2.58%
	L

	Hebei
	19.28%
	L
	11.37%
	L

	Shanxi
	18.65%
	L
	6.77%
	L

	Inner Mongolia
	0.00%
	F
	5.32%
	L

	Liaoning
	0.00%
	F
	0.00%
	F

	Jilin
	0.00%
	F
	3.07%
	L

	Heilongjiang
	0.00%
	F
	22.87%
	L

	Shanghai
	0.00%
	F
	0.00%
	F

	Jiangsu
	0.00%
	F
	0.00%
	F

	Zhejiang
	0.00%
	F
	10.44%
	L

	Anhui
	17.35%
	L
	19.92%
	L

	Fujian
	32.58%
	L
	37.94%
	L

	Jiangxi
	0.00%
	F
	22.42%
	L

	Shandong
	25.20%
	L
	8.88%
	L

	Henan
	18.29%
	L
	6.57%
	L

	Hubei
	0.00%
	F
	6.50%
	L

	Hunan
	0.00%
	F
	2.40%
	L

	Guangdong
	39.16%
	L
	9.78%
	L

	Guangxi
	0.00%
	F
	22.37%
	L

	Hainan
	0.00%
	F
	10.28%
	L

	Chongqing
	0.00%
	F
	13.33%
	L

	Sichuan
	22.04%
	L
	21.30%
	L

	Guizhou
	20.40%
	L
	8.65%
	L

	Yunnan
	15.65%
	L
	9.80%
	L

	Shaanxi
	63.44%
	L
	15.13%
	L

	Gansu
	0.00%
	L
	11.94%
	L

	Qinghai
	0.00%
	F
	9.55%
	L

	Ningxia
	0.00%
	F
	9.92%
	L

	Xinjiang
	0.00%
	F
	0.00%
	F


555 6 Conclusions
556 This research study has developed an optimized CO2 emissions allocation scheme for the
557 construction  industry.  A  three-stage  approach  was  adopted  to  empirically  study  the CO2
558 emissions allocation for the Chinese construction industry drawing on panel data for the period
559 2005-2017.  In  order  to  achieve  an  optimum  overall  scheme  efficiency,  parameters were
560 introduced in the proposed model to limit the negative impact of CO2 emission reduction on the
561 production efficiency and output of the construction industry. Firstly, according to China's 2030

562 emissions  reduction  national goal,  this  research  study identified  the  total amount  of  CO2
563 emissions reduction for the construction industry with the data of CO2  emissions from 2005 to
564 2017. Secondly, the DEA-BCC model and super efficiency DEA model was applied to evaluate
565 the CO2 emissions reduction capacity of 30 provinces in China and divide the provinces into
566 the  L  and  F  groups.  Group  L  represents  the  collection  of  provinces  with  CO2 emission
567 reduction capacity, including 27 provinces, and were selected as priority objects for CO2
568 emissions reduction. The InvDEA model was employed to allocate the total amount of CO2
569 emissions  reduction  to  priority  objects  of  the  L  group,  and  identified  an  optimized  CO2
570 emissions allocation scheme, thereby achieving the overall scheme efficiency. This study uses
571 the DEA-BCC model to identify CO2 emission reduction target allocation objects, and on this
572 basis,  introduces  a  super-efficiency  DEA model  to  further  evaluate  high-efficiency DMUs,
573 thereby improving  the  accuracy of  identification  of  CO2  emission  reduction  objects  in the
574 construction  industry,  and  further  enriching  and  improving  the  theoretical  system  of CO2
575 emission  reduction  target  allocation.  In  addition,  this  study  adopts  China's  construction
576 industry as an example to allocate CO2 emission reduction capacity, which provides a scientific
577 basis for the formulation of CO2 emission reduction policies in China's construction industry. At
578 the same time, this study provides a reference for the formulation of CO2  emissions reduction
579 policies and has a further reference value for CO2  emissions allocation research in other
580 regions and industries. This study will also help China and other countries and regions to
581 achieve the objectives  of  the Paris  Agreement and  the  wider  United  Nations  Sustainable
582 Development Goals (SDGs). The main findings of this study are as follows:
583 (1) From 2005 to 2017, the CO2 emissions of the Chinese construction industry increased

584 from 3404.63 (10,000 tons) to 6789.84 (10,000 tons), but the CO2 emissions / GVOC overall
585 declined, from  0.0853  to 0.0378. In  order  to achieve  China's 2020 CO2 emissions reduction
586 targets, the CO2  emissions of the Chinese construction industry needs to be reduced by
587 665.52 (10,000 tons), accounting for about 10% of total CO2 emissions in 2017.
588 (2) During the inspection period, CO2 emissions from the construction industry in the East
589 region  were  on  a  downward trend  after peaking at  27.033 million tons  in  2011.  The West
590 region leveled off in 2010, while CO2  emissions in the Middle region were volatile and still
591 growing. Therefore, the East region has improved control over carbon dioxide emissions.
592 (3) The results show that in 2017, about one-third of China's provinces are facing
593 significant pressure to reduce CO2  emissions, of which Fujian is are more than 35%. In
594 addition, the East region is the key area of CO2  emission reduction, and its CO2 emission
595 reduction capacity accounts for 44.0% of the total CO2 emission reduction.
596 (4) This study concludes through comparing with the calculated results of DEA without
597 considering the policy threshold and super efficiency that the CO2  emission allocation method
598 in the construction industry proposed is more effective than other approaches. Furthermore,
599 the proposed method can better reflect the actual situation of CO2 emission reduction capacity
600 in the construction industry in different provinces.
601 It has been found that the environmental issue arising from CO2 emissions has negative 602  externalities, and its resolution should be achieved through governmental intervention. This  603 will ensure the  realization  of  the  CO2  emissions  reduction  targets,  and  thereby  balance 604  economic  development  and  CO2  reduction.   This   research   has   provided   four   policy 605 recommendations with a view to facilitating the formulation of relevant CO2 emissions

606	reduction policies:
607	(1) Implement CO2 emissions quota trading in the construction industry. The trading of 608 CO2 emissions is an  effective economic incentive  to  control emissions and  wider pollution  609  (Zhang et al., 2019a). The optimized CO2  emissions  allocation scheme for the construction  610  industry in this study provides a reference for developing CO2  emissions trading policies for  611 the construction industry.
612	(2) Develop a systematic CO2 emissions reduction  action  plan  for  the  construction 613 industry. The adoption of the national-level CO2 emissions reduction action plan may face the 614    problem  of being less targeted when it is implemented for a specific industry. Therefore,    615  governments  should  formulate  a  systematic  CO2  emissions  reduction  action  plan  with  616  administrative measures based on the construction industry’s development characteristics.   617 For example: (a) Establishment of a CO2 emissions database for the construction industry to  618 accurately monitor, record and verify regional CO2 emissions. (b) The establishment of a think 619   tank, the threshold for CO2 emission reduction can be scientifically and reasonably  set by   620 experts to ensure that the CO2 emission reduction action plan is practical and effective.
621	(3) Establish a carbon tax  system.  The  carbon  tax  system  restricts  high-energy,  622 high-emission production behavior through the action of taxation, and encourages enterprises 623   to actively carry out energy conservation  and emissions reduction. The revenue from  the   624 carbon tax can be used to subsidize and develop new technologies to promote the green and 625  low-carbon  transformation  of  the  industry.  At  the  same  time,  a  system  of  carbon  tax  626 assessment rewards  and  penalties  should  also  be  established.  The  government  makes 627 statistics on the carbon tax payment value of each region and publishes the variation range of

628	carbon tax in each region every quarter. If the carbon tax is improved, it will be rewarded; if it
629	rises, it will be punished.
630	(4) Develop and promote energy-saving and emission reduction technologies  in the  631 construction industry.  The government should  encourage  the use  of domestic and foreign  632   advanced  energy  conservation  and  emission  reduction  technologies.  In  addition,  the   633 government should  invest  more  funds  to  support  the  organization  of  scientific  research 634  institutions  and  enterprises   to   jointly   research   and   develop   building   energy-saving 635  technologies.  At  the  same  time,  building  energy  conservation  and  emission  reduction  636 technologies will  be  popularized  and  integrated  application  demonstration  zones  will  be 637  established. Furthermore, there is a need to reduce carbon emissions from the construction  638 industry at source through technological innovation and progress.
639	There are also some limitations in this study. Firstly, in this study, we only selected 0.05 as 640 the policy threshold. Actually, due to the different risk attitude of the decision makers, the policy 641   threshold is  usually not a specific value. Secondly, this study proposed an optimized CO2    642   emissions   allocation   scheme   for   the    construction    industry,    but    detailed    policy 643  recommendations on how to reduce CO2  were not given. As for future research, we believe  644 that the InvDEA model could potentially be improved by introducing a parameter to reflect the 645 risk attitude of the decision-makers. Furthermore, regression analysis could be conducted to  646  identify  the  impact  of  environmental  variables  on  the  CO2  emissions  reduction  of  the  647 construction industry so that policy recommendations would be more detailed.
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Fig. 1. Framework of the research methodologyCO2 emissions reduction goal
on the national level
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Fig. 2. Super efficiency DEA model
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Fig. 3. Efficient DMUs in DEA-BCC model after adjustment
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Fig. 4. Geography of the three regions in China (East, Middle and West).























Fig. 5. Regional construction industry CO2 emissions during 2005-2017Year
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Fig. 6. CO2 emissions reduction amount in three regions (unit: 10,000 tons)
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Fig. 7. CO2 emissions provincial quota in Chinese construction industry (unit: 10,000 tons)
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