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1. INTRODUCTION 

The virtual fields method (VFM) is a powerful technique for determining stiffness distributions of a sample, based on 

measured full-field strain data. The advantage of the VFM over many other methods is its ability to solve inverse 

problems of this type without any iteration [1]. A key step in any application of the VFM is the selection of the virtual 

fields. Several techniques are based on the use of polynomials of spatial variables (either on the whole domain or in a 

piecewise form), and the material properties are considered as having single values (homogeneous) within the domain. 

The first attempt to parameterise the material properties as a function of spatial variables was proposed in [2] for 

reconstruction of the stiffness map of a plate with impact damage.  

  

In this paper, we retain the basic concepts underlying the VFM but approach the parameterisation of the material 

properties in the spatial frequency, rather than spatial, domain by performing a 3-D Fourier series expansion of the 

stiffness distribution over the region of interest. Furthermore, the virtual fields are not selected as polynomials of spatial 

variables as in the previous VFM literature, but from a set of simple cosine or sine functions of different spatial 

frequencies. The abbreviation F-VFM will be used to denote the VFM in which both a Fourier series is used for the 

material property parameterization, and cosine/sine functions for the virtual fields. The F-VFM was developed 

originally for 2-D geometries [3]; here it is extended to volumetric datasets resulting, for example, from measurements 

with Digital Volume Correlation or Phase Contrast Magnetic Resonance Imaging.  

2. THE FOURIER VIRTUAL FIELDS METHOD 

The fundamental equation for the VFM, written for a deformable body subject to quasi-static loading, can be simplified 

by neglecting the integrals involving the body force and acceleration terms as follows [1]: 

  

           

(1) 

where ϵ is the measured strain field within volume V, T is the traction distribution on the surface Sf of V, ϵ* and u* are 

the virtual strain and displacement fields, respectively, and Q is the stiffness matrix. For elastic isotropic materials, Q is 

only dependent on two elastic parameters, Qxx and νQxx, where ν is Poisson’s ratio. Although we allow for spatial 

variation in Qxx we assume that v is a known constant. The basic idea of the F-VFM is to expand Qxx as a 3-D Fourier 

series in the spatial variables (x,y,z). The unknown coefficients of this expansion are then determined by successive 

application of Eqn. (1), each time with a different virtual field. In the F-VFM, these virtual fields are chosen to be 

cosine and sine waves of different spatial frequencies. Provided the number of virtual fields is at least equal to the 

number of unknown Fourier coefficients, the coefficients are determined uniquely by a simple inversion of a matrix 

representation of these simultaneous equations, without any iteration.  

2.1. Fast algorithm 

The choice of cosine and sine waves for the virtual strain fields has an important benefit in that a fast algorithm based 

on the fast Fourier transform can be implemented [3]. Computational effort can in practice be reduced by some 4-5 

orders of magnitude compared to a non-fast implementation. 

2.2. Unknown boundary conditions 
In many cases the traction distribution T over the surface of the region of interest will be unknown. In such cases, the 

virtual fields can be modified through the use of a window function that tapers the u* field to zero on Sf. The surface 

integral in Eqn. (1) will thus be equal to zero regardless of the precise surface traction distribution. Only non-

dimensional stiffness distributions, normalised with respect to the dc term in the stiffness expansion, can be obtained in 

such situations.  
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2.3 Example application 

The F-VFM has been applied to a number of simulated datasets created by finite element analysis of a sample with 

specified modulus distribution, and its performance in the presence of noise has also been tested, as described in [3]. An 

example of its application to an experimental dataset is shown in Figure 1. The data came from an experiment first 

presented in [4] in which a tissue-mimicking phantom of rectangular cuboid shape of size 80×64×154 mm
3
, 

incorporating a spherical inclusion of 25 mm diameter and stiffness approximately 4× that of the background, was 

loaded cyclically in compression. All three displacement components were measured using phase contrast Magnetic 

Resonance Imaging. For incompressible materials such as this, application of the VFM leads to reconstruction of the 

shear modulus distribution [3,5]. Figure 1(a) shows the computed distribution for the case where 7219 unknown 

coefficients were determined. Total computation time using the fast algorithm was approximately 3 minutes on an Intel 

Core™ i7 CPU 2.79 GHz computer with 8GB of memory. The average shear modulus computed from the region known 

to contain the inclusion was 4.26, which is close to the expected value of 4.  

 
(a) (b)
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Figure 1. (a) Slices through the reconstructed 3-D shear modulus distribution of a phantom from its MRI data by the F-

VFM compared with (b) the reference distribution determined from the magnitude of the MRI signals 

3. CONCLUSIONS  

The paper presents a development of the virtual fields method to reconstruct 3-D stiffness distributions from measured full-field data. 

Like the previously-published VFM algorithms, stiffness distributions are reconstructed after a single computation step without any 

iteration. By using a 3-D Fourier series expansion of the unknown stiffness distribution, and cosine/sine waves for the virtual fields, 

an efficient numerical algorithm based on the fast Fourier Transform allows volume identification problems with ~104 degrees of 

freedom to be solved in just a few minutes. Adaptation to the case of unknown boundary conditions is straightforward, although the 

technique then only provides stiffness distributions normalized with respect to the average stiffness value. 
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