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Abstract

This paper proposes an improved neuroendocrine–proportional–integral–derivative controller for nonlinear multi-input–

multi-output crane systems using a sigmoid-based secretion rate of the hormone regulation. The main advantage of the

sigmoid-based secretion rate neuroendocrine–proportional–integral–derivative is that the hormone secretion rate of neu-

roendocrine–proportional–integral–derivative can be varied according to the change of error. As a result, it can provide high

accuracy control performance, especially in nonlinear multi-input–multi-output crane systems. In particular, the hormone

secretion rate is designed to adapt with the changes of error using a sigmoid function, thus contributing to enhanced control

accuracy. The parameters of the sigmoid-based secretion rate neuroendocrine–proportional–integral–derivative controller

are tuned using the safe experimentation dynamics algorithm. The performance of the proposed sigmoid-based secretion

rate neuroendocrine–proportional–integral–derivative controller-based safe experimentation dynamics algorithm is evaluated

by tracking the error and the control input. In addition, the performances of proportional–integral–derivative and neuroen-

docrine–proportional–integral–derivative controllers are compared with the proposed sigmoid-based secretion rate neuro-

endocrine–proportional–integral–derivative performance. From the simulation work, it is discovered that the sigmoid-based

secretion rate neuroendocrine–proportional–integral–derivative design provides better control performances in terms of the

objective function, the total norm of error and the total norm of input compared to proportional–integral–derivative and

neuroendocrine–proportional–integral–derivative controllers. In particular, it is shown the proposed sigmoid-based secretion

rate neuroendocrine–proportional–integral–derivative controller contributes 5.12% of control accuracy improvement by

changing the fixed hormone secretion rate into a variable hormone secretion rate based on the change of error.
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Introduction

Nowadays, nonlinear multi-input–multi-output (MIMO) crane systems are widely used in the container logistics

industry for loading and unloading containers from and to container ships in the harbour. During the loading and

unloading process, the crane requires a highly accurate controller to control the payload oscillations and payload
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bouncing to avoid any cause of damage or accidents. Various controller methods have been proposed to achieve

accurate movement. These include sliding mode control,1 linear quadratic regulator (LQR) control,2 feedback

control,3 H-infinity control,4 proportional–integral–derivative (PID) with input shaping,5 and fuzzy-sliding mode

control.6 Generally, most of the controller designs are model based, where the control is derived from mathe-

matical model of the system, and this is very challenging and complicated in case of nonlinear dynamic systems.7

Thus, model-based control methods potentially suffer from problems of un-modelled dynamics, which lead to

model inaccuracy and hence poor control performance.
A data-driven control scheme is a suitable alternative option since it does not depend on the model of the

system in designing the controller.8,9 A data-driven control scheme is designed using the input and output data

only and treats the system as a black box. Meanwhile, the data-driven control based on PID control is commonly

chosen due to its simple structure, ease of implementation and fewer number of parameters to tune, and that it

allows to be used for a wide range of operating conditions.10,11 However, the PID controller has some limitations

in controlling a complex nonlinear system, especially at nonlinear MIMO crane system. This is due to the fact that

the PID structure is linear in nature and it is unable to adapt with the complex nonlinear system.12 Thus, large

numbers of published studies have proposed advanced PID controllers, such as fractional PID,13 neural network

PID,14 fuzzy PID,15 sigmoid PID16,17 and fractional order sliding mode PID.18

On the other hand, the controllers that were inspired by nature in biological phenomena have also been

proposed to improve the conventional PID. This include brain emotional learning (BEL),19 neuro-dynamics

control,20 immune system control21 and neuroendocrine control.22,23 From the aforementioned, the neuroendo-

crine–PID (NEPID) control has shown great potential in providing high control accuracy and performance in

controlling nonlinear MIMO systems.24 Based on our preliminary study,25 the NEPID also shows a promising

results for nonlinear MIMO gantry crane system. Generally, the NEPID control is a combination of neuroen-

docrine with the PID control that is likely to result in more efficient and better control performance as compared

to the standard PID control. The neuroendocrine is derived from general secretion rules of the hormone in the

human body that has the form of a hill function.22,26 This hormone regulation mechanism can be generalized and

modified mathematically, which can then be applied to control systems by embedding an additional bio-inspired

section to the existing PID controller. However, in the existing version of the NEPID, the parameter of hormone

secretion rate is constant during the whole simulation or experiment time. Hence, it is worth to improve the

existing NEPID by varying the hormone secretion rate parameter according to the change in control variable

error. In particular, it is proposed in this study to modify the fixed hormone secretion rate to variable secretion

rate according to the changes of the control variable error by using a sigmoid function. Therefore, designing the

variable hormone secretion rate of neuroendocrine–PID control could offer a great potential in improving

the control accuracy of the standard NEPID controller in controlling nonlinear MIMO crane systems.
This paper presents a sigmoid-based secretion rate neuroendocrine–PID (SbSR–NEPID) control mechanism

for controlling nonlinear MIMO crane systems. The parameters of SbSR–NEPID are tuned using safe experi-

mentation dynamics (SED) in the data-driven control framework. The SED optimization method is a game

theoretic method that randomly perturbs several elements of the design parameter to search for the optimal

design parameter.27 The essential feature of the SED method is that it is able to provide stable convergence

and better control accuracy by keeping the best parameter value in the updating process. Moreover, the coef-

ficients of the SED method are independent of the number of iterations and thus robust to disturbances or delays

during the tuning process. Therefore, the SED method has good capability to find the optimal SbSR–NEPID

parameters and thus produce a better control performance. The performance of the proposed control approach is

validated through application to a nonlinear MIMO crane system in terms of tracking error and control input

energy. Underpinning this novel technique, the contribution of this work is to verify that the SbSR–NEPID

provides better control performance accuracy than the standard NEPID and the standard PID controller by

modifying the fixed secretion rate into variable secretion rate based on a sigmoid function. Hence, the new version

of NEPID could offer more effective neuroendocrine regulation that can track the changes of control error.
The rest of the organization of this research paper is organised presented as follows. The second section

presents the given nonlinear MIMO crane system and the problem formulation of the data-driven SbSR–

NEPID controller. In the third section, SbSR–NEPID control design based on SED-based method is explained.

The proposed controller is then validated with a container gantry crane system in the fourth section. The analysis

and the performance comparison between the proposed controller and the standard NEPID and the standard

PID controllers are also presented and discussed. Finally, the conclusions drawn from the work are presented

in the fifth section.
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Notation: The real number sets and the positive real number sets are denoted by R and Rþ, respectively. The
symbol Rn represents the set of n real numbers. 0 and 1 are defined as vector whose all elements are zero and one,

respectively.

Problem formulation

In this section, the nonlinear MIMO crane system is firstly described. Then, the problem setting of the proposed

SbSR–NEPID controller for the MIMO crane system is presented.

Container gantry crane system

Figure 1 shows a container gantry crane system for swing motion of the payload caused by trolley movement28,29

in which X represents the direction of motion of the trolley and Z is the vertical direction. The outputs x(t), l(t),

and hðtÞ are the trolley displacement, rope length and sway angle of the payload, respectively. Then, FxðtÞ and
FlðtÞ refer to the control inputs of trolley force in X-direction and hoist force in l-direction, respectively.

The equations of motion of the crane are given as follows:

_xa ¼ fðxaÞ þ gðxaÞua (1)

and

y ¼ Cxa (2)

where

x_a ¼ x l h x
_

l
_

h
_

h iT
(3)

The function fðxaÞ is given as

f xað Þ ¼ q2
�M�1 qð Þ Vm q; _qð Þ _q þ G _qð Þ½ �
� �

(4)

where q1 ¼ q; q2 ¼ _q; u ¼ Fx Fl 0½ �T and q ¼ x l h½ �T. The function gðxaÞ is

Figure 1. The container gantry crane system.
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g xað Þ ¼ �h xað ÞE0 (5)

where h xað Þ ¼ 03�3

�M�1 qð Þ
� �

; E0 ¼ 1 0 0
0 1 0

� �T
and uaðtÞ ¼ u1 u2½ �T ¼ Fx Fl½ �T. The general equation of con-

tainer gantry crane is given as

M qð Þ€q þ Vm q; _qð Þ _q þ G _qð Þ ¼ u (6)

where

M qð Þ ¼
mp þmt mp sinh mpl cosh
mp sinh mp þml 0
mpl cosh 0 mpl

2 þ I

2
4

3
5 (7)

Vm q; q:ð Þ ¼
0 mp

_h cosh �mpl sinh _h þmp cosh _l
0 0 �mpl _h
0 mpl _h mpl _l

2
64

3
75 (8)

and

G q_ð Þ ¼ 0 �mpg cosh mpgl sinh
� �T

(9)

Then, the output of container gantry crane is

y ¼
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

2
4

3
5

x
l
h
x_

l_

h_

2
6666664

3
7777775
¼

x
l
h

2
4
3
5 ¼ q (10)

The parameters of the system considered are mp ¼ 0:73 kg, mt ¼ 1:06 kg, ml ¼ 0:5 kg and I¼ 0.005 kgm2.

Note that, this model has been verified using actual gantry crane system as reported in Park et al.28

Problem setting

Consider the SbSR–NEPID control for MIMO crane system as shown in Figure 2, where rðtÞ 2 Rb is a reference,

uðtÞ 2 Ra is control input, dðtÞ 2 Rb is deterministic disturbance, yðtÞ 2 Rb is output measurement and eðtÞ 2 Rb

is error between reference and system output. The MIMO crane system is denoted by symbol H, where a and b

represent the number of inputs and outputs of the system, respectively. ts is sampling time for

Figure 2. The SbSR–NEPID control system.
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t ¼ 0; ts; 2ts; 3ts . . .Dts, where D is the number of samples. The SbSR–NEPID is a combination of standard PID
controller unit CUðsÞ and sigmoid-based secretion rate of neuroendocrine ~NEðeðtÞ;DhðtÞÞ controller.
The controller CUðsÞ for the MIMO crane system is defined as

CU sð Þ ¼
C11ðsÞ . . . C1bðsÞ

..

. . .
. ..

.

Ca1ðsÞ . . . CabðsÞ

2
64

3
75 (11)

where

Cij sð Þ ¼ KPij 1þ 1

KIijs
þ KDijs

KDij=Nij

� �
s

 !
(12)

is the PID controller for i ¼ 1; 2 . . . a and j ¼ 1; 2 . . . b. The PID parameters KPij 2 R; KIij 2 R; KDij 2 R and
Nij 2 R are the proportional gain, integral time, derivative time and filter coefficient, respectively. The output of
CUðsÞ is denoted as

uCU
ðtÞ ¼

Xb
j¼1

h1j;
Xb
j¼1

h2j; . . .
Xb
j¼1

haj

2
4

3
5
T

(13)

where hij ¼ CijðsÞejðtÞ and ejðtÞ ¼ rjðtÞ � yjðtÞ.
The ~NEðeðtÞ;DhðtÞÞ is given as

~NE e tð Þ; Dh tð Þð Þ ¼

~V11 e1 tð Þ; Dh11 tð Þð Þ . . . ~V1b eb tð Þ; Dhb1 tð Þð Þ
..
. . .

. ..
.

~Va1 e1 tð Þ; Dha1 tð Þð Þ . . . ~Vab eb tð Þ; Dhab tð Þð Þ

2
6664

3
7775 (14)

where

~Vij ej tð Þ; Dhij tð Þ
� � ¼ ~aij

jDhijðtÞj
� �fij

kij þ jDhij tð Þj
� �fij� 	þ bij

2
4

3
5L1L2 (15)

and

L1 ¼ � ej tð Þ
ej tð Þ


 

 Dej tð ÞDej tð Þ



 

 ; L2 ¼ Dhij tð Þ
Dhij tð Þ


 

 (16)

such that Dhij tð Þ ¼ hij tð Þ � hij t� tsð Þ is the variance of hijðtÞ and the change of error is Dej tð Þ ¼ ej tð Þ � ej t� tsð Þ.
The symbol fij is a hill coefficient while bij and kij are scalar positive real numbers. Note that, ~Vij ej tð Þ; Dhij tð Þ

� � ¼ 0
would be fulfilled if Dhij tð Þ ¼ 0, so all bij ¼ 0.22 The direction factors L1 and L2 of equation (16) are used to
abolish the error effectively by ensuring the output of the controller is always against the changing direction of the
error where the value is either 1 or �1. The hormone secretion intensity of equation (15) is monotonous and
non-negative, which has the form of a hill function as given by Ding et al.22 The variable coefficient of secretion
rate ~aij is based on sigmoid function given by

~aij ¼ aijmin þ
aijmax � aijmin



 


1þ e�cij ejðtÞ��ijð Þ (17)
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where aijmin 2 R and aijmax 2 R are the lower and the upper bounds of ~aij, respectively. The symbols cij and �ij are

the coefficients to adjust the sharpness of curve and to shift the centre of curve between lower and upper bounds,

respectively. For simplicity of design parameter tuning, Daij ¼ aijmax � aijmin



 

. Then, the output of
~NE e tð Þ; Dh tð Þð Þ is denoted by

u
N
�

E

tð Þ ¼
Xb
j¼1

V
�
1j;

Xb
j¼1

V
�
2j; . . .

Xb
j¼1

V
�
aj

2
4

3
5
T

(18)

Thus, the combination of the signals uCU
ðtÞ and u ~NE

ðtÞ produce the output of SbSR–NEPID controller as

u tð Þ ¼ uCU
tð Þ þ u ~NE

tð Þ (19)

where u tð Þ ¼ u1 tð Þ; u2 tð Þ; . . . ; ua tð Þ½ �T; uCU
tð Þ 2 Ra and u ~NE

ðtÞ 2 Ra.
Remarks 2.1: Note that, the value of ~aij in equation (17) is varied according to the signal ejðtÞ, instead of using fix

coefficient in the standard NEPID.22,25,26 Moreover, a unique value of curve sharpness and shifting curve (c and �)

are considered for each ~a which do not give any restriction to error signal eðtÞ in equation (17). Therefore, the

sigmoid based secretion rate has more flexibility to provide a better control accuracy of SbSR–NEPID as com-

pared to the standard NEPID.
Next, the system in Figure 2 is observed for its performance index based on

e�j :¼
Z tf

t0

ðrjðtÞ � yjðtÞ


 

2dt (20)

�ui :¼
Z tf

t0

ui tð Þj j2dt (21)

where rj tð Þ; yj tð Þ and ui tð Þ are the elements j and i for vectors rðtÞ; yðtÞ and uðtÞ, respectively. The time interval

t0; tf½ � is referred as the duration for the evaluation of performance where t0 2 0f g [Rþ and tf 2 Rþ. The defi-

nition of the objective function is given as follows

J KP;KI;KD;N; f; k; amin;Da; c; �ð Þ ¼
Xb
j¼1

w1j�ej þ
Xa
i¼1

w2i�ui (22)

where the value of the parameters KP :¼ KP11;KP12 . . . ;Kpad½ �T, KI :¼ ½KI11;KI12; . . . ;KIab�T; KD :¼
KD11;KD12; . . . ;KDab½ �T; N :¼ N11;N12; . . . ;Nab½ �T; f :¼ f11; f12; . . . ; fab½ �T; k :¼ k11; k12; . . . ; kab½ �T; amin :¼
a11min; a12min; . . . ; aabmin½ �T; Da :¼ Da11;Da12; . . . ;Daab½ �T; c :¼ c11; c12; . . . ; cab½ �T and � :¼ �11; �12; . . . ; �ab½ �T. The
weighting output and input coefficients are w1j 2 R j ¼ 1; 2; . . . ; bð Þ and w2i 2 R i ¼ 1; 2; . . . ; að Þ respectively.

The symbols a and b represent the dimension of input uðtÞ and output yðtÞ, respectively. The tracking error and the

input energy control for control performance are consistent with the right side of equation (22).
Problem 2.1. For the control system in Figure 2, find a SbSR–NEPID controller CUðsÞ and ~NEðeðtÞ;DhðtÞÞ of
nonlinear MIMO crane system, which minimizes JðKP;KI;KD;N; f; k; amin;Da; c; �Þ with respect to

KP;KI;KD;N; f; k; amin; Da; c and � according to the data obtained from the measurement of uðtÞ and yðtÞ.

Design of SbSR–NEPID using SED algorithm

In this section, the detailed solution of Problem 2.1 is presented. Firstly, the SED algorithm, which is used to tune

the control parameters of SbSR–NEPID is presented. Secondly, the execution of the data-driven SbSR–NEPID

control design method for minimizing the control objective in equation (22) is described.

Safe experimentation dynamics

Consider

Ghazali et al. 1177



min
p2Rn

fðpÞ (23)

as an optimization problem that minimizes the objective function f by tuning the design parameter p 2 Rn.

Then, the optimal solution is obtained using the SED algorithm by continually updating the design parameter.

The updated law of the SED algorithm is

pi kþ 1ð Þ ¼ h �pi � Kgrv2ð Þ; if rv1 � E;
�pi; if rv1 > E

�
(24)

where k ¼ 1; 2; . . . ; kmax is the iteration number, pi 2 R represents the ith element of p 2 Rn; �pi 2 R represents the

ith element of �p 2 Rn and �p is for storing the present best value of the design parameters. The symbol kmax is the

maximum number of iterations set by the designer. The symbol Kg represents a scalar that defines the interval size

to make decision on the random steps in pi 2 R and E is a scalar that defines the probability of using a new

random setting for p. Note that, rv1 2 R is the random number that has been uniformly selected between 0 and 1,

while rv2 2 R is the new random number which has been uniformly selected between pmin and pmax. The function

h �pi � Kgrv2ð Þ in equation (24) is defined as follows

h •ð Þ ¼
pmax; if �pi � Kgrv2 < pmax;
�pi � Kgrv2; if pmin � �pi � Kgrv2 � pmax;
pmin; if �pi � Kgrv2 < pmin

8<
: (25)

The steps of the SED method are as follows:

Step 1: Determine the values of pmax; pmin; Kg and E. Then, set k ¼ 0 and the initial condition for the design

parameter as pð0Þ and the corresponding objective function be fðpð0ÞÞ. Next, execute

�p ¼ pð0Þ and �f ¼ fðpð0ÞÞ. The variable �f is denoted as the current best value of the objective function.

Step 2: If f p kð Þ� �
� �f, execute �p ¼ p kð Þ and �f ¼ f p kð Þ� �

. If not, proceed to Step 3.
Step 3: Generate a random number rv1 and execute the updated law in equation (24).
Step 4: Obtain the objective function f p kþ 1ð Þ� �

.
Step 5: If the pre-stated termination condition is satisfied, the optimal design parameter

popt :¼ arg min
p2fpð0Þ;pð1Þ;...;pðkþ1Þg

f pð Þ (26)

is recorded. If not, set k ¼ kþ 1 and go to Step 2.
The pre-stated termination condition is based on the maximum number of iterations kmax.
Note that, in equation (25), the symbols pmax and pmin are the upper bound and the lower bound of the design

parameter values. The allowable boundaries of search space pmax and pmin are determined after several prelim-

inary experiments of the optimization problem. The guidelines to select the values of Kg and E are given in

Marden et al..30 In particular, for any probability E < 1, if the exploration rate Kg is sufficiently small, then popt
in equation (26) can be obtained with sufficiently large number of iterations k. Therefore, a large value of kmax is

chosen to guarantee that the popt is obtained. Here, the value of kmax can be determined whenever the convergence

curve is almost saturated.

Data-driven sigmoid-based secretion rate neuroendocrine–PID design

In order to accelerate the exploration of the design parameter searching, a logarithmic scale is employed for the

design parameter p. So, the SbSR–NEPID control parameters are stated as

w ¼ KP;KI;KD;N; f; k; amin;Da; c; �½ � 2 Rn (27)

where each element of w is given by wi ¼ 10piði ¼ 1; 2; . . . ; nÞ. Then, the objective function is written as

f ¼ 10p1 10p2 . . . 10pn½ �T. Finally, the procedure for data-driven SbSR–NEPID is given as follows:
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Step 1: Let fðpÞ ¼ JðKP;KI;KD;N; f; k; amin;Da; c; �Þ and pi ¼ logwi. Then, the maximum iteration number

kmax is determined.
Step 2: Implement the SED algorithm for the objective function in equation (22).
Step 3: After kmax is reached, the optimal output popt ¼ �p kmaxð Þ is obtained. Then, wopt ¼

10p1opt 10p2opt . . . 10pnopt½ �T is applied to CU sð Þ and ~NE e tð Þ;Dh tð Þð Þ in the SbSR–NEPID control

system in Figure 2.

Numerical example

In this section, the performance investigation of the data-driven SbSR–NEPID controller based on the SED

method for nonlinear container crane system is presented. The performance of the SbSR–NEPID is compared

with the standard NEPID and the standard PID controllers. Each performance controller is evaluated based on

the following criteria:

1. The analysis of the objective function J KP;KI;KD;N; f; k; amin;Da; c; �ð Þ, the total norm of error
X3

j¼1
�ej and

the total norm of input
X2

i¼1
�ui.

2. The control performance accuracy comparison between the SbSR–NEPID and the NEPID controller.

Specifically, the percentage of the control accuracy improvement JK is calculated as

%JK ¼ JSbSR�NEPID � JNEPIDj j
JNEPID

� 100% (28)

Next, the container gantry crane system in Figure 1 is considered, where the number of inputs a ¼ 2 and

the number of outputs b ¼ 3. The input and output of the crane system are defined by u1ðtÞ ¼ FxðtÞ;
u2ðtÞ ¼ FlðtÞ; y1ðtÞ ¼ xðtÞ; y2ðtÞ ¼ lðtÞ and y3ðtÞ ¼ hðtÞ, respectively. In order to validate the effectiveness of

proposed SbSR–NEPID controller, the desired position is set as

r tð Þ ¼ 0 0:2 0½ �T8t (29)

Here, the SbSR–NEPID controller CU sð Þ and ~NE e tð Þ;Dh tð Þð Þ are considered as follows:

CU sð Þ ¼ C11ðsÞ 0 C13ðsÞ
0 C22ðsÞ 0

� �
(30)

and

~NE e tð Þ; Dh tð Þð Þ ¼ V
�
11 0 V

�
13

0 ~V22 0

" #
(31)

The dimension of the SbSR–NEPID controller parameters for equations (30) and (31) is n ¼ 30. The corre-

sponding design parameter w :¼ KP;KI;KD;N; f; k; amin;Da; c; �½ � 2 R30 is tabulated in Table 1. The aim here is to

find the w 2 R30 that minimizes the performance index J in equation (22) for w11 ¼ 200;w12 ¼ 400;w13 ¼ 200;

w21 ¼ 1 and w22 ¼ 1. The time for the final simulation is set as tf ¼ 20 s and the total number of iterations is

kmax ¼ 3000. The coefficients of the SED are Kg ¼ 0:022; E ¼ 0:66; pmin ¼ �4 and pmax ¼ 4. The initial pð0Þ is
selected based on several preliminary experiments and the values are given in Table 1.
Remarks 3.1: In order to fairly compare our proposed controller with the standard NEPID and PID controllers,

we also adopt the SED method with similar coefficients, performance indexes, weighting coefficients and maxi-

mum number of iterations to tune both NEPID and PID controllers.
Figure 3 shows the objective function J response of the SbSR–NEPID controller based on the SED method for

kmax ¼ 3000 iterations. It justifies that the SED-based method is capable of minimizing the objective function and

produces optimal SbSR–NEPID control parameters popt as stated in Table 1. Furthermore, the output responses
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of the crane system y1ðtÞ; y2ðtÞ and y3ðtÞ controlled by SbSR–NEPID controller are demonstrated in Figures 4,
5 and 6, respectively, while the control input responses u1 and u2 are shown in Figures 7 and 8, respectively. Here,
all the responses are compared with the standard PID controller and the standard NEPID controller. The thin
dash gray in the figures indicates the reference, the dash gray line represents the response with PID controller, the
dot black line represents the response with NEPID and the solid black line indicates the response with SbSR–
NEPID controller. It is clearly seen that the data-driven SbSR–NEPID is able to produce better trolley

Figure 3. The objective function, J for container gantry crane.

Table 1. Design parameters.

w SbSR–NEPID pð0Þ 10pð0Þ popt 10popt

w1 KP11 �0.08 0.832 �0.022 0.950

w2 KI11 1.3 19.953 1.602 40.022

w3 KD11 0.2 1.585 0.126 1.338

w4 N11 0.7 5.012 1.313 20.573

w5 f11 0.3 1.995 0.547 3.525

w6 k11 �2 0.010 �2.160 0.007

w7 amin11 0.3 1.995 0.191 1.553

w8 Da11 1 10.000 0.660 4.572

w9 c11 0.2 1.585 0.385 2.426

w10 �11 0.3 1.995 0.342 2.197

w11 KP13 �2.4 0.004 �2.005 0.010

w12 KI13 �2.5 0.003 �2.353 0.004

w13 KD13 �1 0.100 �1.221 0.060

w14 N13 1.1 12.589 1.083 12.103

w15 f13 0 1.000 0.021 1.048

w16 k13 �1.9 0.013 �1.916 0.012

w17 amin13 0.5 3.162 0.538 3.455

w18 Da13 1 10.000 0.946 8.821

w19 c13 0.2 1.585 0.068 1.169

w20 �13 0.1 1.259 0.321 2.093

w21 KP22 0.6 3.981 0.840 6.921

w22 KI22 �0.2 0.631 �0.398 0.400

w23 KD22 �0.2 0.631 �0.353 0.444

w24 N22 0.1 1.259 0.507 3.210

w25 f22 0.7 5.012 0.762 5.782

w26 k22 �1.1 0.079 �1.006 0.099

w27 amin22 0 1.000 0.418 2.615

w28 Da22 1 10.000 0.815 6.534

w29 c22 0.1 1.259 �0.017 0.961

w30 �22 0 1.000 0.103 1.266

SbSR–NEPID: sigmoid-based secretion rate neuroendocrine–proportional–integral–derivative.
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displacement y1ðtÞ and rope length y2ðtÞ responses based on the lower overshoot and less settling time as com-
pared to the PID and NEPID controllers. Meanwhile, the sway angle y3ðtÞ response shows reduced oscillations
and fast settling time as compared to the NEPID and PID controller. It can further be seen that the SbSR–
NEPID controller produces less control input energy u1ðtÞ and u2ðtÞ in order to control the MIMO crane system.

All the above findings are also supported by the numerical analysis shown in Table 2. The results show that the

objective function J, the total of norm error
X3

j¼1
�ej and the total of norm input

X2

i¼1
�ui from the proposed

Figure 4. Trolley displacement y1ðtÞ responses.

Figure 5. Rope length y2ðtÞ responses.

Figure 6. Sway angle of the payload y3ðtÞ responses.
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Figure 7. The trolley force, u1ðtÞ responses.

Figure 8. The hoist force, u2ðtÞ responses.

Table 2. Numerical result of container gantry crane system.

Controller PID NEPID SbSR–NEPID

J 333.1457 211.2734 200.4576X3

j¼1
�ej 1.0775 0.7336 0.6802X2

i¼1
�ui 70.1729 30.2694 27.4562

PID: proportional–integral–derivative; SbSR–NEPID: sigmoid-based secretion rate neuroendocrine–propor-

tional–integral–derivative.

Figure 9. The sigmoid function of ~a11; ~a13 and ~a22.
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SbSR–NEPID controller produce slightly lower values in comparison to the standard PID and standard NEPID
controller. Moreover, the control accuracy improvement JK of SbSR–NEPID as compared to the standard
NEPID was obtained as 5.12%. This proves the significance of introducing the variable secretion rate based
on sigmoid function into the NEPID controller.

The optimal hormone secretion rate functions ~a11; ~a13 and ~a22 are shown in Figure 9. It noted that lower
magnitude of secretion rates ~a11; ~a13 and ~a22 are required for the range of errors between �4 and 0. The values
of secretion rates start to increase in the range of error between 0 and 4, before settling at some high magnitude
values for errors greater than 4. Figure 10 shows the responses of the hormone secretion rate as a function of time.
This indicates that the hormone secretion rate varied during 0–2 s due to the high error that occurred in transient
responses. Meanwhile, the value of hormone secretion rates settled at some optimum values after 2 s since the
error already converged to zero at the steady state. These findings show the effectiveness of the new hormone
secretion rate ~a11; ~a13 and ~a22 in regulating the hormone secretion intensity ~V11; ~V13 and ~V22 (in equation (15))
to reduce the high magnitude of error during the transient state. Thus, this mechanism contributes to the control
accuracy improvement of the controller. Thence, it is justified that the SbSR–NEPID controller is able to produce
better control performance as compared to the standard NEPID and the standard PID for nonlinear MIMO
crane system.

On the other hand, we also investigate the proposed SbSR–NEPID controller structure with disturbance
dðtÞ ¼ 0 0 dy3ðtÞ

� �T
. This disturbance is applied to the sway angle y3ðtÞ given as follows

dy3 tð Þ ¼
0; if 0 < t < 10;
0:2; if 10 � t � 12;
0; if 12 < t < 20

8<
: (32)

Figure 10. The hormone secretion rate responses of ~a11; ~a13 and ~a22 in SbSR–NEPID.

Figure 11. Trolley displacement y1ðtÞ with disturbance.
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Then, Figures 11, 12 and 13 show the responses of the controller in the same line configuration as in Figures 4,

5 and 6. This simulation result demonstrates that the SbSR–NEPID is able to handle disturbance at y3ðtÞ.
In particular, the SbSR–NEPID provides slightly less sway angle oscillation as compared to the standard

NEPID and PID controllers. At the same time, the proposed controller also able to maintain the trolley dis-

placement and rope length according to the given desired position. Thus, it proofs that SbSR–NEPID has

improved the NEPID controller in the existence of disturbance.

Conclusion

An improved NEPID controller for nonlinear MIMO crane system using a sigmoid-based secretion rate of

hormone regulation tuning by SED algorithm has been presented. The research findings indicate that the

sigmoid-based secretion rate of hormone regulation is effective in reducing the error during the transient state,

and this contributes significantly to improved control accuracy. It has been shown that the proposed SbSR–

NEPID controller outperforms the standard NEPID and the standard PID controllers in the perspective of

control performance accuracy by achieving lower objective function, total norm error and total norm input

even with the existence of disturbance. Moreover, it has been shown that the SbSR–NEPID controller has

achieved control accuracy improvement of 5.12% as compared to standard NEPID controller.
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Figure 12. Rope length y2ðtÞ with disturbance.

Figure 13. Sway angle y3ðtÞ with disturbance.
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