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Abstract

It is suggested that fuzzy logic could occupy a more prominent role in the materials finishing industry. Whilst a number of applications have already been made to control finishing processes and help with decision making, there is clearly scope for extending the use of fuzzy logic in the industry. After surveying some of these applications, the background to fuzzy logic is described and its set theory explained. Finally, the steps involved in selecting an environmentally acceptable metal cleaning agent from possible alternatives using a fuzzy analytic hierarchy process (AHP) are described in detail. As illustration, two different sets of selection criteria ranking are considered for choosing (i) the best solvent for cleaning equipment to be used in oxygen service and (ii) for cleaning metal parts prior to further finishing treatment.
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Introduction

Like technologists and engineers in many other areas, those involved in the materials finishing industry often have to deal with value judgments and uncertainties relating to the approximate and qualitative nature of processes and products. Selecting the most suitable metal cleaning process for a particular purpose will, for example, generally involve consideration of a number of different criteria or factors, each requiring some form of weighting to express their relative importance to the final decision.  In practice, what is set out to be achieved depends on a mix of objective functions, which can be expressed numerically (or as a ratio) and judgments or criteria which are not readily measured. Environmental friendliness, materials compatibility, cleaning agent toxicity and flammability are examples of factors which can generally be expressed in some numerical form whereas factors such as the simplicity of a process, the attractiveness of a particular finish or the ease or flexibility of operation cannot. 
Averill et.al. [1] have examined the use of desirability mathematical functions to deal  with the problem of combining qualitative judgments with numerical parameters in decision making. In their paper, the authors gave an introduction to the methodology of employing multiple criteria optimisation techniques to select from a multiplicity of different procedures, that procedure which best achieves an overall objective. The overall objective is expressed as a mathematical relationship (aggregate desirability function
) which includes contributions from all the system factors and responses whether these are continuous or categorised value judgments. In the illustrated use of desirability functions for selecting a solvent cleaning process for decontaminating components intended for service in oxygen-enriched atmospheres, the final selection was made using a criteria matrix of factor/response desirabilities. 

Aristotelian syllogistic logic has largely dominated scientific thought for the past several millennia, assuming a world of bivalent truth and falseness (A OR not-A) with excluded middle. Logical positivism, the basis of the scientific method, requires that evidence must be provided to be tested, mathematically or otherwise, to show whether something is true or not.  There is of course, a general difficulty in dealing with the uncertainty involved in making many of the judgments that need to be incorporated into a decision making process. The philosophical nature of subjective and objective judgment has been much discussed elsewhere, for example Averill et.al. [2] wrote:

     . . . there is indeed little apparent agreement as to what constitutes the difference between objective and subjective judgments or beliefs. For many purposes, expert beliefs can be considered in terms of being epistemically objective in that they relate to the distinction between truth and falsity or accuracy and inaccuracy. Judgments concerning such as degree of beauty, are clearly subjective in that accuracy or truth is not an absolute. There is no measurable scientific way of settling the matter. 
Randomness has been used to describe uncertainty using conceptions of probability and likelihood as well as to successfully predict (from random walks) outcomes such as primary and secondary current distribution
 in electrodeposition cells (Averill et. al. [3] and Averill [4, 5]). Fuzzyness can, however, be used as an alternative approach to randomness for describing ambiguity and uncertainty. As Kosko [6] points out “The world is gray [sic] but science is black and white. We talk in zeroes and ones but the truth lies in between”. In a seminal paper [7], Kosko describes fuzzy sets and considers probability to relate to the degree to which the whole is contained within the part – so that the success of repeated trials can be viewed as the degree to which all trials are successful. Fuzzyness, in describing the extent to which an event occurs rather than just whether or not it occurs, does not exclude the middle: fuzzy sets A and not-A can co-exist at the same time but to different degrees. Intan [8] has recently suggested a relationship between probability and fuzziness. He considers that probability and fuzziness work in different areas of uncertainty and should be used as complementary concepts to represent different kinds of uncertainty. In regard to mathematical logic-set theory, it is interesting to note that paradoxes including the famous paradox
 formulated by Bertrand Russell at the beginning of the 20th century, have been explored by Gaines [9] using fuzzy set theory. In this paper, Gaines presents a “standard uncertainty logic” (SUL) that subsumes fuzzy logic and shows how key results and a numerical resolution can be obtained without further constraints.   
Fuzzy logic has been applied in several areas of interest to those engaged in materials finishing, particularly in the realms of process control and prediction/decision making. Surmann and Huser [10] for example, presented a fuzzy logic controller which completely automated the electropolishing process of cobalt chromium cast alloys. It was only necessary for the process operator to put the untreated cast alloys in the polishing machine and press the start button to start and complete the treatment. Another valuable application of fuzzy logic (used together with artificial intelligence) has been to minimise the extent of the waste streams in large electroplating plants through process modification and operational improvement [11]. A major contributor to the waste streams comes from the rinsing stages, together with those from leakages, spillages, cleaning and disposal of process solutions. The system developed, involved  building a knowledge base which includes problem identification strategy, a data base of chemical and process information and a comprehensive set of rules. In a study to monitor the chemical concentration of electroplating processes, Leung et.al. [12] established an intelligent system consisting of On-Line Analytical Processing (OLAP) and fuzzy logic principles.  
A fuzzy logic approach has also been used in the optimisation of surface finishing of roller burnished nonferrous components [13] and in the prediction of surface roughness [14] and maximum material removal rate (MMR) [15] in machining operations. In a particularly interesting study dealing with Magnetic Field Assisted Abrasive Finishing, Kanish et.al. [16] provides a straight forward and illuminating example of the usefulness of fuzzy logic to control process parameters in the materials finishing industry. Magnetic Field Assisted Abrasive Finishing (MFAAF) involves the removal of tiny amounts of material by indentation and rotation of magnetic abrasive iron based particles which fill in the gap between the workpiece and a profiled electromagnet. There are obvious difficulties in attempting to predict the change in the surface roughness from the physical parameters of the system but a fuzzy logic approach using linguistic rules is a means of accomplishing this [16]. An experimental investigation,  polishing 316L stainless steel with 80% ferromagnetic - 20% SiC particles, was carried out using a Taguchi experimental  design with three levels (low (L), medium (M) and high (H)) and four process parameters: voltage (A), machining gap (B), rotational speed of electromagnet (C) and abrasive size (D). The mean surface roughness (Ra) of the workpiece was measured before and after polishing so that a number of linguistic rules could be constructed to characterise the effect of the process parameters on the percentage improvement in the degree of surface roughness (%ΔRa). Based on the data obtained from the experimental results, 9 “IF…THEN” approximate reasoning rules were constructed which established the effect of the different levels of the process parameters. Rule 5 for example, was given as:  IF (A is M) and (B is M) and (C is H) and (D is L) then (%ΔRa is Average). Using this method, it was possible to readily predict the percentage improvement in surface finish directly from the process parameter values. Comparing these predictions with additional validating experiments, it was found that the deviation between the fuzzy model value and the validation test data ranged between 2.35 and 7.16%. This illustrates how, having once got sufficient data to establish some non-mathematical (linguistic) rules, it can become a relatively simple matter for process operators and technicians to predict the result of changing process parameters. Fuzzy logic attempts to follow the functioning of human thinking in handling uncertainty, imprecision and the lack of complete information.
This article, explains the basis and application of the fuzzy set logic approach to dealing with control and decision making in the materials finishing industry. To illustrate this, a practical application of its use is described with details of how fuzzy logic operations can be implemented for decision making in selecting a cleaning solvent.  Although not an essential prerequisite to follow and understand the illustration, a mathematical summary of the basic and important aspects of fuzzy sets is presented, particularly those aspects relevant to control processes and decision making.  Importantly, it should always be held in mind that the use of the word “fuzzy” does not describe the logical process itself, but rather the nature of the data (and its description) to which it is applied. Fuzzy logic is best described as logic which is used to deal with fuzzyness. 

Fuzzy logic sets
Zadeh [17] first proposed the use of fuzzy sets which differ from classical sets. A classical set is an unordered collection of distinct members or elements: they share particular characteristics so that the set is defined in such a way that the members of the set are distinguished from non-members which occupy the remainder of the universal space (or universe of discourse) U. In these classical sets, only crisp or sharp situations can be recognised with a complete distinction between true and false: either an element is a member of a set or it isn’t. In fuzzy logic, the notion of an unsharp set is introduced with a membership (or characteristic) function
 that describes gradual membership of an element within a set, ranging from non-membership (0) to full-membership (1): a fuzzy set A consists of elements ui that have varying degrees of membership µA(ui) in the set. Noting that µA(ui) = 1 in a classical set, an illustration of a fuzzy set containing 19 elements (room temperatures) with varying grade of membership  is shown in Fig. 1. The set is optimum room temperature with full membership considered to occur at 18-22°C.  Distribution of the membership grades in this example is based on a subjective idea of comfort for an “average” person. Rather than the trapezoidal distribution shown, it could be represented by a triangular, Gaussian or other distribution.    
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Fig. 1.  A fuzzy set - optimum room temperature
Each element in a fuzzy set can also be a member of an overlapping set: consider the three fuzzy sets for hot, warm and cold shown in Figure 2. Here, it can be seen that there is a fuzzy boundary between the three sets with some elements being represented with membership grades in two sets. For example, temperature 12°C has almost equally split membership between the cold and warm sets and 26°C between the warm and hot sets. 
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Fig. 2.  A set of three fuzzy sets representing cold, warm and hot
Using fuzzy logic involves employing the standard operations for classical sets. A fuzzy set is a generalisation of a classical set limited to µA(ui) = 0 or 1. It is defined as a set of ordered pairs - ui elements in the set, together with the corresponding grade of membership µA(ui): where  µA(ui) ( (0, 1). In set notation, fuzzy set A = {(u, µA(u)) | u ( U} and enumerating, 
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(1)
A ( B 
indicates that set A is included in set B (both defined in the same universal space), if and only if,  µA (u) ≤  µB (u) for every u. They are equal A = B, if and only if, for every u  µA (u) = µB (u). Set B will be a complement of set A, if and only if µB (u) = 1 - µA (u).
Two important operations in fuzzy logic, particularly in control applications, are union and intersection. The union of two sets is the set which contains all elements common to both sets as well as those contained in only one or other of them.  µA ( B (u) = max {µA(u), µB(u)}, This is the equivalent of Boolian OR, whereas the equivalent of Boolian AND in fuzzy logic operations is set intersection. µA ( B (u) = min {µA(u), µB(u)}. Thus, using union and intersection set operations allows fuzzy logic to implement Boolian OR & AND logic rule based inference. The union and intersection of two fuzzy sets A and B carried out using straightforward max–min compositions (Mathematica software) is shown graphically in Figure 3. For special purposes, there are several other possible ways that can be used to accomplish these operations including the use of Hamacher, Frank or Yager formulas. These formulas indicate different ways in which the membership grades for corresponding elements in the two sets are combined but for the great majority of fuzzy set union and intersection operations, the standard max-min compositions are used.
Looking at the membership grade of elements in the final output fuzzy set, it may be possible to simply select the element with the largest membership function as the answer required. In other cases, it is necessary to crisp the output using a de-fuzzification method. These include determination of the centroid (or centre) of area and mean of max. The location of centroid of area crisp values, are shown in Fig. 3 for the intersection and union of sets A and B by large dots along the base axes whilst mean of max values can be easily recognised as12 and19 respectively for the two sets. If there are two or more equal maximum membership values or ranges it is impractical to use the mean of max method, whereas it is possible to calculate the centroid of area. 
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Fig. 3. Intersection (AND) and union (OR) of fuzzy sets A and B.
The centroid of area of a fuzzy set (u*) is given by taking integrals over the whole range of the final combined sets. In general



[image: image6.wmf]ò

ò

=

du

u

du

u

u

u

)

(

)

(

*

m

m

 






(2)
for the discrete combined fuzzy sets (C ) shown in Fig.3
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(3)
Such mathematical calculations can be readily carried out on data from fuzzy sets created with specialist mathematical software. In some cases, centroid of area values can be obtained by a simple averaging process. 
Decision making with fuzzy AHP
The analytic hierarchy process (AHP) is a widespread and powerful method to resolve complex decision making problems. At the apex of the hierarchy is the decision making goal sitting on top of, first the criteria (with any sub-criteria) used for making the decision, and then at the bottom level, the alternatives being considered. The first stage (level one) is to rank the importance of the criteria and determine the overall weights to be given them. In the second stage, the alternatives are ranked in importance or desirability according to each individual criterion in turn. The level one and two weights are then aggregated to determine the best choice from the alternatives. First introduced by Saaty [18, 19] in 1980, the method prioritises the relative importance of the decision making criteria (and selection of alternative by individual criteria) through pair-wise comparison on a 9 point carried out by experts. The classic AHP method, as distinct from fuzzy-AHP described later, uses crisp numbers on the preference scale shown in Table 1.   

	Table 1. Ranking for pair-wise comparison. AHP Saaty [18]

	Definition
	Index
	Definition
	Index

	Equally important
	1
	Equally important
	1

	Equally or slightly more important
	2
	Equally or slightly less important
	1/2

	Slightly more important
	3
	Slightly less important
	1/3

	Slightly to much more important
	4
	Slightly to way less important
	1/4

	Much more important
	5
	Way less important
	1/5

	Much to far more important
	6
	Way to far less important
	1/6

	Far more important
	7
	Far less important
	1/7

	Far more to extremely more important
	8
	Far less to extremely less important
	1/8

	Extremely more important
	9
	Extremely less important
	1/9


In carrying out a pair-wise comparison, the decision maker initially considers two alternative criteria and decides a degree of preference for one of them. This degree of preference is represented by the number assigned to the preference category so that a matrix of values can be constructed for all of the pair-wise combinations. Comparison of a criterion with itself is assigned equal importance ranking, resulting in diagonal matrix values of one. All of the matrix values are positive, with values positioned lower than the diagonal, being reciprocals of the values that are higher. This is illustrated below for comparison of 4 criteria. 
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(4)
The importance or weight to be assigned to each criterion is found by determining the priority vectors: i.e. the normalised values of the principal eigenvectors of the matrix.
Whilst the determination of eigenvalues and eigenvectors becomes tedious for larger matrices, they can be simply and quickly calculated using modern mathematical software. The consistency of the choices expressed in the matrix is important. A pair-wise comparison matrix can be considered to be completely consistent if aij ajk = aik for all i,  j and k, but this is unlikely in practice where subjective human judgment is involved. Complete consistency is shown if the maximum eigenvalue ((max) is equal to the size (n) of the square matrix (n x n). When this is not the case, the extent of the inconsistency is given by Saaty’s consistency ratio
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 where RC, the random consistency index, depends on the size of the matrix. It rises from 0.58 for n = 3 to 1.49 for n = 10. A pair-wise matrix is considered to be acceptable if CR < 0.1: for CR greater than this, the aggregated expert judgment of the pair-wise ratings needs to be reconsidered and the comparison matrix reformulated. 
After determining the priority vectors for the criteria/criteria pairings, the process is                                    repeated for level 2 (and if necessary, level 3) of the hierarchy in which there are separate pair-wise ratings of the alternatives with respect to each criterion in turn. Having then determined all of the priority vectors, the resultant weighting for the decision alternatives can be simply obtained and a final choice made.   
Although, it may be considered that the AHP method has some aspect of fuzziness in its treatment of data, it does not take into account the uncertainty that can be associated with the mapping of a human judgment to a crisp number. To overcome this problem, several methods have been proposed that integrate fuzzy logic theory with AHP (Buckley [20, 21 ], Chang [22] and Yager [23]).  In the method originated by Buckley, fuzzy comparison ratios are used rather than the crisp ratios employed by Saaty. To avoid the difficulty dealing with large and complex calculations involving fuzzy sets, the weights of the criterions are determined by computing geometric means. This allows the AHP process to be carried out using fuzzy numbers with relative ease as well as providing final crisp values for the criteria weights. In the fuzzy approach, crisp numbers on the preference scale of Saaty (Table 1) are replaced by a corresponding series of overlapping triangular fuzzy membership sets (defined here by ki , li , mi).
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Figure 4. Fuzzy number representation of Saaty’s pair-wise comparison scale.
Each of the 9 fuzzy membership sets in Fig. 4 are characterised by three numbers corresponding to minimum membership (0), full membership (1) and again, minimum membership (0) of three consecutive positions on the Saaty linguistic scale. If, for  example, the aggregated expert pair-wise rating is that criterion C1 is slightly more important than criterion C2, this is represented by the triangular membership set (2, 3, 4). Fuzzy arithmetic dictates that the corresponding reciprocal value to be inserted below the unity diagonal line of the pair-wise matrix is (1/4, 1/3, 1/2). In general, where k1, l1, m1 defines the triangular fuzzy membership set of ã1 then    
                 ã1-1 = (k1 , l1 , m1)-1 = (1/ m1 , 1/l1 , 1/k1)




(7)
The equivalent fuzzy matrix of criteria comparison to that shown in Eq. (4) is
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(8)

 Having determined the fuzzy set matrices for the criteria pair-wise comparisons, the consistency of each matrix must be considered. The introduction of fuzzy numbers increases the challenge and complexity of determining matrix consistency [24], but an indication of the consistency can be obtained using modal triangular membership values (l) and determining the consistency ratio in Eq. (5).    
Following Buckley’s method, geometric means 
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(9)
 The relative weight of each criterion 
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(10) 

and normalised crisp values of the weights obtained using centroid of area. This is straightforward for triangular membership since it can be determined directly from the k, l, m values (Fig. 5).
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Fig. 5. Finding the centroid of area of a triangular membership set.
In a similar manner to the general AHP method, the procedure is repeated for all criteria – alternative pair-wise matrices to give level two fuzzy weightings for each alternative. Finally, the sum of aggregated level one and two weights directly indicates the best choice to be made.

Implementation of fuzzy logic with fuzzy logic tool boxes and software
Software available for fuzzy logic operations include; Matlab Fuzzy Logic Toolkit by Math Works Inc., Mathematica Fuzzy Logic Toolkit (presently archived) by Wolfram Research Inc. and many open source programs, e.g. Octave Fuzzy Logic Toolkit (https://octave.sourceforge.io/fuzzy-logic-toolkit/overview.html. Accessed 15th Jan. 2020),  fuzzycreator by Josie McCulloch (http://eprints.nottingham.ac.uk/44376/1/toolkit.pdf. Accessed 15th Jan. 2020). 
Application of fuzzy AHP to select a metal cleaning agent
Following the Montreal Protocol and EU Council Regulation No. 3093/94, production of many of the substances (e.g. CFC-113 and 1,1,1, trichloroethane) traditionally used for the cleaning of oxygen system components ceased. This posed a particular problem for the Royal Air Force who, through the Ministry of Defence, took part in an extensive research project with LSBU (then South Bank University) [25] to find acceptable alternative cleaning processes. Both solvent cleaning in the vapour and liquid phases were considered as were a variety of aqueous cleaning processes. A criteria matrix was devised to highlight the attributes sought for the replacement cleaning method. It was immediately recognised that whilst the aqueous cleaning route would generally avoid problems of toxicity and environmental issues, it represented a considerable change to the previously used solvent vapour degreasing methods used.  A major part of the study was to consider the possible alternative organic solvents available which could be used with ultrasonic cleaning to remove specific soils and greases especially from blind holes and crevices [26]. Unlike most substrates being cleaned prior to further metal finishing treatment, equipment to be used for oxygen service is usually of complex shape with internal passageways. This requires an exceptionally high standard of cleaning to eliminate the possibility of ignition of residual organic deposits. 
In the (L)SBU study [25], a simple cleaning performance ratio was defined to represent the effectiveness of cleaning tests based on the performance of the test solvent when compared to CFC113, a highly effective cleaning agent. An accurate and calibrated micro balance was used to determine the cleaning ratio result of a test (m1 – m2)/(m1 – m3) where m1 is the mass of the contaminated test specimen, m2 is the mass of the specimen after cleaning and m3 the original mass of the specimen. Test coupons (25 mm x 15 mm x 6 mm) were drilled with 72 holes (1mm diameter – 4mm deep) to present a difficult cleaning challenge when contaminated with grease soils. Full details of the cleaning tests have been given elsewhere [26]. 

Table 2 shows a summary of the evaluation criteria available for 7 cleaning solvents.

But for the essential requirement for environmental compatibility, on the basis of cleaning performance, toxicity and cost, CFC113 would clearly be the best choice of solvent. Together with TCE which is now only available for use only under very strict conditions, it must be completely discounted (as a proscribed substance) from the selection process leaving five other solvents for consideration. All of these solvents are inflammable and have satisfactory oxygen compatibility so that weighting or ranking values are only required for the five other criteria; environmental compatibility, cleaning ratio, toxicity of the solvent, availability of the solvent and cost of the solvent. Each of the criteria is considered to be of differing importance in the selection process so that some way of introducing weighting factors is required. This can be as simple as just deciding, on a percentage basis, which of the criteria are most important and adjusting the ranking values accordingly by multiplication.  However, this is much less satisfactory than using a multiple-criteria optimisation technique [1] or fuzzy (AHP) as described above. 
Insert Table 2 here. (Attached end of document) 
In illustrating the use of fuzzy AHP described here to select the best solvent for (i) cleaning equipment to be used for oxygen service and (ii) for general cleaning of metal parts, the author has made pair-wise comparisons that reflect personal judgment rather than aggregating the opinion of several experts. This resulted in matrix entries of integer numbers (and simple fractions) with symmetric distributions to simplify the illustration. The issue of aggregating expert judgment has, however, been discussed in detail elsewhere (e.g. [2, 27-29]) and aggregation should be employed where important decisions are being made. This involves first checking the consistency of each expert’s opinion, rejecting (or reformulating) those that aren’t satisfactory and then combining the responses according to a procedure such as (i) use of max-min composition (i.e. set intersection as described earlier) or (ii) taking the geometric mean of the responses. The latter approach has the advantage that, whilst involving some loss of information, it is not overly subject to the influence of outlying data.
Pair-wise comparison matrices for level 1 criteria–criteria comparison are shown in Tables 3 and 4 for solvent selection for cleaning O2 service equipment and general cleaning respectively. The comparisons particularly reflect the importance of cleaning capability for decontaminating O2 service equipment and of cost and availability for general cleaning. It should be noted that the measured cleaning performance ratio was specifically related to particular grease soils encountered with oxygen service equipment so that stab nPrBr could possibly perform relatively better in tests more relevant to soils of a general nature [30]. The maximum eigenvalues calculated for modal triangular membership values indicate (Eq. (5)) that both pair-wise comparison matrices are consistent, with CR < 0.1 in each case.
Table 3. Paired comparison matrix (fuzzy AHP level 1) for selection of solvent to clean O2 service equipment. 
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(max = 5.265,   For n = 5  RC = 1.12,  CR = 0.059  < 0.1
Table 4. Paired comparison matrix (fuzzy AHP level 1                                                                                                                                                                                             ) for selection of solvent for general process metal cleaning. 
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(max = 5.033,   For n = 5  RC = 1.12,  CR = 0.0074   < 0.1
In accordance with Eq. (9), mean geometric values were obtained by multiplying across each row and taking the 5th root. For example, the mean geometric values for cleaning in Table 3 are; (2 x 1 x 4 x 5 x 7)1/5 = 3.09, (3 x 1 x 5 x 6 x 8)1/5 = 3.73, (4 x 1 x 6 x 7 x 9)1/5 = 4.32.  The mean geometric values for these criteria-criteria pair-wise comparisons are shown in Table 5.
	Table 5. Mean geometric values (G) for criteria – criteria pair-wise comparisons.

	Criteria
	ã1  cleaning O2 service equipment  
	      ã2  general cleaning process


	Env comp
	1.20
	1.64
	2.11
	0.55
	0.61
	0.70

	Cleaning
	3.09
	3.73
	4.32
	0.61
	0.70
	0.87

	Toxicity
	0.80  
	1.04
	1.38
	0.61
	0.70
	0.87

	Availability
	0.43
	0.53
	0.67
	0.92
	1.43
	2.05

	Cost
	0.25
	0.30
	0.37
	1.64
	2.35
	2.99

	Sum
	5.77
	7.24
	8.85
	4.33
	5.79
	7.48

	Sum-1
	0.173
	0.138
	0.113
	0.231
	0.173
	0.134

	Rev Sum-1
	0.113
	0.138
	0.173
	0.134
	0.173
	0.231


To complete the level one operation, the mean geometric values are de-fuzzified using centroid of area and normalised to obtain the overall importance weighting (W1) to be given to each criterion. These are shown in Table 6. 

	Table 6. Relative fuzzy weights of criteria (G x Rev Sum-1).  Defuzzified values (C).  Level 1 normalised weights (W1). 

	Criteria
	ã1  cleaning O2 service equip.  
	ã2  general cleaning process

	
	    Fuzzy weights
	C
	W1 
	   Fuzzy weights
	C
	W1

	Env comp
	0.136
	0.227
	0.365
	0.243
	0.229
	0.074
	0.106
	0.162
	0.113
	0.103

	Cleaning
	0.350
	0.515
	0.747
	0.537
	0.506
	0.082
	0.121
	0.200
	0.134
	0.122

	Toxicity
	0.090
	0.144
	0.239
	0.158
	0.149
	0.082
	0.121
	0.200
	0.134
	0.122

	Availability
	0.049
	0.073
	0.116
	0.079
	0.075
	0.123
	0.247
	0.474
	0.281
	0.255

	Cost
	0.028
	0.041
	0.064
	0.044
	0.042
	0.220
	0.407
	0.690
	0.439
	0.398


It can be seen that generally there is relatively little difference between W1 and the corresponding modal triangular membership value. This reflects the symmetry of the triangular membership functions used in this illustration. 
In level 2 operations, similar fuzzy pair-wise comparisons are made between pairs of solvents for each of the criteria in turn. The pair-wise matrices for comparisons made for environmental compatibility, cleaning, toxicity, availability and cost are shown in Tables 7–11 respectively. The calculated maximum eigenvalues and consistency ratios CR < 0.1 (Eq. (5)), indicate that all matrices are satisfactorily consistent.
Table 7. Paired comparison matrix (fuzzy AHP level 2) for solvents – environmental compatibility.
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(max = 5.06  For n = 5 RC = 1.12,   CR = 0.013  < 0.1
Table 8. Paired comparison matrix (fuzzy AHP level 2) for solvents – cleaning performance.
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(max = 5.258   For n = 5  RC = 1.12,  CR = 0.058 < 0.1 
Table 9. Paired comparison matrix (fuzzy AHP level 2) for solvents – toxicity. 
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Table 10. Paired comparison matrix (fuzzy AHP level 2) for solvents – availability.
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(max = 5.119, ,   For n = 5   RC = 1.12,  CR = 0.027 < 0.1 
Table 11. Paired comparison matrix (fuzzy AHP level 2) for solvents – cost.


[image: image27.wmf]1

1

1

9

8

7

1

2

1

3

1

9

8

7

9

8

7

7

1

8

1

9

1

1

1

1

7

1

8

1

9

1

1

1

1

1

1

1

7100

3

2

1

9

8

7

1

1

1

9

8

7

9

8

7

7

1

8

1

9

1

1

1

1

7

1

8

1

9

1

1

1

1

1

1

1

71

7

1

8

1

9

1

1

1

1

7

1

8

1

9

1

1

1

1

1

1

1

7100

71

5

Borothene

HFE

nPBr

Stab

DE

HFE

MCA

Vertrel

Borothene

HFE

nPBr

Stab

DE

HFE

MCA

Vertrel

B

=


(max = 5.0586  For n = 5   RC = 1.12,   CR = 0.013 < 0.1 
The defuzzified weights (W2) for solvent alternatives with respect to each criterion, were obtained in a similar manner to determination of W1 for criteria-criteria comparison. This again, involved finding geometric means, defuzzification and normalisation. Values of W2 are given in Table 12. 
	Table 12. Defuzzified (level 2) normalised weights, (W2) for solvent selection  

	
	                    According to criteria        

	
	Environ  compatibility
	Cleaning
	Toxicity
	Availability
	Cost

	Vertrel MCA
	0.081
	0.411
	0.236
	0.099
	0.052

	HFE71DE
	       0.223
	0.411
	0.236
	0.099
	0.052

	Stab nPrBr
	       0.474
	0.098
	0.035
	0.364
	0.472

	HFE7100
	       0.141
	0.040
	0.452
	0.099
	0.052

	Borothene
	       0.081
	0.040
	0.042
	0.335
	0.372


In the final step, values for ranking the solvents are obtained by aggregating level 1 (Table 6) and level 2 (Table 12) defuzzified weights and summing for each solvent   
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. These are shown in Figures 6 and 7 for cleaning oxygen service equipment and general process cleaning respectively. 
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Fig. 6.  Selection of solvent for oxygen service equipment cleaning.  
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Fig. 7.  Selection of solvent for general cleaning process.
It is seen that the choice of solvent is different for the two applications: HFE71DE is preferred for oxygen service equipment cleaning, whereas with an apparently lesser, but still relatively good standard of cleaning and much lower cost, stabilised nPrBr is chosen for general metal cleaning operations. This result reflects the concern to prevent the possibility of injury to air crew and maintenance workers due to the greatly increased flammability of grease soils in an oxygen atmosphere. Under these conditions, the best cleaning performance is considered to be of greater importance than cost considerations. A caveat to be acknowledged in the choice of solvent for general cleaning application, is that the alternatives considered excluded candidate substances of significant flammability. 
A consequence of using symmetric modal triangular distributions in the illustration presented here, is that defuzzified weights do not differ greatly from the modal fuzzy weight.  Reiterating an earlier point, a more sophisticated fuzzy AHP model would be appropriate in many selection processes. These could involve aggregation of a number of expert responses to generate pair-wise comparison matrices with asymmetric triangular or trapezoidal distributions. 
Comparing the selection of cleaning solvent using fuzzy AHP to that using desirability functions (Averill et.al. [1]), it is interesting to note that the multiple-criteria optimisation technique (desirability functions), resulted in very similar conclusions being reached for the best solvent for oxygen service equipment cleaning:  HFE71DE with Vertrel MCA considered the next best choice. Both fuzzy AHP and use of desirability functions offer a formalised and consistent means of taking into account judgmental and numerical data in the selection or optimisation process. Although, not described as such, the desirability function selection process involving mapping of categorised responses is essentially a fuzzy procedure.
CONCLUSIONS
Fuzzy logic has been shown to be a useful approach to solving problems and challenges in the materials processing industries. A number of wide ranging fuzzy logic applications reported in the literature have been reviewed including process control and automation, control of waste streams in electroplating plant and chemical concentration monitoring. Fuzzy logic has also found an important role in decision making and predicting outcomes.
Using fuzzy AHP, it has been shown that selection of the optimal alternative for a finishing process can be implemented through expert judgment determining pair-wise comparisons of the selection criteria and alternatives. The imprecise nature of human judgment is recognised in the procedure by the use of fuzzy sets in the comparison matrices to replace real crisp numbers: in this way, taking fuzzyness into account should lead to less risky decisions being made. In the illustration given in this article, different importance ranking of the selection criteria resulted in different choices being made for the best solvent to be used for cleaning oxygen service equipment and for metal cleaning prior to subsequent finishing.  In the former case, cleaning capability was considered to be of most importance whereas for general cleaning it was cost and availability of the solvent. 
It is finally concluded that greater use of fuzzy models and procedures would offer benefit to the materials finishing industry and that fuzzy logic should occupy a more prominent role in the future.  
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	Table 2. Cleaning of metal components in liquid solvent (with ultrasonics).  Extract based on criteria Matrix [18] and other data for replacement CFC cleaning processes [1, 19]. Nb. CFC-113 (banned in Uk 1996) and TCE – trichoroethylene (highly restricted use in the UK since April 2016) are included for comparison purposes. 


	Criteria
	CFC-113
	Vertrel MCA
	HFE71DE
	Stab nPBr
	HFE7100
	Borothene
	TCE

	Environment compatibility
	ODP 0.8

GWP 5000

AL 15 yr
	ODP 0.00

GWP 800

AL 17.1 yr
	ODP 0.00

GWP 250

AL 4.1 yr
	ODP 0.005

GWP 0.31

AL 16 days
	ODP 0.00

GWP 500

AL 4.1 yr
	ODP 0.044

GWP 500?

AL 4 years?
	ODP 0.00
GWP 0
AL 7 days

	Cleaning ratio 
	1.0
	0.97
	1.0
	0.74
	0.49
	0.53
	0.54

	Toxicity of solvent
	OEL 8hr. 

1000 ppm
	OEL 8hr.*  

600/200 ppm
	OEL 8 hr.*  600/200 ppm 
	OEL 8 hr.

100 ppm           
	OEL 8 hr.

 600 ppm
	OEL 8 hr.

 100 ppm
	OEL 8 hr.

< 30 ppm

	Oxygen compatibility
	AIT no-ign

1500 psi O2
	AIT 167°C

1500 psi O2
	AIT 156°C

1500 psi O2
	Oxygen compatible
	Oxygen compatible
	Oxygen compatible?
	Oxygen compatible

	Flammable
	no
	no
	no
	no
	no
	no
	no

	Availability of solvent
	Good in 1995. 

Afterwards, poor or n/a 
	Good
	Good
	Good
	Good
	Poor
	Good in 2015. Afterwards, poor or n/a   

	Cost of solvent
	Was ~ 2£/L (1996)
	Was ~ £56/L  (1998)
	Was ~ £55/L  (1998)
	Was  ~ £8/L  (1998)
	Was ~ £55/L  (1998)
	Was ~ £10/L  (1998)
	Was ~ 2£/L (1998)


* Occupational exposure limits for two components of the azeotropic mixture 
� Harrington's one sided function, given by a special form of the Gompertz growth curve [1]





� Cathodic polarisation is treated as a special boundary condition that influences the random walk probability.





� The paradox poses the question of whether the set of all sets which do not contain themselves contains itself or not.


� The terms membership function and membership grade are both used to represent the extent to which an element belongs in a particular set. This dissimilitude  arises because different mathematical software packages use dissimilar terms to represent the characteristic function.
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