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ABSTRACT

During service, notched designed components such as steam generators in the nuclear power plant
usually experience fatigue damage at elevated temperatures, due to the repeated cyclic loadings during
start-up and shut-down operations. Under such extreme conditions, the durability of these components
is highly-affected. Besides, to assess the fatigue life of these components, a reliable determination of the
local stress-strain at the notch-tips is needed. In this work, the maximum strains of circumferentially
notched cylindrical specimens were calculated using the most commonly known analytical methods,
namely Neuber’s rule, modified Neuber’s rule, Glinka’s rule, and linear rule, with notch root radius of
1.25, 2.5, and 5mm, made of modified 9Cr–1Mo steel at 550 8C, and subjected to nominal stress
amplitudes of ±124.95, ±149.95, and ±174.95MPa. The calculated local strains were compared to those
obtained from Finite Element Analysis (FEA). It was found that all the analytical approximations
provided unreliable local strains at the notch-tips, resulting in an overestimation or underestimation of
the fatigue life. Therefore, a mathematical model that predicts the fatigue lives for 9Cr–1Mo steel at
elevated temperature was proposed in terms of the applied stress amplitude and the fatigue stress
concentration factor. The calculated fatigue lifetimes using the proposed model are found to be in good
agreement with those obtained experimentally from the literature with relative errors, when the applied
stress amplitude is ±149.95MPa, are of 1.97%,–8.67%, and 13.54%, for notch root radii of 1.25, 2.5, and
5mm, respectively.
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1. INTRODUCTION

In nuclear power plants, the vast majority of components experience low cycle fatigue
damage during service, due to the repeated cyclic loadings that mainly occur during start-up
and shut-down operations and due to the daily energy needs, which makes fatigue failure
more frequent. Additionally, fatigue can cause catastrophic events in industries, because
fatigue failures are brutal, sudden, and occur, most of the time, without prior warning.
Studies have shown that the total mechanical failures that are caused by fatigue are ranging
between 50 and 90 percent [1], which made researchers increasingly concerned about this
topic. Most recently, a number of large research studies have been conducted to investigate
the fatigue behavior of different materials and geometries, under various loading conditions
[2–7]. In particular, Abarkan et al. [2] studied the Low Cycle Fatigue (LCF) behavior of
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smooth 316 LN austenitic stainless steel samples at room
temperature using several numerical and analytical fatigue
methods and they proposed new parameters to correct the
inconsistency of some of the better-known low cycle fatigue
analytical models used to predict the life to failure of the
pressure vessels facilities.

In reality, mechanical components can be subjected to
nominal stresses that exceed the yield strength of the ma-
terial. This phenomenon is known as low cycle fatigue and
generates significant plastic deformations in the materials.
Likewise, mechanical components may operate under
extremely high-constant temperature conditions. That is
known as isothermal low cycle fatigue and generates thermal
stresses that further reduce the service life. Beyond that,
structural components frequently contain geometric dis-
continuities such as groove, fillet, and holes (i.e., notches)
that, due to the phenomenon of stress concentration, can
produce extensive plastic deformation even at applied
stresses lower than the elastic limit. Besides, the presence of
notches induce a multiaxial stress state in the material,
which further complicates the estimation of fatigue life.

An accurate estimation of the fatigue life of a notched
component is dependent on the local stresses and strains
values. Finite Element Analysis (FEA) is one of the most
commonly used tools for predicting the local stress-strain
because it is affordable and less costly and laborious than
experimental evaluation. Another more frequently used
methodology to assess local stress-strain is the use of the
well-known local stress-strain theories, such as Neuber’s rule
[8], which was further modified by Topper et al. [9] for
materials under cyclic loading, the Equivalent Strain Energy
Density (ESED) method or Glinka’s rule [10], and the linear
rule [11]. These analytical approximation methods have
been greatly used in the literature to estimate the maximum
stresses and strains at the notch-tips for different types of
loadings, materials, and specimens geometries [12–17].
However, extensive research studies have been carried out to
suggest modifications in these stress-strain theories. For
example, Lieb et al. [12] proposed a new formula of Neuber’s
rule that takes into account different notch geometries and
loadings. Hoffmann and Seeger [13] extended Neuber’s rule
[8] to multiaxial elastic-plastic notch problems, for speci-
mens subjected to monotonic and cyclic loads. On the other
hand, Ye et al. [15] proved that Neuber’s rule is only a
particular case of Glinka’s rule, i.e., if the plastic strain en-
ergy is neglected in Glinka’s rule, it leads to the same
expression given by Neuber. Besides, they proposed a new
version of Glinka’s equation that takes into account the heat
energy dissipated during one loading cycle rather than the
plastic strain energy in the local stress-strain theory.
Although several research studies have demonstrated that
Glinka’s rule is valid for plane strain conditions [18–20],
both Neuber and Glinka local stress-strain methods were
originally developed for uniaxial local stress state problems
[11], that is to say, for plane stress conditions such as in the
case of a thin plate or a two-dimensional part. However,
under a plane strain state such as that in a three-dimensional
part, the stress state is biaxial and both local stress-strain

equations may give inaccurate results. In fact, for plane
strain conditions, it was found that Neuber’s rule provides
conservative local strain results, its degree of conservatism
can be reduced by using Kf instead of Kt for cyclic loadings
[11]. To overcome this problem, it was suggested to be used
along with a modified stress-strain relation based on plas-
ticity equations [21]. Besides, a new version of ESED rule for
a plane strain has also been proposed [22].

In addition, materials designed with good mechanical
and low cycle fatigue properties are typically used to resist
severe cyclic loadings induced mechanically as well as
thermally, Modified 9Cr–1Mo (or P91) steel is the most
common material used in the steam generator for the Fast
Breeder Reactor (FBR), owing to its excellent oxidation
resistance and LCF properties at high-temperature service
[5]. Recently, several research studies have been conducted
on the low cycle fatigue of 9Cr–1Mo steel smooth samples
[23–26], but a few have been dedicated to the notched ones.
For example, Veerababu et al. [27] conducted an investiga-
tion on the fatigue behavior of notched specimens made of
9Cr–1Mo steel at 550 8C. Based on the analytically and the
numerically obtained local stress-strain results, Veerababu
et al. [27] evaluated the accuracy of some of analytical ap-
proximations [8–11] in estimating the fatigue life. It was
found that the predicted fatigue lives obtained by using these
analytical methods were within a factor of ±16 on the
experimental fatigue lives. Therefore, they concluded that
the adopted analytical stress-strain methods were not reli-
able to estimate the fatigue life of notched specimens made
of modified 9Cr–1Mo steel, particularly for applied stresses
below the material yield strength.

In the present work, the local stresses and strains have
been calculated using four different analytical methods;
namely the Neuber’s rule [8], the modified Neuber’s rule by
Topper et al. [9], the equivalent strain energy density
method suggested by Glinka [10], and the linear rule [11].
The obtained results were compared to those determined
numerically from the FEA. Besides, the calculated fatigue
lives based on the analytically obtained local strains for
samples with 1.25mm, 2.5 mm and 5mm notch-root radius
and subjected to stress amplitude levels of ±124.95, ±149.95,
and ±174.95MPa were compared with those obtained from
the Veerababu et al. [27] experiment. Finally, by performing
a regression analysis on MATLAB software [28], a simple
equation was suggested to estimate the fatigue life of notched
specimens made of Modified 9Cr–1Mo steel, and subjected
to uniaxial low cycle fatigue at 550 8C.

2. MATERIALS AND METHODS

2.1. Experimental details and specimens geometry

A fatigue experiment was conducted by Veerababu et al. [27]
on fourteen cylindrical specimens made of modified 9Cr–
1Mo steel. Five of them were smooth, the geometry of which
is illustrated in Fig. 1(a), and were subjected to fully reversed
total strain-controlled LCF tests, at a nominal strain
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amplitude ranging from ±0.3 to ±0.8%, at 550 8C, and under
a constant strain rate of 3.10�3 s�1. The other nine were
circumferential groove samples with three different notch

root radii, i.e., 1.25, 2.5, and 5mm, as indicated in Fig. 1(b),
and were conducted in stress-controlled mode with a fre-
quency of 0.2Hz, under a nominal stress amplitude of
±124.95MPa, ±149.95MPa, and ±174.95MPa. All the
applied stress values were chosen to be lower than the yield
strength of the material, which is 258.8MPa [27], so that the
plastic deformation can only occur at the root of the notch.
All fatigue experiments have been performed in the air
environment conditions, at a constant temperature of 550 8C.

2.2. Finite Element Analysis

In order to evaluate numerically the strains at the notch-
tips under different applied stresses, the notched samples
were simulated using the Finite Element Analysis on the
ABAQUS/Standard software [29]. The 2D-axisymmetric
model has been used in this study to represent the gauge
section of the samples. Prescribed pressure was introduced
on the upper edge, and symmetry boundary conditions
were applied along the gauge length and gauge diameter, as
depicted in Fig. 2(a). The CAX4R elements were selected in

Fig. 1. Shape and dimensions of (a) smooth and (b) notched
specimens (r 5 1.25/2.5/5mm), all dimensions are in mm

Fig. 2. FE modeling of notched and smooth parts, (a) and (c) represent the boundary conditions, and (b) and (d) represent the mesh
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the mesh section, and a mesh refinement technique was
applied near the notch-tip, as shown in Fig. 2(b), to obtain
accurate numerical results. To validate the numerical
model, a FE simulation was also conducted on smooth
samples, using the same above-mentioned numerical con-
siderations, and this time, subjected to strain-controlled
mode (i.e., prescribed displacement), as shown in Fig. 2(c)
and (d). The predefined temperature was applied and fixed
at 550 8C for both notched and smooth/un-notched sam-
ples. It is worthwhile to mention that the nonlinear
isotropic/kinematic hardening and Ramberg-Osgood ma-
terial models [30, 31] have been employed to replicate
numerically the cyclic stress-strain behavior of the smooth
and notched specimens respectively, more details on the
numerical simulation are given in [2]. The Newton-Raph-
son method was used to solve the nonlinear problem. Be-
sides, the mesh convergence study has been performed and
a mesh size of 0.4 and 0.03mm was applied on the smooth
parts and near the notch-tips for the notched parts
respectively. Tables 1 and 2 show the material properties of
modified 9Cr–1Mo steel incorporated in ABAQUS soft-
ware [29].

3. RESULTS AND DISCUSSIONS

3.1. Finite elements results

The numerically obtained hysteresis loops of the smooth
specimens subjected to ±0.3 and ±0.8% applied strain am-
plitudes were compared to those found experimentally by
Veerababu et al. [27]. As illustrated in Fig. 3, the numerical
cyclic stress-strain curves are in good agreement with the
experimental ones, which indicates that the FE model is
typically appropriate. Besides, the nonlinear isotropic and
kinematic hardening variables [30] presented in Table 1,
along with the material parameters listed in Table 2, have
been used to assess the hysteresis loop of modified 9Cr–1Mo
steel. It should be pointed out herein that the study of the
evolution of the peak tensile stress with the number of cycles,

for smooth specimens, performed by Veerababu et al. [27] at
550 8C under different strain amplitudes levels has revealed
that the present study used material exhibits cyclic softening
until final failure for all applied strain amplitudes, except at
lower nominal strain amplitude (i.e. ±0.3%) where small
amount of initial hardening before softening was observed.
The negative value of Q in Table 1 demonstrates well the
softening phenomenon exhibited by this type of steel.

To estimate the local stresses and strains for notched
specimens, Ramberg-Osgood [31] cyclic material model was
implemented in ABAQUS software [29], and the obtained
numerical results were used to evaluate the accuracy of the
analytical approximations. That will be thoroughly
addressed in Section 3.2. The resulting stress contours along
the loading direction (i.e. S22) under a peak applied stress of
±145.95MPa and for different notch root radius of 1.25, 2.5
and 5mm are depicted in Fig. 4.

3.2. Local stress-strain estimation

The strains at the notch-roots were determined by the mean
of the following local stress-strain theories:

–The original Neuber’s rule [8];
–The modified Neuber’s rule by Topper et al. [9];
–The ESED method/Glinka’s rule [10];
–The linear rule [11].

The stress and strain ranges at the notch-tips Δσ and Δ«
are related to the applied stress and strain ranges ΔS and Δe,
respectively, by the following Neuber equation [8]:

ΔσΔ« ¼ K2
t ΔSΔe (1)

where Kt, is the elastic stress concentration factor.
In the case when the applied stress is elastic, the ΔS and

Δe are related by Hook’s law as follows:

Δe ¼ ΔS=E (2)

where E is the material Young’s modulus. Substituting (2) in
(1), one can obtain the following expression:

Table 1. Nonlinear isotropic and kinematic hardening properties of
modified 9Cr–1Mo steel at 550 8C [27]

Kinematic hardening parameters

Isotropic
hardening
parameters

a1 (MPa) C1 a2 (MPa) C2 Q (MPa) b

86.9 3,676.7 152.4 291.8 �100.3 4.1

Table 2. Static and cyclic properties of modified 9Cr–1Mo steel at
550 8C [27]

Young's
modulus
E (GPa)

Yield
strength
Sy (MPa)

Cyclic strength
coefficient
K' (MPa)

Cyclic strain
hardening exponent

n'

163 258.8 753.8 0.146
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Fig. 3. Hysteresis loops obtained from FEA and those found
experimentally by Veerababu et al. [27] for smooth specimens

made of 9Cr–1Mo steel, under ±0.3 and ±0.8% strain amplitudes,
at 550 8C
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ΔσΔ« ¼ ðKtΔSÞ2
E

(3)

Thus, the local strains can be determined by using Eq. (3),
along with the following cyclic Ramberg-Osgood relation
[31].

Δ« ¼ Δσ

E
þ 2

�
Δσ

2K 0

� 1

n
0

(4)

where K0 and n' are the cyclic strength coefficient and the
cyclic strain hardening exponent of the material, respec-
tively. Substituting (4) in (3), the following expression can be
obtained:

Δσ
2

E
þ 2Δσ

�
Δσ

2K 0

� 1

n
0
¼ ðKtΔSÞ2

E
(5)

Thus, for a given nominal stress range value ΔS, the local
stress range Δσ can be calculated from Eq. (5) and the local
strain Δ« from Eq. (4).

Topper et al. [9] proposed an alternative to Neuber’s
rule, for fatigue problems by using the fatigue stress con-
centration factor Kf rather than the elastic stress concen-
tration factor Kt, where Kf can be determined from the
following equation [32]:

Kf ¼ 1þ Kt � 1
1þ a=r

(6)

r is the notch root radius, and a depends on the material
properties [32]:

a ¼ 0:0254

�
2070
Su

�1:8

(7)

where Su is the ultimate tensile strength in MPa, and it is
equal to 340MPa, at 550 8C [27]. Thereby, for notch root
radius of 1.25, 2.5, and 5mm, the values of the Kt obtained
from FEA are: 3.91 3.13 and 2.62, respectively, and those of
Kf found from Eq. (6) are: 3.02, 2.69 and 2.43, respectively.

The elastic strain energy density equation proposed by
Glinka [10], for the elastic applied stress, is defined as:

Δσ
2

E
þ 4Δσ
n0 þ 1

�
Δσ

2K 0

� 1

n
0
¼ ðKtΔSÞ2

E
(8)

Thus, for a given nominal stress range ΔS, one can obtain
the local stress range Δσ from Eq. (8), and the local strain Δ«
from Eq. (4).

In the case of elastic applied stress, the linear rule [11]
relates the local strain range Δ« to the nominal stress range
ΔS in the following way:

Δ« ¼ KtΔS
E

(9)

Therefore, for a given ΔS, one can easily calculate Δ« by
using Eq. (9).

The calculated local strains using the aforementioned
analytical approximations were then compared with those
obtained from the FE simulations. Table 3 represents the
relative error between the calculated analytical local strains
and those obtained numerically, for the notch root radius of
1.25, 2.5, and 5mm, under ±124.95, ±149.95, and
±174.95MPa nominal stress amplitudes. Compared to the
FE results, the original Neuber’s rule [8] overestimates the
local strains for all notch root radius, under all stress
amplitude levels, except at higher notch root radius, i.e.,
5mm, and under higher applied stress amplitudes, namely at
±174.95MPa with a relative error of –10.75%. Thus, the
Root Mean Square Error (RMSE) of local strains calculated
using Neuber’s rule is 0.20%. The modified Neuber’s rule [9]
provides conservative local strain estimation for all samples,
except for samples with higher notch root radius, namely
5mm, and under lower applied stress amplitudes, i.e.,
±124.95 and ±149.95MPa with a relative error of 7.32 and
3.57%, respectively. Using this method, the RMSE of the
local strains is 0.12%. As shown from the same table, the
linear rule [11] underestimates the local strains for all notch
root radius and under all applied stress amplitudes. The

Fig. 4. The vertical stress contours due to maximum applied stress of ±145.95MPa in the first quarter cycle and for notch root radii of (a)
1.25mm, (b) 2.5mm, and (c) 5mm at 550 8C
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relative errors range from –2.44 to –39.78% and the RMSE
value is 0.24%. The obtained local strains by the ESED
method [10] are non-conservative for all notch root radius,
under lower nominal stress amplitude levels. For instance,
the relative error is 5.88% when the notch root radius is
1.25mm, and the applied stress is ±124.95MPa. Whereas at
higher nominal stress amplitudes, the method results in
conservative local strain calculations. For example, the
relative error is –29.03% for samples whose notch root
radius is 5mm and the applied stress is ±174.95MPa. Using
this method, the RMSE is the same as that obtained in the
modified Neuber’s rule [9].

As it is observed, the modified Neuber’s rule [9] always
gives lower local strain results compared with the original
Neuber’s relation [8]. That is because the values of fatigue
stress concentration factor Kf are always smaller than those
of the elastic stress concentration factor Kt. As anticipated,
the original Neuber’s rule leads to higher local strains
compared to the ESED approximation [10] that is due to the
presence of a factor of 2/(n'þ1) in Eq. (8) as compared with
Eq. (5). One can note that local strain values obtained from
different analytical methods show no consistency when
compared to each other and to the FEA results.

3.3. Fatigue life estimation

The fatigue life Nf was assessed for various notch root radius,
under different stress amplitudes using Eq. (10), which was
found by regression analysis on five experimental low cycle
fatigue life of smooth samples, for each applied strain range
[27].

Δ« ¼ A
�
Nf

�l
(10)

where A and l are material parameters, and are 0.2191 and
�0.4165, respectively [27].

The fatigue lives calculated from Eq. (10), by using the
previously obtained analytical local strains were compared to
those obtained experimentally by Veerababu et al. [27]. As
shown in Fig. 5, the ESED method developed by Glinka [10]

underestimates the fatigue lives at all stress amplitude levels
when the notch root radius is 1.25mm. Thus, under
±124.95MPa, the relative error is –54.08%. Moreover, this
approximation method gives conservative fatigue life results
when the applied stresses are small i.e., ±124.95MPa, for 2.5
and 5mm notch root radius. Otherwise, it leads to a non-
conservative fatigue life prediction, with a maximum relative
error of 88.53%, for samples with 5mm notch root radius,
and subjected to ±174.95MPa. The original Neuber’s rule [8]
leads to a conservative fatigue life estimation at both 1.25 and
2.5mm notch root radius, under all applied stress ampli-
tudes. However, it results in a non-conservative fatigue life
prediction when the notch root radius is 5mm and under
±149.95, ±174.95MPa. As an illustration, the relative error is
–40.82% for a notch root radius 2.5mm and is 7.66% when
the notch root radius is 5mm, and the applied stress is
±174.95MPa. Besides, the modified Neuber’s rule [9] un-
derestimates the fatigue life at all nominal stress amplitudes
for 1.25mm notch root radius, and at lower applied stress
amplitudes, i.e., ±124.95MPa for 2.5 and 5mm notch root
radius. Otherwise, it overestimates the fatigue life. For
example, the relative error is –32.34% at 1.25mm and under
±124.95MPa and is 43.87% at 5mm under ±174.95MPa.
For all notch root radius, the linear rule [11] gives a con-
servative fatigue life estimation for an applied stress ampli-
tude of ±124.95MPa and non-conservative results for
nominal stress amplitudes of ±149.95MPa and
±174.95MPa. For instance, the relative error at 5mm notch
root radius is –29.52% under a nominal stress amplitude of
±124.95MPa, and 175.89% under ±174.95MPa.

3.4. The proposed model

As stated earlier, the previous analytical approximations
provided unreliable local strains estimation and lead thus to
an incorrect fatigue life prediction for modified 9Cr–1Mo
notched steel under 550 8C. Hence, a new mathematical
model was suggested for this type of material, under the
same test condition, to rectify the discrepancies between the

Table 3. Relative error and RMSE values between the elastic-plastic local strains obtained from the analytical methods with those found from
FEA for different applied stress amplitudes at 1.25mm, 2.5mm, and 5mm notch root radius

Notch root
radius (mm)

Nominal stress
amplitude (MPa)

Maximum local strain range % Relative error % ¼
�
Δ«Analytical

Δ«Numerical − 1
�
100%

FEA
Neuber
rule

Modified
Neuber rule

ESED
method

Linear
rule

Neuber
rule

Modified
Neuber rule

ESED
method

Linear
rule

1.25 124.95 0.68 0.92 0.61 0.72 0.60 35.29 �10.29 5.88 �11.76
149.95 0.89 1.25 0.82 0.93 0.72 40.45 �7.87 4.49 �19.10
174.95 1.29 1.61 1.05 1.16 0.84 24.81 �18.60 �10.08 �34.88

2.5 124.95 0.52 0.64 0.51 0.53 0.48 23.08 �1.92 1.92 �7.69
149.95 0.68 0.86 0.67 0.69 0.58 26.47 �1.47 1.47 �14.71
174.95 1.01 1.11 0.87 0.84 0.67 9.90 �13.86 �16.83 �33.66

5 124.95 0.41 0.49 0.44 0.43 0.40 19.51 7.32 4.88 �2.44
149.95 0.56 0.65 0.58 0.54 0.48 16.07 3.57 �3.57 �14.29
174.95 0.93 0.83 0.74 0.66 0.56 �10.75 �20.43 �29.03 �39.78

RMSE % ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP9

i¼1
ðΔ«Numerical

−Δ«AnalyticalÞ2
9

r
%

0.20 0.12 0.12 0.24
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experimental and the analytical results. The proposed model
contains only three variables, namely the number of cycle to
failure Nf, the nominal stress amplitude Sa, and the fatigue
stress concentration factor Kf, and fulfills the following
condition:

f ðXÞ ¼ minimize

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
Nf ;experimentali � Nf ;estimatedi

�2
n

s 9=
;

8<
:

(11)

where X 5 x1, x2, x3, x4, x5, x6 are the parameters of the
proposed model, and n is the number of experimental data
points.

Based on a regression analysis performed in MATLAB
software [28], the mathematical model was developed, and

the fatigue life can be easily calculated using the following
expression:

Nf ¼ S−10:05a exp
�
−181 logðKf

�� 8:386K2
f þ 110:6Kf Þ

þ 10:55Sa

(12)

The mathematical model, which was obtained based on
nine different data point for notched samples given in [27]
and compared against the same test data, was found to
provide excellent fits to the experimental fatigue life, with an
R-square of 0.9987. The obtained fatigue lives by using Eq.
(12), for different notch root radius, under nominal stress
amplitudes of ±124.95, ±149.95, and ±174.95MPa are
represented in Fig. 6. One can conclude that the proposed

0

50

100

150

200

100 1000 10000 100000

)aP
M(

edutilp
ma

sserts
lani

mo
N

Fatigue life

r = 1.25 mm

Experiment

Proposed model

0

50

100

150

200

100 1000 10000 100000

)aP
M(

edutilp
ma

sserts
lani

mo
N

Fatigue life

r = 2.5 mm

Experiment

Proposed model

0

50

100

150

200

100 1000 10000 100000

)aP
M(

edutilp
ma

sserts
lani

mo
N

Fatigue life

r = 5 mm

Experiment

Proposed model

(a)

(b)

(c)

Fig. 6. Comparison between the estimated fatigue lives through the
proposed model and the experimental data provided by Veerababu
et al. [27] under different stress amplitudes for (a) 1.25mm, (b)

2.5mm, and (c) 5mm notch root radii
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Fig. 5. Comparison of the estimated fatigue life with those obtained
experimentally by Veerababu et al. [27] under different stress

amplitudes for (a) 1.25mm, (b) 2.5mm, and (c) 5mm notch root
radii
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equation (i.e. Eq. (12)) enables the estimation of the fatigue
life of U-notched specimens made of modified 9Cr–1Mo
steel under 550 8C, with a minimum relative error compared
to all the previously used analytical methods. For instance,
the relative error between the experimental data and the
calculated fatigue lives using Eq. (12) are 1.97, –8.67, and
13.54%, under ±149.95MPa, for 1.25, 2.5, and 5mm notch
root radius, respectively. Therefore, the suggested mathe-
matical model for modified 9Cr–1Mo notched steel provides
better fatigue life predictions that those predicted by the
other analytical methods under different stress amplitudes
and notch root radii.

4. CONCLUSIONS

The elastic-plastic local strains, as well as the fatigue lives,
were estimated for circumferentially notched cylindrical
specimens made of modified 9Cr–1Mo steel with a notch-
root radius of 1.25, 2.5, and 5mm, and subjected to uniaxial
nominal stress amplitudes of ±124.95, ±149.95, and
±174.95MPa, under 550 8C temperature loading conditions.
The analytical approximations used in this study to calculate
the strains at the notch-tips were: Neuber’s rule [8], modi-
fied version of Neuber’s rule [9], Equivalent Strain Energy
Density method [10], and linear rule [11]. The fatigue lives
were predicted through the strain-life equation, based on the
local strains obtained analytically.

Compared to the local strains obtained from the Finite
Element Analysis, it was found that those calculated from
Neuber’s rule [8] are non-conservative for all notch-root
radius and under all applied stress amplitudes, except at
higher notch root radius, and higher nominal stress am-
plitudes, i.e., at 5 mm and under ±174.95MPa, respec-
tively. The modified Neuber’s rule [9] resulted in a non-
conservative estimation of the local strains, only at higher
notch root radius, namely 5mm and under lower applied
stress amplitudes, i.e., ±124.95 and ±149.95MPa.
Otherwise, it gave conservative results. Besides, the ESED
method [10] slightly overestimated the local strains under
lower applied stress amplitude, for all notch root radius.
However, at higher nominal stress amplitudes, the
method underestimated the local strain values. The ob-
tained local strains using the linear rule [11] were con-
servative for all notch root radius and under all applied
stress amplitudes.

The fatigue lives obtained through the strain-life equa-
tion were compared to the experimental data provided by
Veerababu et al. [27]. Thus, it was found that the local
strains obtained from the ESED method [10] led to a con-
servative fatigue life estimation at 1.25mm notch root
radius, under all applied stress amplitudes and for 2.5 and
5mm notch root radius, under smaller applied stress am-
plitudes, i.e., ±124.95MPa. Otherwise, it gave non-conser-
vative fatigue life results. Besides, the Neuber’s rule [8]
underestimated the fatigue life at 1.25 as well as at 2.5mm
notch root radius, under all the applied stress amplitudes.
However, it overestimated the fatigue lives for a notch root

radius of 5mm and under ±149.95, ±174.95MPa. The
modified Neuber’s rule [9] resulted in a conservative fatigue
life under all nominal stress amplitudes for 1.25mm notch
root radius, and at lower nominal stress amplitudes, i.e.,
±124.95MPa, at 2.5 and 5mm notch root radius, otherwise,
it overestimated the fatigue life. For all notch root radius, the
linear rule [11] underestimated the fatigue lives only when
the applied stress amplitude was ±124.95MPa, otherwise, it
was found to provide non-conservative fatigue life results.

A simple mathematical equation was suggested based on
the regression analysis. It was found that the calculated fa-
tigue lives correlate well with the experimental data for
circumferentially notched cylindrical specimens made of
modified 9Cr–1Mo steel, and subjected to stress-controlled
loading mode, under 550 8C temperature condition.
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