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Abstract
In this work, we focus on the cross-shareholding structure in financial markets. Specif-
ically, we build ad hoc indices of concentration and control by employing a complex
network approach with a weighted adjacency matrix. To describe their left and right
tail dependence properties, we explore the theoretical dependence structure between
such indices through copula functions. The theoretical framework has been tested over
a high-quality dataset based on the Italian Stock Market. In doing so, we clearly illus-
trate how the methodological setting works and derive financial insights. In particular,
we advance calibration exercises on parametric copulas under the minimization of
both Euclidean distance and entropy measure.
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1 Introduction

In 2009Haldane, the ExecutiveDirector for Financial Stability at the Bank of England,
remarked that highly interconnected financial networks might be robust-yet-fragile in
the sense that “within a certain range, connections serve as shock-absorbers [and] con-
nectivity engenders robustness” (Haldane 2013). Complex network approaches and
the science of networks put well in evidence the role of the links and of the under-
lying network topology in the propagation of contagions and cascades (Elliott et al.
2014; Markose et al. 2012; Varela and Rotundo 2016; White 2014). Besides the cross-
shareholdings, literature has examined other channels for detecting the connection
among companies and their managers, posing in evidence the interlock of directorates
and rich-club relationships (Cinelli 2019; Croci and Grassi 2014; D’Errico et al. 2009;
Drago et al. 2015).

This paper considers a financial network where the nodes represent companies. We
assume that arcs are directed, and they are weighted on the basis of the ownership
of shares of companies. In particular, there is a link between two companies when
one owns shares of the other. The link direction goes from the former company to the
latter; its weight increases with the amount of such a share.

Following the definitions proposed in the literature, the weighted in-degree of a
node gives the concentration of the related company – which offers a measure of the
effective shareholders of the company’s stock. Differently, the weighted out-degree of
a node drives the definition of the level of control of the company which proxies the
effective amount of the stocks of the company controlled by a shareholder (Glattfelder
and Battiston 2009; Pecora and Spelta 2015).

In Glattfelder and Battiston (2009), a large dataset of companies listed in national
stockmarkets is examined. A peak for the concentration equal to 1 is detected in all the
studied countries. As we will see in detail below, this means that many shareholders
in the markets only control one single stock.

In Pecora and Spelta (2015), the network of the Euro Area banking market is
analysed. The database showed the situation in 2012. It is quite large since data on 1534
EuroArea bankswith 2298 ownership links are retrieved fromBankscope (Bureau van
Dijk (BvD) Ownership Database) and cross-checked with other information (mainly
Annual Reports and private communications). They detect the power law for the tails.
This is relevant for detecting the characteristic of robust-yet-fragile behaviour, i.e.
the network is robust against pure random fluctuations, but the contagions propagate
quickly when the most relevant nodes undergo some distress. Their analysis shows
that control is relatively concentrated in a few shareholders. Differently, there are only
weak relationship among them.

The presence of the weights in both the concentration and the fraction of control
allows performing a step ahead to the papers considering only the network topology,
where integration (in-degree) and diversification (out-degree) are defined (Rotundo
and D’Arcangelis 2010, 2014; Elliott et al. 2014; Garlaschelli et al. 2005).

In this respect, we have already examined the occurrence of the highest peaks
of concentration for unweighted networks, hence depending strictly on the network
topology. Such peaks are the most unstable configurations of the system, so they are
potentially susceptible to global avalanches as an answer to an eventual trigger like
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the failure or a significant fluctuation of the value of a company (Cerqueti et al. 2018;
Elliott et al. 2014). Adding the weights to the network allows one to get a clearer
picture of the actual relevance of network links.

The paper aims to provide a theoretical framework for exploring the joint distribu-
tion of concentration and control for a prefixed financial network and under different
scenarios for the stochastic dependence between the considered quantities. Stochastic
dependence is modelled through several copula functions, with particular reference
to the Frechet bounds—leading to the maximum and minimum level of correlation
between two random variables—the independence copula and three popular para-
metric Archimedean copulas—the Gumbel, the Clayton and the Frank ones. For an
overview of the copulas, refer to (Joe 1997; Nelsen 2007). We use the classical Sklar’s
Theorem (Sklar 1959) to define the joint theoretical distribution of concentration and
control starting from their univariate distributions. The employment of the considered
copulas leads to a panoramic view of the stochastic dependence between the inves-
tigated financial terms. In this respect, we point out that the Pearson correlation is
undoubtedly a popular measure to describe the dependence between financial vari-
ables. This explains why it is often used for building financial networks. The Pearson
coefficient’s relevant drawback is that it only models stochastic dependences of linear
type, while financial variables usually show more complex dependence structures.
Think of the tail dependence; this is a stylized fact in finance, based on the obser-
vation that the financial quantities tend to be more correlated in periods of financial
distress. The usage of copulas allows deepening the analysis to unveil other kinds of
dependences on the basis of the already mentioned Sklar’s Theorem.

Calibration procedures on parametric copulas are also presented under different
optimization criteria. In particular, we consider both an OLS best-fit approach and
an entropy-based distance minimization procedure. In so doing, we can give several
insights on the nature of the dependence structure between concentration and control.

The methodological proposal is tested over a high-quality empirical sample. The
explored dataset contains companies from the Italian Stock Exchange (MIB30) (see
Sect. 3.2 for a detailed description of the considered data). In remarkable accord with
the literature, we still get a peak for the concentration in 1, which means that most
companies hold shares of just one company. We also note a second smaller peak in 2,
which could state the behaviour of owning shares of two different companies. We here
estimate the empirical joint distribution, and we note that the copula best describing
it witnesses a fair negative dependence. The measurement of the entropic distance
seems to confirm such an outcome, even if remarkable deviations with the Euclidean
case occur (see Sect. 4 for discussing the obtained results).

This paper is quite close to Elliott et al. (2014), where simulations are carried out to
detect the joint distributionsmost susceptible to the spread of contagions. However, we
adopt amore general perspective here since eachmarginal distribution of concentration
and control could rise fromdifferent network configurations. The joint distribution also
allows for some degrees of freedom in the network topology. Indeed, Sklar’s Theorem
can be used in two directions: (1) If the marginal distributions and the copula are
known—i.e. one knows the marginals and the stochastic dependence between the
variables—then one can obtain the joint distribution. (2) If the marginals and the joint
distribution are known, then one can infer the underlying copula linking marginals
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and joint distribution. In case (1), the procedure is a simple application of the copula
function to the marginals, and the obtained result is the joint distribution. In case (2),
one has to implement a calibration/regression exercise, where a family of parametric
copulas is pre-selected, and then the distance between the empirical and the copula-
based joint distribution is minimized over the copula parameters. If copula is of a
nonparametric type, then one can just compute the distance between the empirical and
copula-based distribution. Case (2) is precisely our approach in this paper.

The rest of the paper is organized as follows. Section 2 provides the definition of
concentration and control in the considered context of weighted financial networks.
Section 3 illustrates the employed methodology and describes the analysed data. Sec-
tion 4 outlines the results of the empirical analysis along with a critical discussion of
them. The last section offers some conclusive remarks.

2 Technical definition of concentration and control

We consider a financial network Net = (V , A), where V is the set of the N nodes
which here represent companies, while A = (ai j )i, j∈V is the adjacency matrix whose
entries are defined as follows:

ai j = 0 if the company i does not hold shares of company j;
ai j > 0 is the percentage of shares of company j hold by company i .

(1)

By definition, network Net is weighted, and its arcs are directed. We denote by kinj
and koutj the in-degree and out-degree of node j of the unweighted graph underlying
Net , respectively. The quantities k j ’s are integers that count arcs without including
their weights.

We adopt the definition well-outlined in Glattfelder and Battiston (2009) and define
the concentration index for node j ∈ V as follows:

s j = (
∑N

i ai j )2
∑N

i a2i j
. (2)

We point out that s j in (2) can be seen as the reciprocal of a disparity index.We capture
how s j in (2) works through a simple illustrative example.

Example 1 We consider a weighted network with four nodes and weights as in the four
scenarios in Fig. 1.

For the equally weighted case (panel (a)), we have

s j = (1/3 + 1/3 + 1/3)2

1/9 + 1/9 + 1/9
= 3,

which is exactly kinj .
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Fig. 1 Four scenarios of weights for a network with N = 4 nodes and arcs all incoming in the node j .
Notice that (a) is the case of the equally weighted links. Panel (a) is the equally weighted case, while the
other panels present different degrees of disparity among the weights (see Example 1)

Differently, if one weight is prevailing on the others (see panels (b), (c), (d)), then
one has a departure from the value of kinj as follows:

s j = (0.2 + 0.3 + 0.5)2

(0.2)2 + (0.3)2 + (0.5)2
= 1

0.38
= 2.63

s j = (0.1 + 0.1 + 0.8)2

(0.1)2 + (0.1)2 + (0.8)2
= 1

0.66
= 1.51

s j = (0.005 + 0.005 + 0.99)2

(0.005)2 + (0.005)2 + (0.99)2
= 1

0.9801
= 1.0203

The trivial corner case of only one incoming link in j—not shown in Fig. 1—leads
to the minimum level of concentration index:

s j = (1 + 0 + 0)2

(1)2 + (0)2 + (0)2
= 1

1
= 1.

We notice that the distributions detected in the literature show a power-law depen-
dence of the concentration on the in-degree (see Glattfelder and Battiston 2009).
However, the quoted paper shows that even if the tails follow a power law, the bulk
of the distribution is far from it; this is in line with the plots reported in Pecora and
Spelta (2015).

We now present the control, according to the definition in Glattfelder and Battiston
(2009), Pecora and Spelta (2015). Given a node i ∈ V , the quantity hi is the control
index of i , where
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Fig. 2 Four scenarios ofweights for a network containing a subnetworkwith four nodes and arcs all outgoing
from the node j . Notice that (a) is the case of the equally weighted links. There is only one incoming link,
with a unitary weight (see Example 2)

hi =
N∑

j=1

a2i j
∑N

l=1 a
2
l j

. (3)

It is interpreted as the effective number of stocks controlled by shareholder i . In fact,

if
a2i j

∑N
l=1 a

2
l j
is close to 1, then company i has the most part of the shares of company j .

Also in this case, we illustrate hi in (3) through an example.

Example 2 We consider a weighted network containing a subnetwork with four nodes
andweights with values as in Fig. 1 but with a reverted direction (see the four scenarios
in Fig. 2).

A simple computation gives hi = 0.11 (panel (a)), hi = 0.38 (panel (b)), hi = 0.66
(panel (c)) and hi = 0.9801 (panel (d)).

3 Data andmethods

This section is devoted to illustrating the techniques used for detecting the cross-
shareholding structure of the considered financial network.Moreover, it also describes
the employed dataset.
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3.1 Methodology

The starting point is an empirical distribution of concentration and level of control for
a given set of companies. Details on the selected datasets will be reported in Sect. 3.2.

We denote by S andH the random variables of concentration and level of control,
respectively. They follow the empirical distributions of (s j : j = 1 . . . , N ) and
(hi : i = 1 . . . , N ) in formulas (2) and (3), respectively.

The cumulative marginal distribution functions of S and H will be denoted by
FS : R → [0, 1] and FH : R → [0, 1], respectively.

The empirical joint distribution of S and H is Femp
S,H : R2 → [0, 1].

The present analysis is organized in two steps. Copulas intervene in each of them
to describe the stochastic dependence between concentration and control.

The concept of copulas is particularly suitable for our purpose. Indeed, a bivariate
copula C : [0, 1]2 → [0, 1] is a special function able to describe the dependence
structure between two random variables through the classical Sklar’s Theorem. We
rewrite it here by conveniently adapting our notation.

Theorem 1 (Sklar’s Theorem) Let FS,H be the joint distribution function of a couple
of random variables (S,H). With an intuitive notation, the marginal distribution
functions are FS and FH. Then, one can find a copula C : [0, 1]2 → [0, 1] such that,
for each (s, h) ∈ R

2,
FS,H(s, h) = C(FS(s), FH(h)). (4)

When FS , FH are continuous, then C satisfying (4) is unique. Conversely, if C is a
copula and FS , FH are distribution functions, then FS,H in (4) is a bidimensional
joint distribution function with marginal distribution functions FS and FH.

In accord with (4), we denote by FC
S,H : [0, 1]2 → [0, 1] the joint distribution

function coming out from the application of Sklar’s Theorem 1 with a generic copula
C .

By imposing specific copulas functions C , Theorem 1 assures that different types
and natures of stochastic dependence can be stated between two random variables.
Therefore, as we will see, we here deal with some selected copulas to describe the
nature of the connection between concentration and control.

Before describing the details of the methodological approach, we introduce the
considered copulas.

We consider two prominent cases: nonparametric copulas and parametric ones.
The former case is used to provide information on the similarity between some pecu-
liar cases of stochastic dependence and the real empirical dependence structure of
concentration and control; the latter case allows to grasp information from the cali-
brated parameters of some meaningful copulas, always in the context of the similarity
between the copula-based dependence and the empirical one.

For what concerns the nonparametric copulas, we consider the independence case
of the product copula

CI (u, v) = uv (5)

and the Frechet bounds, which realize the maximum (upper bound, copula denoted
by CUF ) and minimum (lower bound, copula denoted by CLF ) possible dependence
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between the considered random variables. For the convenience of the reader, we recall
the definition of the Frechet bounds:

CLF (u, v) = max{u + v − 1, 0}, CUF (u, v) = min{u, v}. (6)

In the parametric case, we consider three important instances of Archimedean
copulas, dependent on a parameter θ :

• Gumbel Archimedean copula

CG(u, v) = exp[−((− ln(u))θ + (− ln(v))θ )1/θ ], θ ∈ [1,+∞) (7)

• Frank Archimedean copula

CF (u, v) = −1

θ
ln

[

1 + (exp(−θu) − 1)(exp(−θv) − 1)

exp(−θ) − 1

]

, θ �= 0 (8)

• Clayton Archimedean copula

CC (u, v) = [
max{u−θ + v−θ − 1, 0}]−1/θ

, θ ∈ [−1, 0) ∪ (0,+∞) (9)

The stochastic dependence described by the Archimedean copulas above is of a
different type.

TheGumbel case is associatedwith asymmetric right-tail dependence, whose entity
is mainly driven by the parameter θ . Frank copula can capture both positive and neg-
ative dependence cases and does not generally describe tail dependence. The Clayton
case is quite similar to the Gumbel one, with tail dependence. However, Clayton
copulas describe dependence on the left tail, and also in this case a more detailed
specification can be derived from the analysis of the parameter θ .

We now have all the instruments for proceeding with the analysis.
To proceed, we preliminarily introduce a discretization of R and R2 on the basis of

the empirical sample. In detail, without losing generality, we can assume that S and
H are discrete and take values in two discrete sets �S and �H, respectively.

We face the problem of assessing the characteristics of the dependence structure
between concentration and control. To this aim, we introduce suitable distance mea-
sures between the empirical joint distribution Femp

S,H and the one obtained by using the
considered copulas. We propose two distance measures. The first one is the classical
distance of Euclidean type, and it is defined as follows:

dEuc(F
emp
S,H, FC

S,H) =
√ ∑

(s,h)∈�S×�H

(Femp
S,H(s, h) − FC

S,H(s, h))2. (10)

The second one is the absolute deviation between the entropies of the two joint
distributions, i.e.

dEnt(F
emp
S,H, FC

S,H) =
∣
∣
∣H

(
Femp
S,H

)
− H

(
FC
S,H

) ∣
∣
∣, (11)
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where H
(
Femp
S,H

)
and H

(
FC
S,H

)
are the entropies of Femp

S,H and FC
S,H, and they are

defined as follows:

H
(
Femp
S,H

)
=

∑

(s,h)∈�S×�H

Femp
S,H(s, h)lnFemp

S,H(s, h) (12)

and
H

(
FC
S,H

)
=

∑

(s,h)∈�S×�H

FC
S,H(s, h)lnFC

S,H(s, h). (13)

Exploring distances in (10) and (11) provides several insights on the informative
content of the empirical joint distribution of concentration and control in terms of their
stochastic dependence. Indeed, Euclidean distance gives information on the pointwise
general difference between the joint distribution functions, while the entropy is infor-
mative on the closeness of the overall shape of the distributions.

In the case of nonparametric copulas, we simply apply Theorem 1 to obtain the
joint probability distribution FC

S,H and measure the distances with the empirical dis-
tributions, according to (10) and (11). In the parametric copulas, the parameter θ is
calibrated by minimizing the distance between the empirical joint distribution and the
one associated with the parametric copulas so that the following problems are solved
in all the considered cases of Archimedean copulas (we denote by θ� the calibrated
parameter):

θ� ∈ argminθdEuc(F
emp
S,H, FC

S,H) (14)

and
θ� ∈ argminθdEnt (F

emp
S,H, FC

S,H), (15)

where C = CG,CF ,CC and θ are taken from the variation range of the specific
considered copula.

In the empirical experiments, a discussion of the value of θ� will be carried out
below for all the cases of the considered Archimedean copulas.

As conclusive remarks in this section, we stress that identifying the unique copula
granting the validity of Sklar’s Theorem is a challenging task, which often does not
have a definitive response. The point is that copulas can be of different shapes; more-
over, we are reasonably sure that several families of copulas should still be discovered
and formalized by scholars.

Our approach is then different. We take a parametric copula explaining some prop-
erties of the stochastic dependence between the considered variables, and we identify
the parameters for which the distance between the empirical joint distribution and the
copula-based one isminimized. In this respect, we define a copula-based joint distribu-
tion. The employed distance has a relevant, informative content. Thus, we consider two
types of distance measures—the Euclidean one and the entropy—to gain insights on
the dependence between the variables. The joint analysis of the calibrated parameters
and the distance measure provides a clear view of the connection between concen-
tration and control. As an additional analysis, we also take nonparametric copulas
describing extreme cases of dependence and independence—the Frechet bounds and
the product copula, respectively—and we assess how the joint distribution obtained
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Table 1 Main statistical
indicators related to
concentration and control

Mean SD Skewness Kurtosis

Concentration 1.2721 0.4293 1.6566 5.3302

Control 1.0000 0.4271 0.3735 4.0847

through them is close to the empirical one, still under the guide of Euclidean and
entropy measure.

3.2 The dataset

The dataset that serves as the case study gathers the cross-ownership in the Italian
Stock Exchange (MIB30) on DATA, and it has already been explored in Rotundo and
D’Arcangelis (2010),Cerqueti et al. (2018). It contains the cross-holdings among listed
firms in the Milan Stock Market-MTA segment. It has been cross-checked through
several databases: the Bureau Van Dijk, CONSOB, Bankscope, ISIS, AIDA, Datas-
tream. A total of 247 stocks are listed. However, many of them are neither owned
by other companies listed in the MIB30, nor play an active role in buying shares
from other companies. From the perspective of the network, we remove the insulated
nodes (i.e. if column i and row i are both empty, they are removed from the adjacency
matrix, which diminishes its dimension). After this first pruning, the matrix A has 158
rows/columns.

We present the main descriptive statistics in Table 1 to give a clear idea of the
considered dataset.

It isworth pointing out that the value of themeanof control is remarkably in linewith
the values detected on several stock market indexes (see, e.g. Glattfelder and Battiston
2009). Actually, the standard deviation allows seeing quite a dispersion around the
mean. The skewness takes well into account the asymmetry of the distributions. The
values of kurtosis add further evidence that both the distributions are quite far from
the Gaussian one.

The histograms of the network weights are reported in Fig. 3. Such a figure shows
that the vast majority of the companies have small ownership values.

4 Results and discussion

The analysis is carried out in a stepwise form. First, we compute the empiricalmarginal
and joint distributions of concentration and level of control. Then, we compute the
distances in (10) and (11) by considering the parametric and nonparametric cases
introduced in Sect. 3.1. In the parametric case, we numerically solve problems 14 and
15 and discuss the obtained findings.

4.1 Empirical distributions of concentration and control

First of all, we introduce the empirical marginal distribution of the concentration S.
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Fig. 3 Distribution of the weights of the network. The vast majority shows quite small percentages of
ownership
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Fig. 4 Histogram of the concentration index S. We juxtapose the best fit through the function in (16). The
calibrated parameters are reported in the text. Notice the bimodality of the distribution

Figure 4 shows the histogram of the concentration. There is evidence of a higher
peak in 1, followed by a small peak around 2.

The peak around 1 has also been detected in the dataset studied in Glattfelder and
Battiston (2009). The tendency to have the ownership of just one other company could
be due to the financial policy management of the company. For instance, the formal
separation of a financial sector from a bigger company or the presence of ultimate
owners, like for IFI PRIV (privileged shares of the Agnelli family) with respect to
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IFIL (the society financing the leading companies of the Agnelli family), which are
FIAT car industries and Juventus football team. However, in Glattfelder and Battiston
(2009) the peak around 2 is not observed, so the intra-relationship in the MIB30 are
different from the cross-relationships among countries. The best fit to the empirical
distribution is provided by a mixture of two Gaussians, as follows:

p(x) =
2∑

i=1

ai e
−(

x−μ̄i
σi

)2

. (16)

We set μ̄1 = 1 and μ̄2 = 2 in accord to the visual inspection of data. This choice
allows moving from a best-fit procedure with six parameters to the best fit with
four parameters, with consequent improvement in the goodness of fit. The calibrated
coefficients (with 95% confidence bounds) are: a1 = 0.786(0.7346, 0.8375), a2 =
0.0882(0.05855, 0.1178), σ1 = 0.09767(0.0895, 0.1058), σ2 = 0.09657(0.05993,
0.1332). We have an excellent outcome for the goodness-of-fit parameters: SSE =
0.003358, R2 = 0.9905, Ad j . R2 = 0.989, RMSE= 0.01329.

The company with the highest concentration is GABETTI PROPERTY SOLU-
TIONS. It sells its shares to the highest number of other companies (ten of them),
which plays a crucial role in increasing its concentration. The company works in the
real estate market, and its shares are owned by companies most in buildings and energy
sectors.1

The companies with the lowest concentration are all with si = 1, which do not sell
their shares in this market, so they hold 100% of their own ownership.2

We now introduce the empirical marginal distribution of the control variable H.
As in the case of concentration, also the index of control shows a very pronounced

peak in 1 (see Fig. 5).
Figure 5 shows the best-fit exercise with the mixture of three Gaussians, i.e.:

p(x) =
3∑

i=1

ai e
−(

x−μ̄i
σi

)2

. (17)

The best-fit exercise gives the following calibrated coefficients (with 95% confi-
dence bounds): a1 = 0.5783(0.5548, 0.6018), a2 = 0.01245(0.005994, 0.01891),

1 A2A AEM, ASTALDI, CEMENTIR, COBRA, DIGITAL BROS, EEMS ITALIA SPA, EL.EN. SPA,
ERG, EUROFLY, FIDIA.
2 66 companies: A2A AEM, ACEGAS, ACQUE POTABILI, AEROPORTO FIRENZE, ALITALIA,
ARENA, ASCOPIAVE, ASTALDI, ATLANTIA, BANCAMPS, BASTOGI, BCA IFIS, BCA ITALEASE,
BCA POP INTRA, BCA POP MILANO, BCA POP SPOLETO, BCA PROFILO, BCO DESIO E
BRIANZA, BCO SARDEGNA, BEGHELLI, BIALETTI, BOLZONI, BREMBO, BRIOSCHI, BUON-
GIORNO, CAD IT, CAIRO COMM, CARRARO, CATTOLICA ASS, CDC, CEMBRE, CENT LATTE
TORINO, CIR, CLASS, CREDBERGAMASCO, CREMONINI, DAMIANI, DANIELI, DATASERVICE,
DE LONGHI, DIASORIN SPA, DMT DIDITAL TECH, EDISON SPA, EMAK SPA, ENERTAD SPA,
ENGINEERING - INGEGNERIA INFORMATICA - SPA, ENIA SPA, ERGO PREVIDENZA SPA,
EXPRIVIA, FIAT, FILATURA DI POLLONE, FINMECCANICA, GEFRAN, GEOX, GRANITIFIAN-
DRE, GREENERGYCAPITAL, GRUPPO COIN, IGD, IMMSI, INTERPUMP SPA, INVESTIMENTI E
SVILUPPO SPA, IPI SPA, IT HOLDING, ITALCEMENTI FABBRICHE RIUNITE, ITALMOBILIARE
SPA, ITWAY.
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Fig. 5 Histograms of the index
of control. Also in this case, we
apply the best fit curve obtained
through the function in (16). The
calibrated parameters are given
in the text. There is a clear
predominance of one specific
realization of the index, which
presents a clearly unimodal
distribution
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0.3

0.4
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a3 = 0.02065(−0.002128, 0.04342), c1 = −0.0312(−0.05275,−0.009649) c2 =
2.056(−4.096, 8.209), c3 = 0.2333(−0.08779, 0.5544), while we have set μ̄1 = 1,
μ̄2 = 1.9, μ̄3 = 0.36. Also in this case the goodness of fit is statistically satisfactory,
with SSE: 0.002559, R-square: 0.9921, Adjusted R-square: 0.9904, RMSE: 0.01033.

The company with the highest control is ALLEANZA. It buys shares from the
highest number of other companies. This high activity can be due to the financial
nature of the company since it is an insurance one. On the opposite, the company with
the lowest control is FILATURA DI POLLONE, which buys very small shares from
three other companies, hence having a low control value.

We can define their empirical joint distribution from the marginal empirical distri-
butions of concentration and control. Figure 6 provides a graphical representation of
the joint probability distribution surface.

4.2 Distances from the empirical distribution

We now present the distance measures in (10) and (11) between the empirical distri-
bution and the ones obtained through copulas by using Theorem 1.

We start from the distance measure dEuc in (10).
In the nonparametric case, we have that dEuc(F

emp
S,H, FC

S,H) is 3.933664, 2.405063
and 10.037975 when C = CI in 5, C = CLF and C = CUF in (6), respectively.
This outcome suggests that the dependence structure of concentration and control is
much closer to the perfect negative correlation rather than to the perfect positive one.
This behaviour is in line with the results obtained on the in−degree (see Rotundo
and D’Arcangelis 2010). A cross-check on the sample shows that banks and financial
institutions collected in the dataset are the ones which are most holding shares of
several other companies. Actually, such a strategy represents away to provide financial
support to a company by banks and financial institutions. From a different perspective,
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Fig. 6 Surface of the joint empirical distribution between concentration and control. Notice the peak at a
low level of concentration and middle level of control

the shares of financial institutions are not bought by many different other companies.
Industrial companiesmost show links to companieswhich are relevant to their business
(as an example, Finmeccanica—an industrial group active in high technologies, flight,
space, and defence—is linked to Ansaldo—which is among the major worldwide
producers of energy plants) or, alternatively, that are offsprings (ENI and SAIPEM
or ENI and SNAM Rete Gas) or that were created to separate the financial part from
the core business (IFIL and Juventus or IFIL and Fiat—see Fig. 1 in Rotundo and
D’Arcangelis 2010). In this sense, the behaviour is not strategic in terms of strategic
investments, but it is driven by production, business and industrial needs.

Figure 7 presents the Euclidean distance (10) between the empirical joint distribu-
tion and the ones associated to the parametric Archimedean copulas in (7), (8) and (9)
as the parameter θ varies. In particular, the upper panel presents the Gumbel copula
(7), the middle one is the Frank copula (8), and the lower panel is the Clayton copula
case in (9).

For the Gumbel copula, we have a minimum in θ� = 1. In this case,
dEuc(F

emp
S,H, FC

S,H) = 3.934 for C = CG in (7). The case of Frank copula with

negative parameter exhibit a minimum θ� = −18.1, with dEuc(F
emp
S,H, FC

S,H) = 1.933
when C = CF in (8). Still, in the Frank case—but for positive values of the param-
eter θ—the smallest values of the distance are taken around zero, even if there is
no minimum because 0 does not belong to the definition set. However, Fig. 7 shows
that dEuc(F

emp
S,H, FC

S,H) = 4.008 when θ = 0.1. Finally, the Clayton case with nega-
tive values of the parameter shows a minimum in θ� = −1 with a value of distance
dEuc(F

emp
S,H, FC

S,H) given by 2.405. Also, in the Clayton case with positive parameters,
we have the smallest distance values for θ close to zero. Even if there is no minimum,
we have dEuc(F

emp
S,H, FC

S,H) = 137.2 for θ = 0.1, with C = CC .
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Fig. 7 Distance dEuc(F
emp
S,H, FC

S,H), when C = CG in (7) (upper figure), C = CF in (8) (middle figure)
andC = CC in (9) (lower figure). The two panels in themiddle and lower figures are separated to emphasize
the domain of the related parameters

From the perspective of copulas, the increasing values of the distance as theta
increases witness that there is no tail dependence. In fact, the tail dependence of the
Gumbel and the Clayton copulas would increase as theta increases, and graphical
representation suggests that the distance between such copulas and the empirical joint
distribution increases with θ . The Frank copula is the only one (among the chosen
ones) which does not represent the tail dependence. The fact that the Frank copula is
achieving the minimum (among all the copulas as θ changes) confirms the absence
of tail dependence. Since the overall minimum is achieved for a negative value of
θ , namely θ� = −18.1 for the Frank copula, there is evidence of a prevalence of
negative dependence among the marginals (Frank is negative dependence for θ < 0
and positive one for θ > 0). However, such a negative dependence is “fair”, in the sense
that the distance increases for θ < θ�. This outcome confirms what was already found
in the analysis of the nonparametric copulas. Moreover, it also finds confirmation in
the negative correlation obtained by computing the Pearson correlation coefficient ρ

between S and H, which is ρ = −0.426877816804739.
Let us now move to the analysis of the entropy distance measure dEnt in (11).

First of all, we have that H
(
Femp
S,H

)
= 1.368666.

We can remark that the entropy of the case study H
(
Femp
S,H

)
is in the middle of the

range of variation of the entropy in our case—we calculate that the maximum value
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for the entropy is 5.5, being N = 23 × 11 = 253. Therefore, the system shows some
degree of organization, although it is still far from a globally disordered system.

The entropies in the nonparametric case are H
(
FC
S,H

)
= 1.96713208 when

C = CI in (5), H
(
FC
S,H

)
= 1.09578522 and H

(
FC
S,H

)
= 1.70745533

when C = CLF and C = CUF in (6), respectively. Coming to the differences,
we have dEnt (Femp, FCP ) = 0.59846570, dEnt (Femp, FCLF ) = 0.27288117,
dEnt (Femp, FCUF ) = 0.33878895.

Therefore, the joint distribution obtained through the Lower Frechet copula is
the closest one to the empirical distribution, according to distance dEntr in (11), on
the basis of the comparison of the values dEnt (Femp, FCP ), dEnt (Femp, FCLF ) and
dEnt (Femp, FCUF ). This confirms the prevalence of a negative correlation between
concentration and control, even when we consider the overall shape of the distribu-
tion.

Parametric copulas are graphically presented in Fig. 8.
In the Gumbel case of C = CG , there is a maximum for the distance in θ =

1.5600, dEnt (Femp, FG) = 0.7134. There is nominimum.However, for θ = 20.0000,
dEnt (Femp, FG) = 0.3809.

On the Frank copula: there is no minimum and no maximum on the negative values
of θ . For the positive values of θ , there is a maximum for θ = 5.5100 given by
dEnt (Femp, FF ) = 0.7391.

On the Clayton copula, there is a maximum for the Clayton copula in θ = 5.2300,
with dEnt (Femp, FC ) = 0.7281. For the negative values of θ , we have no minimum.
However, for θ = −0.9, we have dEnt (Femp, FC ) = 0.039.

In the Gumbel case, the behaviour of the distance dEnt is radically different to the
one of dEuc, with a small deviation for θ → ∞. This means that the empirical and
copula-based distributions have similar probabilistic shapes when a high dependence
on the tail is considered.

Similar comments hold for the Clayton copula: low values of the distances are
achieved for θ → ∞, which means similarity between the disorder generated by the
investigated distributions in the case of strong positive dependence. We recall that for
θ → ∞, the Clayton copula tends to the Upper Frechet, where the dependence is on
the left tail (the negative one).

Both the Clayton and the Gumbel copulas confirm that strong dependence on
the tails leads the empirical distribution as close as possible—in terms of entropy
measures—to those generated by the copulas. Moreover, Clayton also allows assess-
ing aminimumof the entropy distance for θ , close to−1, that would be associatedwith
the Lower Frechet case. Then, the investigated joint distributions tend to have similar
shapes also in the presence of a strong negative correlation between concentration and
control.

The Frank copula shows amaximumof the entropic distance for values of θ positive
but close to 0, and the smallest one for θ → −∞. Also the case θ → +∞ gives small
distance values. Remembering that positive (negative) values of the θ in the Frank
copulas stand for positive (negative) dependence, we get that strong positive and
negative dependence between concentration and control leads to a shape similarity
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Fig. 8 Distance dEnt (F
emp
S,H, FC

S,H), when C = CG in (7) (upper figure), C = CF in (8) (middle figure)
and C = CC in (9) (lower figure). Also in this case, the two panels in the middle and lower figures are
taken as distinct entities to emphasize the domain of the related parameters

with the empirical distribution—with a preference for the negative dependence. We
also observe that such dependence is “fair", not on the tails.

Looking at the overall analysis, we can conclude that the empirical joint distribution
of concentration and control seems to come from a structure of negative dependence.

5 Conclusions

Thepresent paper examined the stochastic dependence induced by cross-shareholdings
in a stock market. In line with the literature, the indices of concentration and control
describe the effectiveness of the number of shares sold (concentration) or bought (con-
trol). In the case study that serves to outline the analysis, some features already found
in literature emerged, like the peak for the concentration at 1, meaning that many com-
panies do not sell their shares in the examined market, leaving room for externalities.
We are interested in understanding the type of stochastic dependence that gives rise to
the similarity between the empirical distribution and a theoretically obtained one. The
proposed empirical instance employs high-quality data coming from the Italian Stock
Exchange. To increase the informative content of the analysis, we present the cases
of Euclidean distance and entropic distance between the investigated distribution and
the empirical one. The former case provides information about the averaged similarity
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of the terms of the distribution. At the same time, the latter deals with the likeness of
the disorder related to the overall distributions. We relied on both parametric and non-
parametric copulas to model the dependence structure. What emerges is a substantial
difference when dealing with entropic and Euclidean distance, even if it seems that the
negative dependence between concentration and control provides a more satisfactory
description of the empirical sample.

In this context, fitting the empirical distribution with a continuous function pursues
two main targets. On one side, the empirical marginal distributions are well-fitted by
some mixtures of Gaussians. Therefore, one can reasonably employ such continuous
functions for applying Sklar’s Theorem, with the relevant benefit of not being con-
strained to take only the observed values for describing the empirical distributions.
This is exactly the approach followed in the present paper. On the other side, the con-
sidered functions can be suitably perturbed in the light of modelling modifications of
the empirical distributions of concentration and control. The perturbed functions can
then be used to apply Sklar’s Theorem to derive information on new configurations
of such variables. The interest in working with a joint distribution different from the
actual one raises by the fact that regulations and/or economic factors may impact the
overall topology of the network. In fact, even well-consolidated financial markets may
change their topology. This second aspect is not covered in the current version of the
paper—it is well-beyond our target. However, we plan to develop it in future studies.

Our model presents two main limitations: on one side, the analysis has been carried
out on the basis of some specific families of copulas. This is restrictive in that there
is an endless debate on such methodological instruments with a long list of classes of
copulas. However, the considered instances are particularly meaningful; they describe
paradigmatic cases of stochastic dependence, which are suitable for modelling the
correlation between financial variables; on the other side, empirical results are related
to the special case of the Italian Stock Exchange. However, the proposed method is
versatile; it can be employed in other empirical samples.

Interestingly, since concentration and control are an extension of in- and out-degree,
this study can be seen as an extension of the concept of assortativity, which was first
defined as the correlation among the node degrees. Indeed, copulas do not limit to
the empirical dataset but consider a broader range of dependence structures. This
challenging extension of our study is already on our research agenda.

In terms of network topology,we point out that the raw links give their structure. The
network has already been detected as close to the scale-free one (see Fig. 1 in Rotundo
and D’Arcangelis 2010). However, the analysis of mesoscale and communities is out
of the scope of the present paper. This is another challenging task that deserves a
focused research paper.

Finally, we also stress that papers examining only the out− and in− degree (see,
e.g. Garlaschelli et al. 2005) and the studies on the minimum spanning tree calculated
only on the correlation networks (see, e.g. Bonanno et al. 2003; Onnela et al. 2003)
suggest the restriction of market investments to be the common features of markets in
recession times. This is left for future studies on time-evolving networks.

Funding Open access funding provided by Università degli Studi di Roma La Sapienza within the CRUI-
CARE Agreement.
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