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ABSTRACT 

Historically, the rising cost of energy has been a huge driver for data center energy efficiency, and the contribution of this consumption to climate change is 

ever more evident. As the industry begins to look beyond energy consumption, it has become aware that environmental impact derives not just from energy 

consumption, but also from our use of natural resources. To ensure optimization measures do not cause a burden shift, these interdependent issues should 

not be considered in isolation. 

Data centers consume energy to power and cool IT equipment. Current optimization efforts largely focus on the operation of cooling technologies. These can 

be categorized simplistically according to their use of air or water to remove the heat created by the IT equipment. Design decisions are based on the 

theoretical energy consumption, and resulting running costs that a certain technology has in a given location. However, water is a valuable natural resource 

and currently it is difficult to expand this analysis to consider its consumption alongside that of energy. It is also difficult to understand whether indirect 

impacts of water and energy consumption outweigh any savings of one technology over another during operation. For example, water is consumed during 

the production of energy, the amount of which depends on the source of generation. 

To understand these impacts a life cycle approach is required. Such an approach acknowledges that water and energy are consumed from the moment raw 

materials are extracted and combined into process materials, to the point that it is used and then disposed of. A full life cycle impact of the different 

cooling technologies in a data center would consider the impacts of operation as well as those embodied in them. This, however, is a time-consuming process. 

Instead, the industry needs life cycle based tools and metrics that can expedite this decision process. Using life cycle assessment (LCA) to determine a 

single numerical value for total environmental impact, the work in this paper provides simple equations that allow designers to understand the 

environmental implications of their water and energy use in different parts of the world. A number of theoretical case studies are then used to demonstrate 

its application. Future work should look to include embodied impacts. 

INTRODUCTION 

The last decade has seen much research into the energy consumption of ICT (Koomey 2009) and data centers 

(Koomey 2011). This research has shown growing levels of consumption and facility numbers well into the future as 

more of the world comes online. This consumption comes typically from IT equipment and the mechanical services 

used to support them. The data center industry has reacted to this growth, and improvements to energy efficiency 

have been well documented (Tozer et al. 2015). However, whilst there are sound scientific methods for improving 



efficiency, such as air management (Tozer et al. 2015), there is still scope for further optimization.  

In recent years, the concern with energy consumption has moved beyond the financial implications to its broader 

impact on the environment. Many metrics have been established, such as PUE, WUE and CUE (power/water/carbon 

usage effectiveness) to understand these impacts, but they consider different subjects in isolation. This means that in 

improving PUE, an operator could be shifting the environmental burden to WUE (through additional water 

consumption). It is difficult for non-environmental experts to understand the true impact that this shift has on the 

environment, because energy and water have different units of measurement. There is therefore a need for a method 

of assessment that allows data center designers, owners and operators to understand these trade-offs. 

THE ENVIRONMENTAL IMPACT OF ENERGY AND WATER CONSUMPTION 

Every human activity creates environmental impacts, which vary in intensity, severity and longevity, and may be 

positive or negative. Until recently the emphasis of the environmental impact assessment of energy was related to 

emissions from operation, because the majority of energy was from fossil fuels. The most significant emissions from 

fossil fuel combustion include CO2 and other Greenhouse Gases (GHG), sulphur dioxide SO2, nitrogen oxides NOx, 

particulates and substances such as mercury. These substances are emitted to the air, soil and water and can create 

numerous diverse impacts; examples include human health problems (ranging from the short term/seasonal to death), 

and damage to and depletion of species (resulting from changes in pH levels of rain and sea water).  The recent 

development of renewable technologies means that many operational emissions and impacts have been reduced 

and/or eliminated. A comparison of the operation alone is misleading, however, because the inputs, outputs and 

impacts of the generation technologies differ, and it is therefore necessary to assess these ‘embodied’ impacts. These 

are far more numerous and diverse and there can be more than 700 associated with any individual type of technology.  

While energy is important for human activity the importance of water cannot be underestimated as it is essential 

for life and although it is abundant, only 2.5% is fresh and only 1% of that is accessible for direct human use; 

furthermore the water system is closed, i.e. there is a finite quantity in the ecosphere. Population growth and related 

land occupation and use, agriculture and irrigation and industrialization mean that demand is continually increasing. 

Water quality is affected by natural phenomena such as leaching mineral deposits and sedimentation while changes in 

climate and weather patterns impact on rainfall patterns and levels of surface runoff and absorption. The impacts of 

human activities also affect water quality and while many supplies have been polluted with pathogens from sewage, 

toxic chemicals and pesticides from cultivation and industrial processes, other reserves have been depleted and not 

replenished. These numerous inter-related factors have led to global ‘water stress’ and cost implications.  

LIFE CYCLE ASSESSMENT 

Life cycle assessment (LCA) is a systematic tool for assessing iteratively the impact a product, process or service 

has on the environment (Baumann et al. 2009). LCA is used to assess the environmental impact from raw material 

extraction (cradle), transportation, the manufacturing and use of the product, and its eventual disposal (grave). There 

are four stages to an LCA: goal and scope (including system boundaries); life cycle inventory (flows entering and 

leaving the system); impact assessment (inventory results are translated into environmental impacts); and 

interpretation (the consequences of the above environmental impacts). 

Flows describe materials, energy, emissions or products entering or leaving a system. There are three common 

flows: elementary, product and waste flows. Elementary flows are untreated materials or energy, whilst product and 

waste flows are as their names suggest. At the inventory stage flows into (inputs) and out of (outputs) the system are 

inventoried for a given product (process). Once the inputs and outputs have been quantified, they are classified 

according to the environmental impacts they contribute to, i.e. CO2 contributes to climate change. A characterization 

method then uses cause-effect chains to quantify the relative contribution the emission/material consumption has on 

environmental impact. For example the global warming potential (GWP) of GHGs can be expressed as CO2e. Using 

damage models, the relative impact these environmental phenomena have on areas of protection (AoPs), namely 



human health, ecosystem quality and resources is then calculated, and a weighting applied to provide a single score. 

LCAs can be completed to varying degrees of accuracy, from screening to ‘full-blown’ process-based (detailed) 

studies (Rebitzer et al. 2004; Baumann et al. 2009). In a screening LCA process-based life cycle inventory (LCI) data 

from previous studies is used to approximate the environmental impact. By reducing the precision of the study, users 

can understand the general pattern of impact in a short period of time, and identify potential areas for improvement.  

THE ENVIRONMENTAL TRADE-OFF BETWEEN ENERGY AND WATER CONSUMPTION 

Goal and Scope 

Using a screening LCA, the goal of this study was to provide equations for assessing the environmental trade-off 

between different cooling technologies based on their water/energy consumption and location. The work aims to 

understand the general pattern of impact and provide a basis for more detailed investigations. The embodied impacts 

of the cooling systems are omitted and should be investigated in future work. The functional unit of the study is the 

provision of cooling for one year. The system boundaries include all inputs and outputs from cradle to grave for the 

water and electricity, but not impacts embodied in the technology itself.  

The electricity data is country-specific, and includes: the electricity production in the relevant country from 

material extraction; the transmission network; direct SF6-emissions to air; electricity losses during LV transmission 

(including the HV transmission from the grid); and the transformation between voltages at switching stations (Dones 

2007). The assumptions for the transmission network and emissions are based on Swiss data. A European average tap 

water process was used to represent the water entering a data center. The process included infrastructure and energy 

use for water treatment and transportation to the end user, but no emissions from water treatment. The process was 

compiled with estimated data for a water works in Switzerland and energy use in Germany. The data was then adapted 

using the Pfister et al. (2009) impact factors for regionalization to give an impact based on the water stress index 

found in each country. It is assumed that for every 1m3 of water used, 50% is evaporated and 50% requires end 

treatment. A generic sewage water treatment has been used. Both water processes are likely to underestimate the true 

impact and should be the subject of future research. All datasets were secondary, based on average technologies, and 

from the Ecoinvent v2.2 database, with a reference year of early 2000. The Eco-indicator 99 method was used to 

characterize results. The OpenLCA 1.4.2 software tool was used to run the LCA.  

Water Scarcity and Regionalization in LCA 

The environmental impact of water consumption is dependent on its origin (country or regional level) and source 

(ground/surface water, rivers and lakes). Until recently, differentiation between LCA results at a regional level has 

been difficult because characterization methods did not include indicators and impact factors for water scarcity. There 

are now a number of methods that give an impact at the midpoint level (no indication of the environmental 

phenomena that the impact causes). These include: characterization by water stress index (Pfister et al. 2009); ReCiPe 

(Goedkoop et al. 2009); human health impacts (Boulay et al. 2011); and water footprinting (Hoekstra et al. 2011). 

However, Pfister et al. (2009) is the only method that provides an impact at the endpoint in all three AoPs (human 

health, ecosystem quality and resources) for the Eco-indicator and ReCiPe methods. Because these impact factors 

were not included in the freely available data in OpenLCA, the impact factors for freshwater consumption were 

applied manually to the inventory results in order to understand the impact of regionalization on the results.  

LCA RESULTS AND INTERPRETATION 

The results of the LCA are given in Eco-indicator points (Pt). 1,000 Pt are equivalent to the environmental load 

of one average European in one year. Figure 1 shows the levels of water and energy consumption required for a given 

location to yield the same impact of 100,000,000 Eco-indicator points. A WUE/PUE of 6 is assumed to represent a 



worst-case legacy facility (see Table 2), and a line has been added to the graph. Assuming WUE and PUE values from 

Table 2, Table 1 below shows what size facility this WUE/PUE value relates to in each country. In Sweden a 16MW 

IT load, using 2 million m3/yr of water creates the same impact as a 22kW IT load and 3000 m3/yr of water in the US. 

Note, for the purpose of this example, electricity and water loads are taken for the whole facility. 

 

Table 1. IT and Water Loads that Create a 100 Million Pt Impact (WUE=15 and PUE=2.5) 

Country Total Facility Electricity (MWh/yr) Total Electricity (MW) IT Electricity (MW) Total Facility Water (m3/year) 

USA 489.4 0.0559 0.0223 2,936 

UK 587.9 0.0671 0.0268 3,527 

France 3928 0.448 0.179 23,570 

Sweden 352,755 40.2 16.1 2,117,000 

 

 

Figure 1. Water and Electricity Consumption that Yields 100,000,000 Pt of LCA Impact for Different Locations 

The most important result is therefore the impact the energy mix has on the environmental impact of electricity 

consumption. The impact from energy consumption in Sweden is logarithmically three orders of magnitude smaller 

than that in the US (Figure 1). This is because the Swedish mix is largely reliant on hydropower and nuclear, whilst 

the majority of the US and UK mixes are from fossil fuels, and the French from nuclear (see table 15.1 Dones (2007)). 

Although the datasets were based on old grid mixes, the impact from electricity is so large, that the pattern of results is 

likely to remain the same until grid mixes resemble that found in Sweden.  

When completing an LCA, many factors can change the results – the characterization method, emission 

timescales, boundaries, allocation, weighting, assumptions, and the life cycle inventory (to name but a few). Validation 

is therefore important. Turconi et al. (2013) reviewed 167 case studies of electricity generation LCAs with respect to 

GHG, NOx and SOx emissions. It found that the infrastructure provided the highest impact for renewables, and 

direct emissions for fossil fuels. Comparing life cycle CO2-eq values, coal ranged from 660-1050 kg/MWhout and 

hydropower from 2-20 kg/MWhout. Additional studies for coal found ranges up to 1200 kg/MWhout, therefore 

assuming a mid-range impact of 1000 kg/MWhout for the coal, and a value at the lower end of the hydropower range 

of 5 kg/MWhout, shows there is three orders of magnitude difference between the results. Although this is based only 

on GHG emissions, studies of the operation of a UK data center (Whitehead et al. 2015) showed that the next biggest 

impacts in the operation phase were from carcinogens (PAHs), respiratory inorganics (NOx and SOx) and fossil fuels. 



These are in abundance during the operation of fossil fuel technologies, but not renewables. It can therefore be 

concluded that the overall life cycle impact of the fossil fuel technology is likely to be relatively even bigger than that 

of the renewable technology. This therefore supports the pattern of results found above. For more information on the 

science behind the characterization of these results, and Cultural Theory used for weighting the results see the Eco-

indicator Methodology Report (Goedkoop 2001). 

The second thing to note is the bearing this impact from energy mix has on the relationship between water and 

power impact. The less renewables, the lower the impact the water consumption has relatively. It would, therefore be 

easy for these countries to ignore the topic, when in reality solutions should be sought to resolve the cause, which is a 

need for more renewables, either on- or off-grid, whilst also limiting water consumption.  

APPLICATION OF THE RESULTS 

For a given country, the following equations can be used to calculate the environmental impact experienced in 

one year from operating a cooling system, where Pt are Eco-indicator points for the subscript location, Ecooling is the 

energy used by the cooling system in MWh/year, and Wcooling is the water used by the cooling system in m3/year: 

PtUK =169,866Ecooling + 42.52Wcooling   (1) 

PtFrance = 25,222Ecooling + 42.50Wcooling   (2) 

PtSweden = 28.66Ecooling + 42.50Wcooling   (3) 

PtUSA = 204,065Ecooling + 42.57Wcooling   (4) 

CASE STUDIES – INDIRECT AIR-SIDE FREE COOLING 

Values for WUE/PUE from the data centers of a single company were used to apply the equations shown 

above. It is assumed that the facility has 1MW of IT, with an average annualized IT loading of 75%. It is assumed that 

90% of the non-IT energy is used for cooling. It is a UK site, with a WUE of 0.527 and a PUE of 1.167. 

EIT = 0.75 ´1MW ´ 8, 760hours = 6,570MWh / year

EDC = 6,570 ´103 ´ PUE = 6,570 ´103 ´1.167 = 7,667,190kWh / year

WUE
PUE

= 0.527
1.167

=
WDC

EDC
= 0.452

Therefore

WDC = 0.452 ´ 7,667,190 = 3, 462,390 liters = 3, 462 m3

 

 

Assuming 100% of the onsite water use is for cooling, equation 1 is used to determine the total points: 

PTUK =169,866´ 7,667´
90

100
´ 1.167-1( )

æ

è
ç

ö

ø
÷+ 42.52´3, 462 =195, 750,340+147,208 =195,900,000Pt / yr

 

The impact from electricity in the UK is 3 orders of magnitude greater than from the water consumption. 

Assuming the same scenario in Sweden (equation 3), however, finds the greatest impact results from the water 

consumption: 

PTSweden = 28.66´ 7,667´0.9´ 1.167-1( )( )+ 42.50´3,462 = 33,031+147,156 =180,186Pt / yr  

COMPARISON OF DIFFERENT TECHNOLOGIES 

Using the above IT loads and characteristics (1MW IT etc.) PUE values were assumed for different cooling 



options. For options with chillers, values for COP (coefficient of performance) and w (efficiency of water use) have 

been assumed. Values for WUE and WUE/PUE have been calculated as follows and are shown in Table 2: 

WUE =
PUE ´ seconds / hour

specific enthalpy of water ´hw
´ 1+ 1

COP( ) andWUE PUE =
WDC

EDC
 

 

Table 2. PUE, COP, w, WUE and WUE/PUE for Various Cooling Technologies 

Technology PUE 
Chiller 
COP 

Efficiency of Water 

w (assumed) WUE 
WUE/ 
PUE Comments 

Worst case legacy 2.5 3 0.33 15 6 
 

Standard legacy 1.6 6 0.50 5.6 3.5 
 

Water cooled (100%/yr with 
cooling towers, no chillers) 

1.1 
 

0.50 3.3 3 
 

Indirect airside free cooling 
(average energy priority) 

1.177 
  

0.825 0.701 
WUE/PUE = 0.02 - 2  

(site data) 

Indirect airside free cooling 
(average water priority) 

1.187 
  

0.47 0.394 
 

Direct airside free cooling 1.1 
  

0.22 0.2 WUE/PUE = 0 - 1 (assumed) 

 

Table 3 shows the resulting environmental impact for each option in the USA, UK, France and Sweden, and 

Figure 2 shows the results for Sweden and the USA (the two extreme cases).  

 

 

Figure 2. Electricity and Water Points for Different Cooling Technologies in Sweden and the US 
 

For each option, the impact from electricity provides the greatest contribution to environmental impact in the 

UK, USA and France. In Sweden, the greatest impact comes from any water consumption, even in the case of airside 

free cooling where water use is limited to humidification purposes only. The over-riding burden in countries with 

poor access to renewables is therefore from the electricity consumption. The difference in total water impact between 

the two locations is small (USA is greater for each option). This is because the impact from the water treatment is far 

greater than the actual consumption itself (two orders of magnitude greater), and in the developed world, there is little 

difference in the way that water is extracted and transported. The regionalization also has little impact on the results, 

though this might not be the case if countries experiencing extreme water stress.  



 
  

Table 3. Total Environmental Impact for Different Cooling Technologies in the USA, UK, France and Sweden 

Technology Location 
Electricity  

Impact (Pt/MWh) 
Water  

Impact (Pt/m3) PUE WUE  
Electricity  

Pt 
Water  

Pt TOTAL Pt 

Worst Case USA 204065.40 42.57 2.5 15 4,524,895,179 4,195,122 4,529,090,301 

  UK 169866.34 42.52 2.5 15 3,766,573,665 4,189,985 3,770,763,650 

  France 25221.85 42.50 2.5 15 559,262,937 4,188,772 563,451,709 

  Sweden 28.66 42.50 2.5 15 635,564 4,188,496 4,824,060 

Standard Legacy USA 204065.40 42.57 1.6 5.6 1,158,373,166 1,566,179 1,159,939,345 

  UK 169866.34 42.52 1.6 5.6 964,242,858 1,564,261 965,807,119 

  France 25221.85 42.50 1.6 5.6 143,171,312 1,563,808 144,735,120 

  Sweden 28.66 42.50 1.6 5.6 162,704 1,563,705 1,726,410 

Water Cooled USA 204065.40 42.57 1.1 3.3 132,730,259 922,927 133,653,185 

  UK 169866.34 42.52 1.1 3.3 110,486,161 921,797 111,407,958 

  France 25221.85 42.50 1.1 3.3 16,405,046 921,530 17,326,576 

  Sweden 28.66 42.50 1.1 3.3 18,643 921,469 940,112 

Indirect Air-side FC USA 204065.40 42.57 1.177 0.825 251,377,837 230,732 251,608,568 

Energy Priority (Av) UK 169866.34 42.52 1.177 0.825 209,249,740 230,449 209,480,189 

  France 25221.85 42.50 1.177 0.825 31,069,517 230,382 31,299,899 

  Sweden 28.66 42.50 1.177 0.825 35,308 230,367 265,676 

Indirect Air-side FC USA 204065.40 42.57 1.187 0.468 267,836,389 130,888 267,967,277 

Water Priority (Av) UK 169866.34 42.52 1.187 0.468 222,950,024 130,728 223,080,752 

  France 25221.85 42.50 1.187 0.468 33,103,743 130,690 33,234,432 

  Sweden 28.66 42.50 1.187 0.468 37,620 130,681 168,301 

Direct Air-side FC USA 204065.40 42.57 1.1 0.22 132,730,259 61,528 132,791,787 

(Assumed PUE and WUE) UK 169866.34 42.52 1.1 0.22 110,486,161 61,453 110,547,614 

  France 25221.85 42.50 1.1 0.22 16,405,046 61,435 16,466,481 

  Sweden 28.66 42.50 1.1 0.22 18,643 61,431 80,074 



 
  

CONCLUSIONS AND FUTURE WORK 

In countries with high renewables content, water usage should be limited when choosing a cooling solution. In 

countries with a poor renewables mix, the approach is less straightforward. Globally, governments are looking for 

ways to move away from fossil fuels towards more renewables. New build data centers that are optimized only for 

energy rather than water consumption could find themselves in future decades having (relatively) more impact from 

water consumption (than electricity consumption) than if they had optimized their water consumption as well.  

The quality of data also needs to be improved to understand how much the relative impact changes with current 

grid mix data. For example, UK energy trends for the last quarter of 2015 (DECC 2016) showed that fossil fuels 

accounted for 81.7% of energy consumption. Production rather than consumption datasets were used because fossil 

fuels accounted for 74.8% and 71.9% of the mixes respectively. Although there will be seasonal variations in the 

actual data, it is likely that the electricity impact has still been underestimated. 

In the countries assessed, water scarcity had only a small impact on the overall result. In the case of electricity, 

this is because the contribution of water to the overall impact is relatively minimal. In the case of the water 

consumption, the majority of the impact comes from the treatment of the bleed-off water. Because a generic 

wastewater treatment was used, this data also needs to be improved to reflect the contaminants that would be present 

- for example biocides, algaecides and scale/corrosion inhibitors. It should also be noted that in the case of cooling 

towers, no impact from drift droplets was included. Further work also needs to focus on countries with poor water 

availability, such as UAE and Australia, to understand the pattern of this impact in more detail. It should also be 

noted that if the LCA results were interrogated in more depth (beyond the single score results), based on different 

environmental phenomena there is likely to be more differences in location selection than suggested by this study. 

The work in this paper can help clients decide between facility locations and technology types. It should also 

focus the industry to look into ways to reduce the volume of bleed-off and it’s contents by, for example, material 

selection in systems.  It is clear that for data centers to reduce their total environmental impact, effort should be made 

to include (where appropriate) on-site renewables such as suggested by Sharma et al. (2010), as well as their water 

consumption. A cost dimension and embodied impacts from the physical technology should also be added to the 

selection criteria presented here. 

NOMENCLATURE 

 =  Energy used by the cooling technology 

DC  =  Energy used by the data center 

IT  =  Energy used by the IT 

w  =  Efficiency of water use 

 =  Eco-indicator points for the subscripted country 

 =  Energy used by the cooling technology 

WDC =  Water used by the data center 
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