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Abstract: Electro-discharge machining is an extensively used manufacturing process. The process 

requires a tool electrode but the selection of the right material for preparing the tool continues to 

remain an engineering puzzle. This work makes use of a hybrid intelligent algorithm for selecting the 

right electrode out of three tool electrodes such as AlSi10Mg, copper and graphite for efficient electro-

discharge machining of Ti6Al4V. The work began by constructing a Taguchi’s L27 experimental design 

and then collecting the output data such as the material removal rate, tool wear rate, surface roughness, 

surface crack density, white layer thickness and micro-hardness. A simultaneous multi-objective 

optimization was performed to maximise the workpiece material removal rate while minimizing the 

remaining variables. For this purpose, a hybrid grey-TOPSIS based quantum-behaved particle swarm 

optimization was chosen and additional data gathered from scanning electron microscopy and energy 

dispersive spectroscopy techniques revealed new insights into the post-machining material behaviour 

such as the use of graphite electrode makes the machined surface far harder due to the dissociated 

carbon.  

Keywords: additive manufacturing (AM); electro-discharge machining (EDM); tool electrode; grey-

TOPSIS; optimization; quantum behaved particle swarm optimization (QPSO) 

1. Background and motivation 

Electro-discharge machining (EDM) is a commonly used non-traditional machining process in which 

material removal occurs by recurring electrical sparks between two electrodes (tool electrode and work 

electrode) separated by a dielectric fluid. EDM is usually preferred to cut difficult-to-cut (usually 

conductive) materials such as tool steel, nickel based alloys, titanium based alloys and metal matrix 

composites in molds and dies, aerospace, automobile and biomedical sectors 1, 2. In a typical EDM 

operation, the electrode and workpiece are submerged inside a dielectric fluid and the spark created by 

the applied voltage removes the material from the electrode and workpiece surfaces. The process alters 

the surface properties of the workpiece surfaces with formation of material defects such as cavities, 

voids, white layer, micro cracks etc. These defects adversely affect the quality of the machined surface 

finish of the components which eventually may dictate the lifetime, especially the fatigue life of 

machined parts. The problem can partly be solved by proper flushing of debris. However, flushing is 

not always feasible due to part complexity and difficult tool path 1, 3.  
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A more important decision in successful EDM of a component is associated with the right selection of 

the tool electrode material and its fabrication route. To save on the costs, an additive manufacturing 

(AM) method such as selective laser sintering (SLS) can be used to fabricate the tool electrode. By 

using the SLS process, one can produce a complex shaped electrode in a cost-effective and timely 

manner. SLS is a powder based technique in which parts are sintered in layers using a laser beam 4, 5. 

However, not all materials are amenable to SLS which makes it a bit difficult to adopt any material to 

be fabricated by SLS. Titanium alloy (Ti6Al4V), is extensively used in aerospace such as turbine 

blades, airframes, aircraft engine and structural parts; in biomedical applications such as medical 

instruments, orthopedic implants and prosthetic valves; in defence such as missile fuel tank, jet engine 
6, 7. However, Ti6Al4V is a difficult-to-cut material by a single point cutting tool and therefore, EDM 

can be more economical to machine complex shapes in Ti6Al4V.  

In an EDM process, multiple performance measures are required to be simultaneously optimized, for 

instance, maximization of material removal rate (MRR) and concurrent minimization of tool wear rate 

(TWR), average surface roughness (Ra), surface crack density (SCD), white layer thickness (WLT) and 

micro-hardness (MH) of the machined surface. In this work, a hybrid optimization technique like Grey-

TOPSIS based QPSO is used for concurrent optimization of all the performance output measures. This 

area of research especially the preparation of tool electrodes by the SLS process is still infancy stage 

and hence this simultaneous optimization of the performance attributes concerning the tool electrode 

material selection became the primary motivation of this work. The novelty in this investigation lies in 

the selection of the optimization algorithm and the verification of the output by using the scanning 

electron microscope and energy dispersive X-ray spectroscopy to examine the migration mechanism of 

the atomic species.  

2. State of the art 

The literature of past work reveals that machining of titanium alloys using electro-discharge machining 

process 1, 8-14 is quite a popular topic of investigation. However, very few works have been done on the 

EDM of Titanium alloys using tool electrodes fabrication by the SLS process. Among others, Sahu and 

Mahapatra 15 studied the performance of the SLS electrode during EDM of titanium alloy. They 

considered performance measures such as MRR, TWR and Ra and observed a superior finish of the 

components while using the SLS electrode in comparison to the use of copper and graphite electrodes. 

However, the post machining workpiece surface integrity and surface morphology were not adequately 

examined by them. Uhlmann et al. 3 manufactured a WC-Co electrode by selective laser melting (SLM) 

process and compared its performance with copper, graphite and tungsten carbide electrodes during 

EDM of tool steel.  The WC-Co electrode allowed higher material removal (MRR) than only WC, but 

lower MRR than copper and graphite electrodes, although the wear of WC-Co electrode compared to 

the other electrodes was highest. Different composition of electrodes such as ZrB2-CuNi, TiB2-CuNi, 

Mo-CuNi were prepared by the SLS process and used successfully in the EDM process 5, 16-18. Amorim 

et al.19 manufactured pure copper, bronze–nickel, copper-bronze–nickel and steel electrodes by the SLS 

process and studied their performance for EDM of tool-steel workpiece. The performance of these 

electrodes was examined under three machining conditions such as finish, semi-finish and roughing 

operations by considering MRR and tool wear. It was found that the performance of these electrodes 
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was inferior to the solid copper electrodes. Durr et al.20 prepared the bronze-nickel-copper electrode by 

the SLS method and studied their performance to machine the X210Cr12 steel and C45 steel. They 

found that an increase in porosity in electrode increases the electrode wear and that the electrode wear 

for machining X210Cr12 steel was more than C45 steel.  

Meena and Nagahanumaiah21 manufactured the Cu-Ni-Sn-P electrode by direct metal laser sintering 

(DMLS) method and analyzed its performance during the machining of EN-24 steel. They found the 

current was the most significant parameter that influence MRR, TWR and Ra as compared to pulse-on-

time and flushing pressure. Zhao et al.22 manufactured the SLS electrode from steel, phosphate and 

polyester as a binder and its performance was studied during EDM of 45 steel workpieces. The TWR 

was observed to increase with an increase in pores and holes in the electrode. Tang et al.23 

manufactured Cu-W, Cu-W-Ni, Cu-B4C and Cu-B4C-Ni electrodes by laser cladding process and 

studied their performance during the EDM of mild steel workpiece. These electrodes showed a lower 

removal rate and wear rate as compared to commercially available pure copper electrodes. Tay and 

Haider24 manufactured bronze-nickel electrode by the DMLS process and performed electroless copper 

deposition on it to improve surface finish and conductivity. The performance of the DMLS electrode 

was studied by taking hardened tool steel as workpiece material for rough cutting, semi-rough cutting, 

finish cutting. In the case of the DMLS electrode, TWR was high and MRR was low for both roughing 

and semi roughing and was found suitable for applications where minimum MRR is required. 

This brief review of the literature shows contradictory explanations concerning different types of 

traditional electrodes and the electrode manufactured by the SLS method. This research work makes 

use of AlSi10Mg powder for preparing the EDM electrodes owing to its good electrical conductivity 

and good wear resistance during sparking and ease of processing by the SLS process. Here, the 

performance of AlSi10Mg SLS electrode was studied and benchmarked to the conventionally used 

copper and graphite electrodes (prepared by the mechanical turning) to machine Ti6Al4V using the 

EDM process. 

3. Materials and methods 

3.1 Workpiece and tool electrode material 

To manufacture a complex-shaped electrode, the selective laser sintering (SLS) method can be used. In 

this work, AlSi10Mg powder was used to fabricate the electrode by the SLS process. The SLS machine 

used for the manufacturing of the electrode was EOSINT M 280 (EOS, Germany). The electrode 

manufactured is cylindrical with varying diameter having a machining diameter of 25 mm. Similarly, 

copper and graphite electrodes were fabricated by taking a solid cylindrical rod by the conventional 

turning process with a machining diameter of 25 mm. The three electrodes used for the EDM process 

are shown in Fig. 1. The workpiece of Ti6Al4V used had dimensions 60×60×10 mm and commercial 

grade Rustlick EDM-30 oil was used as the dielectric medium.  
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Fig. 1. Tool electrodes (a) AlSi10Mg, (b) Copper and (c) Graphite15 

3.2 Experimental procedure and data collection 

To investigate the performance of the EDM process, a die-sinking EDM (model: ELECTRA EMS-

5535, Electronica, India) was used. Here, straight polarity (where a workpiece as anode and electrode 

as cathode) was used. During machining, the process parameters such as the voltage (V), peak current 

(Ip), duty cycle (τ), pulse duration (Ton) and tool type were varied following a design of experimental 

scheme proposed by Taguchi25 (see Table 1 and Table 2). Here a five-factor-three-levels were used for 

preparing the Taguchi’s L27 design of experiment (DOE) array to perform every EDM experiment for 

10 minutes.  

The MRR and TWR were estimated using the weight loss criteria of the workpiece and electrode 

during machining. The weight of the workpiece and electrodes were measured before and after each 

experimental run by precision balance (with a least count of 0.001g) using Eq. (1) and (2) respectively.  

p

w

W
MRR

T


=


                                                                                                                                    (1) 

e

e

W
TWR

T


=


                          (2) 

where, 
pW is the weight loss from workpiece during machining, eW  is the weight loss from 

electrode during machining, T is the machining time (10 min), w  is the density of workpiece (4.42 

g/cm3) and e  is the density of electrodes (for AlSi10Mg e =2.664 g/cm3, for copper e =8.96 g/cm3 

and for graphite e =2.267 g/cm3).  

A Taylor-Hobson (PNEUNO-Suetronic 3+) was used to take three roughness measurements in the 

transverse direction. The average of these three readings was recorded as the average surface roughness 

(Ra). The SCD and WLT were measured by taking the micro-images of the machined surface using a 

scanning electron microscope (SEM) (model: Jeol JSM-6480LV, Japan). SEM images of the machined 

surfaces were taken at three locations and corresponding surface cracks were measured by PDF-

XChange viewer software. The total surface crack length divided by the micro-image area was 

considered as the SCD and the average of these three was recorded for the optimization purposes. 

Similarly, for WLT, the machined surface was cut into sizes of 10×10×10 mm3 by a wire-EDM and the 
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transverse section of the machined surface was polished and etched with Kroll’s etchant. The 

corresponding SEM images were used to estimate the WLT using the ImageJ software.  

Vicker’s micro-hardness tester (LECO LM248AT, USA) was used to measure the MH on the white 

layer over the machined surface with a testing load of 50gf and micro-indentation dwell time of 10s. 

MH at three positions on the middle position of the white layer was taken and the average of these 

three was considered for the analysis. The final measurement values for the SCD and WLT are shown 

in Fig. 2. The outputs of the experiments are shown in Table 2.  The parallel coordinated graph for all 

the performance measures in normalized form is shown in Fig. 3. In Fig. 3, the minimum and 

maximum values for each category are presented in the X axis and in Y axis the normalized 

performance measures are presented. It showed the conflicting nature of all the performance measures 

in EDM process, that need to optimize to get best parametric setting by considering all the performance 

measures simultaneously. 

Table 1. Factors and levels used in the experimental study 

Parameters Unit Level 1 Level 2 Level 3 

A-Voltage (V) V 20 25 30 

B-Peak current (Ip) A 10 15 20 

C-Duty cycle (τ) % 67 75 83 

D-Pulse duration (Ton) µs 100 200 300 

E- Electrode type - AlSi10Mg SLS (1) Copper (2) Graphite (3) 

 

Table 2. Experimental design and performance measures  

S.N . A B C D E MRR 

(mm3/min) 

TWR 

(mm3/min) 

Ra 

(µm) 

SCD 

(µm/µm2) 

WLT 

(µm) 

MH 

(HV 0.05) 

1 20 10 67 100 1 0.5454 0.6706 6.4 0.0145963 17.0278 509.0 

2 20 10 67 100 2 0.5820 0.6898 6.7 0.0157017 20.2074 581.5 

3 20 10 67 100 3 1.0643 0.4955 8.2 0.0204210 21.7504 616.5 

4 20 15 75 200 1 0.9226 1.5553 7.2 0.0145963 22.2146 616.9 

5 20 15 75 200 2 0.9654 1.0678 7 0.0204913 34.0527 731.5 

6 20 15 75 200 3 1.3029 0.5744 8.3 0.0214737 27.6974 816.5 

7 20 20 83 300 1 1.4221 1.5100 7.8 0.0246667 24.2642 965.7 

8 20 20 83 300 2 1.4516 1.5529 8.3 0.0275790 44.4150 1098.2 

9 20 20 83 300 3 1.6093 0.8402 9.2 0.0309123 45.8311 1124.5 

10 25 10 75 300 1 0.8291 1.6003 7.2 0.0187720 31.0627 671.3 

11 25 10 75 300 2 1.1820 1.3972 7.3 0.0248070 35.6386 790.2 

12 25 10 75 300 3 1.1784 0.5556 8.2 0.0279297 33.1680 886.5 

13 25 15 83 100 1 1.1204 1.7030 7.1 0.0188767 18.6306 765.7 

14 25 15 83 100 2 1.2286 1.6353 7.4 0.0200000 26.4284 828.0 

15 25 15 83 100 3 1.2890 0.5739 9.4 0.0220527 31.3732 869.6 

16 25 20 67 200 1 1.3368 1.5642 7.3 0.0185613 27.4284 899.8 

17 25 20 67 200 2 1.6033 1.5320 8.4 0.0244913 27.7912 1082.2 

18 25 20 67 200 3 1.6753 0.2556 9 0.0290350 40.5845 1253.0 

19 30 10 83 200 1 1.0109 1.6835 7.2 0.0165263 33.2624 856.7 

20 30 10 83 200 2 1.2899 1.4414 7.4 0.0220350 31.8733 951.0 
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21 30 10 83 200 3 1.1223 0.5614 9.5 0.0237193 34.2199 1085.5 

22 30 15 67 300 1 1.1701 1.5359 7.4 0.0207017 28.1340 991.7 

23 30 15 67 300 2 1.3438 1.7646 7.8 0.0237893 36.7299 1106.8 

24 30 15 67 300 3 1.6224 0.3751 9.6 0.0268773 39.2965 1247.4 

25 30 20 75 100 1 1.3436 1.7590 8.1 0.0218420 26.5360 1020.7 

26 30 20 75 100 2 1.6286 1.5441 8.4 0.0245087 34.5741 1264.7 

27 30 20 75 100 3 1.7113 0.7015 9.8 0.0279297 34.3433 1670.2 

 

    
(a) SCD      (b) WLT 

Fig. 2. Measurement of SCD and WLT 

 
Fig. 3. Parallel coordinated graph for the performance measures 
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3.3 Grey-Technique for Order of Preference by Similarity to Ideal Solution (Grey-TOPSIS) 

Grey-TOPSIS is a multi-objective hybrid optimisation approach used in this work for concurrent 

optimization of the various objective functions desired in this work. Deng26 developed a grey relational 

analysis (GRA) technique from the grey system theory. GRA is a multi-objective optimisation 

approach that delivers an efficient solution of multi-objective problems. In this technique, the data is 

processed in the initial step to neutralize all the performance measures of the different units to a range 

of 0 to 1. Then grey relational coefficients are generated from the normalized output data followed by 

the generation of grey relational grade. The substitute having the highest value of grey relational grade 

is chosen as the best substitute2, 27. Similarly, TOPSIS is also used as a multi-response optimisation 

technique for the selection of optimal parameters to maximise the preferred performances and 

simultaneously minimize the un-preferred performances to increase the efficiency. Here, two artificial 

alternative solutions are considered such as the best and worst solutions. It concurrently measures the 

distance of the alternatives from the best (positive ideal) solution and worst (negative ideal) solution. 

The alternatives are selected from the nearest positive ideal solution and from the farthest negative 

ideal solution. Then a relative closeness from the ideal solution is calculated and the alternative having 

the highest relative closeness value is considered as the best alternative28. 

Grey-TOPSIS is a hybrid optimisation method that encompasses the beneficial characteristics of both 

GRA and TOPSIS methods and is widely used in supply chain and assignment tasks29-31. However, the 

Grey-TOPSIS approach has been rarely utilised for optimisation in manufacturing work. The procedure 

of the hybrid Grey-TOPSIS method is described below.         

1. Calculate the normalized value (Yij) of performance output measures. 

For smaller-is-better,

max

ij ij

ij max min

j j

y y
Y

y y

−
=

−
                                        (3)                                                                                    

For higher-is-better, 

min

ij ij

ij max min

j j

y y
Y

y y

−
=

−
                                       (4)                                                                    

where
ijy  = obtained data for ith experiment in jth response. 

max

jy  = highest value of the jth response. 

min

jy  = lowest value of the jth response. 

2. Calculate the grey relational coefficient ( ). 

min max

j j

ij max

ij j

( )

( )

 + 
 =

 + 
                                                                              (5)                                                                            

where 
ij ij1 Y = −   

 =   min

j 1j 2 j mjmin( , ,......... )       =   max

j 1j 2 j mjmax( , ,......... )  

where 
ij = deviation sequence, = distinguishing coefficient,   0,1 , 0.5  =   

3. Form the decision matrix with ‘m’ number of attributes and ‘n’ numbers of alternatives as 

presented in Eqn. (6). 

ij
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     
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L L

L L

M M M O O M

M M M O O M

L L

                              (6)           

4. Form weighted normalized matrix ( ijv ) by multiplying the weighted value with the decision 

matrix. 

ij j ijv w=                                                                                                  (7) 

Where, i 1, 2,......n, j 1, 2.....m= =  and jw 1=  

5. Calculate the ideal experimental run that are the best (S+) and the worst (S-) experimental run 

performance for each experiment. 

'
ij ijS max(v ) j J or min(v ) j J , i 1,2,.....n+   =   =   

,                                              (8)         

'
ij ijS min(v ) j J or max(v ) j J , i 1,2,.....n−   =   =   

                                                  (9) 

Where, J is best attributes set of and J’ is worst attributes set. 

6. The performance of the performance output responses were calculated by the best experimental 

run distance ( ijD+ ) from the S+ values and the worst experimental run distance ( ijD− ) from the S- values 

as follows. 

m
2

ij ij j

i 1

D (v S ) ,+ +

=

= −                                            (10) 

 

m
2

ij ij j

i 1

D (v S )− −

=

= − , where, i 1, 2,.....n=                                 (11) 

7. Calculate closeness coefficient ( iC ) for each set of experiment by using the equation as follows. 

i
i i

i i

D
C ,i 1,2,....n;0 C 1.

D D

−

− +
= =  

+
                                        (12) 

The best optimum parameters were selected based on high value of closeness coefficient that was close 

to the ideal solution. 

3.4 Quantum behaved particle swarm optimisation (QPSO) 

Particle swarm optimisation (PSO) is an evolutionary computational technique influenced from the 

behaviour of bird flocking. In PSO, the population of the prospective solutions is termed a swarm and 

every individual solution inside the swarm is termed a particle32. All particles move around a search 

space with a velocity that is continuously revised by the individual involvement of particle and 

particle’s neighbour’s contribution or whole swarm’s contribution. The swarms of the population are 
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maintained through the process of searching to share the exchange of information between all 

individuals to direct the search in the direction of the best position within the search space. Every 

particle travels to its best previous position and to the best particle in the entire swarm, termed as ‘gbest’, 

based on the global neighbourhood. Every particle travels to its best previous position and to the best 

particle in its restricted neighbourhood depending upon the local variant termed as ‘pbest’ model. All the 

particles try to converge to the base solution quickly even in the local space. All the particles try to 

converge towards the best solution quickly and each particle has a fitness value and the optimisation 

process involves finding the minimum fitness value for every particle32, 33.  

The main weakness of PSO is that it does not assurance global convergence due to the trap of it in the 

local optima although it does converge fast. This is because the velocity vector adopts very small 

values as the iterations continue. Therefore, PSO has a chance to trap in the local minima and lose its 

exploration and exploitation ability. To overcome this drawback of PSO, along with the concept of 

global convergence, an improved PSO termed as quantum behaved particle swarm optimization 

(QPSO) has been developed34, 35.  In QPSO, a particle is defined by a wave function (X, t) in place of 

position ( iX ) and velocity ( iV ) like the PSO. The difference between PSO and QPSO is the dynamic 

behaviour of the swarm i.e. the exact value of position ( iX ) and velocity ( iV ) cannot be determined 

concurrently in QPSO. In QPSO, the probability of the swarm’s looking in position ( iX ) is learned 

from the probability density function 
2

(X, t) . The probability density function is used to estimate the 

probability distribution function of the swarm’s position. The swarm position is updated using the 

equations shown below35-37. 

j
t

j j j

i,( t 1) i,( t 1) i,tBest

1
X P (M X ) ln( ), if k 0.5

u
+ += − −                                                                       (13) 

j
t

j j j

i,( t 1) i,( t 1) i,tBest

1
X P (M X ) ln( ), if k 0.5

u
+ += + −                   (14) 

j j
ti ,t

j

i,(t 1) BestBest
P P (1 ) g+ =  + −                   (15) 

j j
t i ,t

N

Best Best
i 1

1
M P

N =

=                       (16) 

where, iP = local attractor, 

j
i ,tBest

P = best position of swarm ‘i’ at iteration ‘t’ in respect to jth dimension 

j
i ,tBest

g = best position, that is termed as the mean of all the best positions of the population in present 

generation 

k, u,= random numbers distributed equivalently between [0, 1] 

 = tuning parameter to regulate the convergence speed of the swarm. It is called a contraction 

expansion coefficient (CE) and its value is tuned between 0.4 to 1. It is the only parameter in QPSO 

that is tuned for the control of the convergence speed of the algorithm. 

i
max max min

max

t
[( ) ( )]

t
 =  −  −                    (17) 
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where, 
max = initial contraction expansion coefficient value  

min = final contraction expansion coefficient value 

it  = current iteration number 

 
maxt = maximum number of iterations 

The termination condition of the algorithm is the maximum number of iterations. The QPSO algorithm 

in flow chart is presented in Supplementary Fig. 1. 

4 Results and discussions 

4.1 Grey-TOPSIS analysis 

Herein, Grey-TOPSIS was used to convert all the performance outputs into a single output performance 

measure called a closeness coefficient (Ci). Major attention was given to maximizing the MRR and 

simultaneous minimization of TWR, Ra, SCD, WLT and MH. These performance measures have the 

most vital influence on the cost and productivity of the EDM process. Therefore, each performance 

output measures were converted into a normalized value by using Eq. (3) and (4) as shown in 

Supplementary Table 1. Here, the higher-is-better criterion was chosen for MRR and the lower-is-

better criterion was chosen for the Ra, SCD, WLT and MH. In the next step, all the normalized 

performance measures were being converted into grey relational co-efficient using Eq. (5) as presented 

in Supplementary Table 2. Then a discussion matrix (Eq. (6)) was formed by considering all the grey 

relational co-efficient.  Afterward, a normalized value decision matrix was formed by using Eq. 7 as 

presented in Supplementary Table 3.  To form the normalized value decision matrix, an equal 

weightage of 0.1667 was considered. Finally, the best experimental run distance and the worst 

experimental run distance were calculated by following the procedure presented in Eq. (8) to (11) as 

shown in Supplementary Table 4. Similarly, the closeness coefficients were calculated by using Eq. 

(12) which are also presented in Supplementary Table 4. 

4.2 Regression equation generation and optimization by QPSO 

By taking the data of closeness coefficient ( iC ) from Supplementary Table 4 as the output performance 

measure and input as the machining parameters, a non-linear regression analysis was performed by 

using SYSSTAT 13 software and a non-linear regression equation was developed as shown in Eq. 18 

with a coefficient of determination (R2) value of 99.1%. This non-linear equation was used as the 

objective function for the QPSO algorithm to optimise all the performance measures simultaneously to 

get the best parametric setting of machining variables. In evolutionary algorithms, the numeric domain 

is suitable. Therefore, the subjective variable tool type was converted into a continuous variable by 

assigning a value of 1 for AlSi10Mg tool, 2 for the copper tool and 3 for the graphite tool. This 

procedure was adopted for the development of the regression model and application of the QPSO 

algorithm.  
0.251 0.131 0.136 0.267 0.197f (x) 0.648 A B C D E− − − − −=                         (18) 

The QPSO algorithm was run in the MATLAB (version: R2014a) software. The convergence curve 

obtained for the QPSO algorithm is shown in Fig. 4. The algorithm was considered for a population 

size of 20 and a maximum number of iterations of 100. It was found that the QPSO algorithm 

converges fast towards the best solution and at the end of the 100 iterations, it was found that the value 
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of the objective functions i.e. closeness coefficient was 0.6480. The optimal parametric setting and the 

optimum closeness coefficient value are shown in Table 3.  

Table 3. Optimum parametric setting with closeness coefficient 

Parameters V (A) Ip (B) τ (C) Ton (D) Electrode type (E) Fitness value 

Optimum setting 20V 10A 67% 100µs AlSi10Mg (1) 0.6480 

 
Fig. 4. Convergence curve of QPSO algorithm 

4.3 Analysis of variance (ANOVA) 

ANOVA a statistical test that can be used here to identify which machining parameters have 

significantly affected the performance measures. An ANOVA was performed for the confidence 

interval of 95%. The outputs from the ANOVA for the closeness coefficient are shown in 

Supplementary Table 5. A parameter is said to be significant if the probability of significance (P-value) 

is less than 0.05 (P≤0.05). It was found that all the machining parameters had a significant effect on the 

closeness coefficient ( iC ) i.e. combine performance measure. The higher values of coefficient of 

determination (R2) i.e. 95.1% describe the goodness of fit for the models at the selected confidence 

interval.   

4.4 SEM and EDX analysis 

A spark during the EDM generates very high temperatures leading to thermal stresses on the machined 

work surface which can cause micro-cracks. These micro-cracks become responsible for early failure 

of the machined components. Hence, identifying machining conditions to reduce the micro-cracks will 

make the EDM process more reliable. The micrographs of the machined work surface processed by the 

three electrodes inspected by the scanning electron microscope (SEM) are shown in Fig. 5. Fig 5 

highlights the surface crack densities (SCD) on the machined work surfaces. It may be seen that 

AlSi10Mg SLS electrode caused less SCD followed by copper and graphite electrodes. Similarly, the 
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micro-graphs of the transverse section of the machined surface shows the extent of white layer 

thickness (WLT)) on the machined surfaces in Fig. 6.     

 
(a) SCD= 0.0145963 µm/µm2 

 

 
(b) SCD= 0.0157017µm/µm2 
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(c) SCD= 0.0204210 µm/µm2 

Fig. 5. SCD on the machined work surface by three electrodes at parameters setting V=20V, Ip=10A, 

τ=67%, Ton=100µs (a) AlSi10Mg SLS, (b) Copper, (c) Graphite 

 

 

 
(a) WLT= 17.0278 µm 
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(b) WLT= 20.2074 µm 

 
(c) WLT= 21.7504 µm 

Fig. 6. WLT on the machined work surface by three electrodes at parameters setting V=20V, Ip=10A, 

τ=67%, Ton=100µs (a) AlSi10Mg SLS, (b) Copper, (c) Graphite 

After EDM, metal carbides and oxides like TiC, VC, TiO2 etc. were observed to form on the machined 

surfaces and the WLT. These increase the micro-hardness of the WLT. The carbon comes from the 

separation of hydrocarbon type dielectric fluid EDM-30 oil at the time of sparking process and 

combines with the debris to form metal carbides on the machined surface. Similarly, oxygen comes 

from the dielectric fluid present in soluble form or from the environment and forms the metal oxides on 

the machined surfaces. An increase in the percentage of carbon and oxygen was observed on the 

machined work surfaces by the energy dispersive X-ray spectroscopy (EDX) analysis shown in Fig. 7. 

The carbon present on the machined work surface was highest while using the graphite electrode due to 

the availability of free carbon which dissociates from the electrode and transfers to the freshly 

generated machined work surface. This explains the high micro-hardness of the WLT on the machined 
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work surface while using a graphite electrode which follows copper and AlSi10Mg SLS electrodes. 

Similarly, the electrode elements of Al, Si and Mg were found on the machined work surface while 

using an AlSi10Mg SLS electrode (see Fig. 7(a)) and the electrode element of Cu was found on the 

machined work surface while using a copper electrode (see Fig. 7(b)). These electrode elements get 

transferred onto the machined work surface at the time of spark and electrochemically combine with 

the removed debris and get deposited as WLT. Overall, the AlSi10Mg SLS electrode performed better 

in comparison to the two other electrodes as far as the surface integrity and surface topography are 

considered. 

 
(a) AlSi10Mg SLS 

 
(b) Copper 

 
(c) Graphite 

Fig. 7. EDX of the machined work surface by three electrodes at parameters setting V=20V, Ip=10A, 

τ=67%, Ton=100µs 
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5. Conclusions 

This experimental investigation introduces a novel hybrid optimisation technique i.e. grey-TOPSIS 

combined with QPSO applied for the first time to select the best machining parameters and the tool 

electrode material to machine Ti6Al4V which is by far the most important alloy used in a wide range of 

aerospace and biomedical applications. The work compared an AlSi10Mg tool electrode newly 

fabricated by the selective laser sintering method against the traditional copper and graphite electrodes. 

Multiple performance measures were simultaneously optimized, for instance, material removal rate 

(MRR) was maximized while the electrode tool wear rate (TWR), average surface roughness (Ra), 

surface crack density (SCD), white layer thickness (WLT) and micro-hardness (MH) of the machined 

surface were minimized. The following broad conclusions were obtained: 

1. The proposed methodology was found to be a very effective and satisfactory approach for 

achieving optimal parametric settings for the convoluted electro-discharge machining process. The 

proposed method proved to be a useful multi-response optimization technique for a wide range of 

manufacturing industries.   

2. From the scanning electron microscope and energy dispersive spectroscopy, it was discovered that 

among the three tool electrodes material studied, the use of graphite electrode material makes the 

finished machined surface harder by dissociation of the carbon and subsequent formation of higher 

order metallic carbides. In terms of machined surface hardness, this was followed by the use of a 

copper electrode and AlSi10Mg tool electrodes respectively. 

3. ANOVA was performed for all the performance measures and closeness coefficient ( iC ). Electric 

current was found to be the most significant parameter affecting the MRR and the MH. The tool 

electrode material was found to be most influential in affecting the TWR, Ra and SCD. Similarly, 

pulse-on-time was most influential in affecting the WLT and iC .  

4. The optimal combination of the parametric setting was found to be voltage of 20V, current of 10A, 

duty cycle of 67%, pulse-on-time of 100 µs and tool electrode materials of AlSi10Mg. These 

parametric settings allowed for achieving the best combination of MRR,TWR, Ra, SCD, WLT and 

MH while machining Ti6Al4V using the non-conventional EDM process. 
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