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Abstract

In this paper, we deal with the evaluation of Conditional Value-at-Risk in the framework

of portfolio theory by using a modified Gaussian Copula – where the modification is obtained

by introducing the Generalized Correlation Coefficient – and by assuming a Generalized Error

Distribution with properly estimated shape parameter p for the returns of the considered risky

assets. In so doing, we add to the connection between standard Copula theory and financial risk

assessment. A comparison analysis of our findings with those obtainable through a standard

Gaussian Copula-based procedure in a set of real data is also presented.

Keywords: Econophysics, Portfolio theory, Conditional Value-at-Risk, Gaussian Copula, Gen-

eralized Error Distribution, Generalized Correlation Coefficient.
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1 Introduction

One of the most important issues in finance is to correctly measure the risk profile of a portfolio,

which is fundamental to take optimal decisions on the capital allocation (see e.g. Glasserman &

Xu, 2014). Among the methods for assessing financial risk, Gaussian distribution-based procedures

∗Corresponding author.
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are undoubtedly of large popularity (Duffie & Pan, 1997; Chang et al., 2015). However, since asset

returns are usually fat-tailed (see e.g. Viswanathan et al., 2003; Ausloos & Ivanova, 2003; Krause,

2006; Zhou, 2009; Filiasi et al., 2014; Dhesi & Ausloos, 2016; Caginalp & Caginalp, 2018), the use

of Gaussian processes leads to an underestimation of the risk (Rachev et al., 2005; Kim et al., 2012).

In this context, we mention Value-at-risk (VaR), introduced by JP Morgan (see Longerstaey &

Zangari, 1996), which represents a standard measure in financial risk management and exhibits some

relevant positive aspects such as simplicity, computational facility and quick applicability. However,

it has been deeply proved and discussed that VaR has several conceptual problems and presents some

weaknesses (Frey & McNeil, 2002): it is an unstable and numerically difficult to use method when the

losses do not follow a Gaussian distribution (Ferraty & Quintela-Del-Ŕıo, 2016), which is usually the

case in the analysis of financial data (see e.g. Pafka & Kondor, 2001; Caporin, 2008). For this reason,

other approaches to VaR have been employed. Such approaches extend VaR in two directions: first,

they consider non-Gaussian distributions of returns (Giot & Laurent, 2003; Chen et al., 2012; Zhao

et al., 2015); second, they overcome the drawbacks of the constitutive elements of the Value-at-

Risk. Indeed, such a risk measure does not distinguish between slightly higher losses and potentially

fatal losses (Krzemienowski & Szymczyk, 2016), being sometimes too optimistic in its estimates:

VaR measures only percentiles of profit-loss distributions, and thus disregards any loss beyond the

VaR level, or “tail risk” (Berkowitz & O’Brien, 2002). Moreover, VaR is not always sub-additive

(Stoyanov et al., 2013), meaning that it is not always able to identify diversification opportunities.

For all these reasons, literature has proposed the Conditional VaR (CVaR, see Rockafellar & Uryasev,

2001; Acerbi & Tasche, 2002; Huang et al., 2010) as an alternative to VaR, which must be seen as

complementary to its predecessor (Alexander & Baptista, 2004; Yamai & Yoshiba, 2005). Indeed,

the CVaR estimates are affected by whether large and infrequent loss is realized in the obtained

sample, since expected shortfall considers the right tail of the loss distribution. Therefore, when

the underlying loss distribution becomes more fat-tailed, the CVaR estimates become more varied

due to infrequent and large losses, and their estimation error grows larger than VaR’s. Futhermore,

CVaR is a coherent risk measure (Artzner et al., 1999; Inui & Kijima, 2005) and, differently from

VaR, it models the very important empirical evidence stating that diversification reduces risk. The

arguments above explain the popularity of CVaR as risk measure in the context of portfolio theory

(see e.g. Krokhmal et al., 2002; Ciliberti & Mézard, 2007; Zhang & Liu, 2017).

Beyond the distributions of the returns, a portfolio risk assessment procedure also has to consider

the dependence structure among the assets. In this respect, one of the most authoritative proposals

is the employment of copula functions (see e.g. Nelsen, 2006). Under a mathematical perspective,

copulas are special functions with a strong connection with multivariate probability laws. Such

a connection is grounded on the ability of a copula to describe the stochastic dependence among

a set of random variables. Specifically, a copula function can be used to transform the marginal
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distributions of a set to random variables in their joint distribution, hence inferring their stochastic

structure (Sklar’s Theorem, 1959). In the present study, we take copulas for modeling the stochastic

dependence among the returns, in accord to a wide number of literature contribution (see e.g. Chen

et al., 2014; Zhang et al., 2014; Domino & Blachowicz, 2015; Gonzalez-Pedraz et al., 2015; Choe et

al., 2015; Han et al., 2016; Cerqueti et al., 2018; Yu et al., 2018). Thus, the problem can be split into

two separate parts: first, to identify the marginal distributions of the returns of the single assets;

second, to identify the specific copula which is more appropriate for representing the dependence

structure of the returns, according to Sklar (1959).

This paper deals with this important topic. We introduce the family of the Generalized Error

Distribution (G.E.D.) with shape parameter p for capturing the distribution of the returns and,

accordingly, provide an estimation of p through the Lpmin method (Giacalone, 1997; Giacalone

& Richiusa, 2006). For a discussion of the superiority of the Lpmin method for the estimation

procedure, refer to the Appendix. The G.E.D. is particularly suitable for our purpose. Indeed,

it has been used quite extensively in univariate time series with financial applications (Koutmos,

1998; So et al., 2008) and has demonstrated an excellent flexibility in the estimation process, as it

embeds other well-known distributions including the Gaussian one (He & Gong, 2009). Moreover,

we propose a bivariate setting and a copula-based method for modeling the stochastic dependence

among the assets. In particular, we refer to two cases: the Gaussian copula, which is the considered

extended copula and serves here as benchmark (see e.g. Malavergne & Sornette, 2003; Demarta &

McNeil, 2005); a modified Gaussian copula, where the correlation coefficient of the Gaussian case

is replaced by a generalization of it obtained as the correlation parameter of a bivariate G.E.D.

(Taguchi, 1974; Sultan, 2007). In such two contexts we propose the computation of the CVaR for

assessing the risk of a generic portfolio created by the considered assets.

Our approach is empirically validated by the computation of the CVaR of a large set of portfolios

generated by General Motors Company and Ford Motor Company, with daily quotations ranging in

the period 2012-2016. Results confirm the superiority of the G.E.D. with respect to the Gaussian

copula method in terms of assessing the risk in a more prudential way.

The rest of the paper is organized as follows. In Section 2, we introduce the quantitative ingredients

of the study, with the main definitions. The proposed methodological setting for calculating the

Conditional Value-at-Risk of a generic portfolio is presented in Section 3. Section 4 presents an

empirical application, on which the capacity of the new method of providing an estimation of the

risk is shown. In Section 5 some conclusive remarks are given. The Appendix contains a discussion

of the validity of the Lpmin method as a device for the estimation of p.
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2 Main definitions and preliminaries

This section contains a description of the methodological instruments which will be used throughout

the paper.

2.1 The Generalized Error Distribution

The Generalized Error Distribution (G.E.D.) family was introduced by Subbotin (1923) and has

been employed by various authors with different names and parameterizations (e.g. Box & Tiao,

1973; Agrò, 1999; Mineo, 2007; Bottazzi & Secchi, 2011). A parameterization of the G.E.D. density

function for a random variable X is:

f(x;µ, σp, p) =
1

2σpp1/(p)Γ(1 + 1/p)
exp

(
−1

p

∣∣∣x− µ
σp

∣∣∣p) for −∞ < x <∞ (1)

where µ = E(X) is the location parameter, σp = [E|X − µ|p]1/p > 0 is the scale parameter, p > 0

is the shape parameter and Γ is the Euler Gamma function.

The density of a generic G.E.D. distribution is unimodal, symmetric and, for p > 1, bell-shaped. As

particular cases we obtain the Laplace distribution (p = 1), the Normal (p = 2) and the Uniform

(p→∞); for values of 1 < p < 2 we obtain leptokurtic densities which are more fat-tailed than the

Normal and for values of p > 2 we obtain platykurtic densities (see Fig. 1).

Figure 1: Graphical representation of the Generalized Error Distribution density function as the

value of the parameter p varies. The cases of p = 1, 1.5, 2, 4, 50 have been taken into account.

Thus, the G.E.D. represents a generalization of a large set of distributions. Therefore, assuming

a G.E.D. for financial data allows for a better description of them and leads to good estimates of
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the maximum losses to be expected.

When analyzing real data using the G.E.D., a fundamental problem is to obtain a good estimation of

the p parameter when it is unknown. To estimate it, it is possible to use methods based on kurtosis

indexes or on maximum likelihood functions.

In the estimation of p, a relevant role is played by the ratio βk between the moments of order 2k

and the squared moment of order k (Giacalone & Richiusa, 2006). Such a ratio depends on the p

shape parameter, and is also called “Generalized Kurtosis” (Mineo, 1989):

βk =
µ2k

µ2
k

=
Γ (1/p) Γ ((2k + 1)/(p))

[Γ ((k + 1)/(p))]
2 , (2)

where µk is the moment of order k.

If k = 2, then the Generalized Kurtosis is usually denoted as “Pearson kurtosis”.

By considering the square root of the reciprocal of βk in (2) for the case k = 1, we obtain the “Geary

length-of-tails index”, introduced in Geary (1936) and defined as follows:

I =
µ1√
µ2

=
Γ (2/p)√

Γ (1/p) Γ (3/p)
. (3)

The indexes I and β2 show a different behavior according to the variation of p (see e.g. Giacalone,

1997). We present some values of I and β2 as p varies, to give a clear idea about the distribution

we deal with and its versatility (see Table 1). As we see, the G.E.D. allows for a great range of

distributions with different bell forms and different thickness of tails.

Calculating the sample values of I and β2, it is possible to obtain, by inverse interpolation, two

different estimations of p.

Kendall & Stuart (1966) and Gonin & Money (1987) considered the unbiased estimates of the

second and fourth order sample moments with correction factors depending on the sample size n.

The authors denoted such corrected moments as µ̂2 and µ̂4, respectively, and achieved a corrected

estimation of β2 and I as

β̂2 =
µ̂4

µ̂2
2 , Î =

µ̂1√
µ̂2
. (4)

On this ground, it is possible to find out in the literature several proposals to estimate the p

shape parameter (see e.g. Harter, 1977; Money et al., 1982; Sposito, 1982; Mineo, 1989; Agrò, 1995;

Giacalone, 1997; Agrò, 1999; Mineo & Ruggieri, 2005; Mineo, 2007).

2.2 The Generalized Correlation Coefficient and the G.E.D. Copula

A bivariate copula is a function C : [0, 1]2 → [0, 1] whose main interest in the field of probability is

that it associates univariate marginal distributions to their joint ones (Sklar, 1959). Formally, if F

is a bivariate distribution function of marginals F1 and F2, then there exists a bivariate copula C

such that:

F (x1, x2) = C(F1(x1), F2(x2)), (x1, x2) ∈ R2. (5)
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p β2 I p β2 I

0.5 25.20000 .54772 3.0 2.41840 .82732

0.8 8.56514 .66392 3.2 2.35716 .83082

1.0 6.00000 .70711 3.4 2.30827 .83993

1.2 4.74348 .73696 3.6 2.26064 .83651

1.4 4.01786 .75891 3.8 2.22208 .83879

1.6 3.55270 .77503 4.0 2.18844 .84090

1.8 3.23236 .78776 4.2 2.15889 .84273

2.0 3.00000 .79788 4.4 2.13276 .84436

2.2 2.82473 .80609 4.6 2.10952 .84583

2.4 2.68841 .81285 4.8 2.08875 .84715

2.6 2.57977 .81849 5.0 2.07010 .84834

2.8 2.49143 .82326 10.0 1.88416 .86054

Table 1: Pearson kurtosis and Geary length-of-tails values in function of p

If the marginal distribution functions are continuous, then the copula function satisfying (5) is

unique.

Formula (5) highlights the role of copulas in expressing the dependence between n stochastic vari-

ables. For a detailed view of the concept of copula and of its properties, refer to Nelsen (2006),

Jaworski et al. (2010), McNeil et al. (2015).

There are various copula functions in the literature (see McNeil et al., 2015) and others can be in-

troduced, with full respect for the formal properties (Nelsen, 2006), in order to capture the different

dependence structures among stochastic variables. We are here interested in the bivariate Gaussian
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copula, which is defined as:

C(u, v|ρ) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

(1− ρ2)
exp

{
−(r2 − 2ρrs+ s2)

2(1− ρ2)

}
drds, (6)

where Φ−1 is the inverse of Gaussian distribution function, (u, v) uniform independent random

variables generated from (X,Y) random variables, and ρ ∈ [−1, 1] is a parameter representing the

Pearson’s correlation coefficient associated to the bivariate normal.

The G.E.D. copula for a generic random vector (X,Y ) is obtained by transforming the Gaussian

copula. Specifically, the parameter ρ is replaced by the Generalized Correlation Coefficient ρp ∈

[−1, 1], introduced by Taguchi (1974) as the correlation parameter of a bivariate Generalized Error

Distribution, and defined as in Sultan (2007). See the next Section for an explicit estimation of ρp.

3 The methodology

We start from two sets of consecutive observations of the returns of two assets:

X = {x1, . . . , xn}, Y = {y1, . . . , yn}.

We assume that X and Y are empirically distributed according to a G.E.D., and refer hereafter to

X and Y as random variables when needed.

For what concerns the stochastic dependence betweenX and Y , we propose two different frameworks:

in the benchmark case, such a dependence is described by a Gaussian copula; in the other case, it is

described by a G.E.D. copula.

According to (5), we are able to derive the joint distribution function of the random vector (X,Y )

in the two cases of copula. Such a joint distribution is needed for computing the VaR and the CVaR

at a confidence level c for a generic portfolio with return P = αX + βY , where α, β ∈ R such that

α+ β = 1.

The parameter ρp of the G.E.D. copula is estimated as follows:

ρp =
codisp(p)(X,Y )

σp(X)σp(Y )
, (7)

where

|codisp(p)(X,Y )|
p

= |E[(Y −µY )|X−µX |p−1sign(X−µX)]|·|E[(X−µX)|Y −µY |p−1sign(Y −µY )]|,

σp(X) = [E|X − µX |p]1/p, σp(Y ) = [E|Y − µY |p]1/p

and µX and µY are the expected values of X and Y as statistical variables, respectively. By

definition, we have −1 ≤ ρp ≤ 1.

Indeed, the G.E.D. provides a generalization of every p-norm statistical index, valid for each value
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of p. In particular, the codisp index used above, for instance, is a generalization of covariance, since

codisp(p)(X,Y ) is the covariance between X and Y when p = 2.

The parameters µ, p and σp are estimated using the Lpmin method (Giacalone, 1997; Giacalone

& Richiusa, 2006), based on the definitions of I and β2 in (2) and (3). For a description of the

estimation procedure and a comparison with other approaches employed in the literature, see the

Appendix.

The fundamental steps in the algorithm for the computation of the CVaR of a portfolio (α, β), for

both cases of Gaussian and G.E.D. copulas, are:

1. estimation of the parameters µ, p, σp in (1) for the two series of returns X and Y . In accord

to the notation used above, we will denote the parameters as µX , pX , σp,X and µY , pY , σp,Y ;

2. estimation of the ρp parameter of the G.E.D. copula by using formula (7), with p = αpX +βpY ;

3.1 generation of couples (x, y), which are the realization of the double stochastic variable (X,Y )

having G.E.D. marginals identified by the parameters found in item 1. and stochastic depen-

dence described by the G.E.D. copula with ρp of item 2.;

3.2 generation of couples (x, y), which are the realization of the double stochastic variable (X,Y )

having G.E.D. marginals of item 1. and stochastic dependence described by the Gaussian

copula;

4. construction of the realizations of the returns of portfolio P = αX + βY and of its empirical

distribution, in both of cases of items 3.1 and 3.2;

5. computation of the Value-at-Risk of P at a confidence level (1− c), in both of cases of items

3.1 and 3.2. As we will see in the empirical experiments, c will be set to 5%, according to the

standard applications of CVaR;

6. computation of the Conditional Value-at-Risk of P at a confidence level (1 − c)%, in both of

cases of items 3.1 and 3.2.

As we will see in the next Section, the algorithm above is repeated for all the considered portfolios,

given by α = 0.01 : 0.01 : 0.99 and β = 1− α.

4 Application and results

In order to evaluate and compare the performances of the CVaRs obtained for the two copulas, we

consider two time series of equities, traded on the New York Stock Exchange1:

1All the necessary calculations have been implemented and processed on the statistical environment R.
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1. General Motors Company, first Vehicle Manufacturing Group by volume in the United States

of America.

2. Ford Motor Company, second Vehicle Manufacturing Group by volume in the United States

of America.

The data used refer to the daily quotations for all the trading days in the years 2012-2016, for a

total of 1258 data (data source: Investing.com).

Each time series of daily prices has been transformed into a series of daily logarithmic returns.

The level of confidence for the computation of the CVaR has been set at 1− c = 95%. We denote by

X and Y the obtained samples of returns for General Motors Company and Ford Motor Company,

respectively.

The estimates of the p shape parameters for the two series are p̂X = 1.283 for General Motors and

p̂Y = 1.243 for Ford. Hence, the distributions of the returns are leptokurtic and more fat-tailed than

the Gaussian one. Figures 2 and 3 show the returns of the two single assets, with the adaptation of

a Gaussian distribution and the estimated Generalized Error Distribution.

We then generated 99 portfolios (α, β), with α = 0.01 : 0.01 : 0.99 and β = 1 − α, with return

P = αX + βY .

Figure 2: Case of General Motors Company dataset. Histogram of the returns with juxtaposition

of G.E.D. density function, whose calibrated parameter is p̂ = 1.283. The G.E.D. density function

with p = 2 is also inserted, for comparison purposes.

The CVaR has been computed in both of cases of Gaussian and G.E.D. copulas. First, CVaR

has been calculated for the two assets, revealing that in the Gaussian case it is -0.0340 for General
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Figure 3: Case of Ford Motor Company dataset. Histogram of the returns with juxtaposition of

G.E.D. density function, whose calibrated parameter is p̂ = 1.243. The G.E.D. density function with

p = 2 is also inserted, for comparison purposes.

Motors and -0.0309 for Ford, while in the G.E.D. case it is -0.0330 for General Motors and -0.0420

for Ford.

While there is a small difference in the two General Motors CVaRs, Ford data reveal a significantly

bigger CVaR when analyzed through the G.E.D. method.

Then, we calculated the CVaR for the 99 portfolios in both of cases of Gaussian and G.E.D. copulas

(see Figure 5). For a view of the values of the portfolios’ p parameters, see Figure 4.

From Figure 5, we see that the CVaR is smaller in the case of Gaussian copula than in the one

of G.E.D. copula in 86 cases out of 99. This gives that G.E.D. is broadly more prudential than

Gaussian in estimating risk, with the exception of the corner cases of α’s close to one. This outcome

suggests that a risk-averse individual should generally prefer a G.E.D. copula rather than a Gaussian

one when considering the stochastic dependence among her/his portfolio assets.

5 Conclusions

The present paper is part of market risk calculation methods, whose purpose is to support risk

managers’ decision-making processes. Among the different methods proposed in the literature for

calculating Value-at-Risk, we took into account the well-known RiskMetrics. After examining the

most useful methods that consider the CVaR approach, we proposed the G.E.D. method and eval-
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Figure 4: Scatter plot of the values of the p shape parameter for the 99 considered portfolios.

uated its performance compared to the RiskMetrics one.

We introduced the new G.E.D. method and its properties. For the first time, the G.E.D. copula was

proposed as a generalization of the Gaussian copula, which is just a special case of the first one, for

the p = 2 case. Moreover, we introduced the Generalized Correlation Coefficient of norm p that,

for the p = 2 case, equals the classic Bravais-Pearson correlation coefficient. We then presented an

algorithm, tested on simulated returns, with the aim of verifying the performance of the new method

over the classical ones. The results obtained confirm the higher performance of the G.E.D. method,

while the assumption of normality of the returns distribution determines confidence intervals with

the lowest predictive power. The assumption of normality, subject to verification, was rejected as

the returns of all the examined stocks have fat-tailed distribution and kurtosis characteristics which

are neglected by RiskMetrics. It does seem that CVaR computed in the G.E.D. case can consti-

tute a valid generalization of CVaR computed under the RiskMetrics approach, mainly when the

distributions are not fat-tailed.
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Appendix

The Lpmin method (Giacalone, 1997; Giacalone & Richiusa, 2006) is based on a two-steps alternating

procedure: a) minimization procedure to estimate the parameters; b) joint inverse function of I in

(3) and β2 in (2) to estimate p.

The method estimates the p parameter considering the minimum between two functions, respectively

given by the difference between empirical and theoretical I, and empirical and theoretical β2. As the

two kurtosis indexes have different orders of magnitude and different variance, the two differences

are divided by the maximum theoretical value obtainable: by considering p as ranging from 0.5 to

10, then 25.2 is the maximum value of β2, and 0.86054 is the maximum value of I (see Table 1).

In this way, it is possible to obtain a joint estimator made up of two squared functions. The two

kurtosis indexes are chosen as it was observed that norm-1 kurtosis (I index) is a valid choice for

the estimation of p in presence of outliers, while norm-2 kurtosis (β2 index) performs better when

the sample values gather around the center of the distribution.

When the value of p is known, the estimates of µ and σp are equal for both Lp-norm and Maximum

Likelihood estimators (Giacalone, 1997). Specifically, the function to be minimized to estimate p is:

p 7→

[
I − Î

0.86054

]2

+

[
β2 − β̂2

25.2

]2

, (8)

where I, Î, β2, β̂2 are given by (3), (2) and (4).

Tables 2-4 show a comparison of mean, variance, and mean squared error of three different empirical

distributions of p (n=50, n=100, and n=200), obtained by means of three estimation methods: the

Lpgm method by Gonin and Money (1987), the Agrò’s (1995) Lp+ method, and the Lpmin method

proposed in this paper.

For p = 1.2 and p = 1.5 (leptokurtic distributions), Lpmin appears to be the most efficient

method, taking both variance and mean squared error into account. In general, the method presents

a trend which is similar to that of Lp+ with regard to the accuracy of estimates, but with a gain

in efficiency. For p = 2, the Lpgm method seems preferable, since, for any theoretical value of p,

it provides estimates that gravitate around the value p = 2. For p = 2.5, p = 3.0, and p = 3.5

(platykurtic distributions), the Lpgm method presents lower values of variance and mean squared

error, compared to Lp+ and Lpmin. Nonetheless, once the means in Tables 2-4 are compared, the

Lpgm method presents a growing level of distortion as n increases, suggesting that it is not superior to

the other considered methods. Indeed, the most interesting aspect to be highlighted is the different

asymptotic behavior of the three methods: asymptotic accuracy is a very desirable property of
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p 1.2 1.5 2.0 2.5 3.0 3.5

M(pgm) 1.5349 1.8927 2.2161 2.5012 2.6938 2.8734

V (pgm) 0.1097 0.1546 0.2236 0.2479 0.2566 0.2637

MSE(pgm) 0.2219 0.3088 0.2703 0.2479 0.3504 0.6563

M(p+) 1.6957 1.9985 2.5561 3.0392 3.5245 4.0822

V (p+) 0.3515 0.4846 1.8152 2.1054 2.4296 3.1064

MSE(p+) 0.5972 0.7331 2.1244 2.3961 2.7047 3.4453

M(pmin) 1.4374 1.7485 2.2656 2.7222 3.2114 3.4099

V (pmin) 0.1221 0.3577 0.6451 1.0566 1.4437 1.6687

MSE(pmin) 0.1784 0.4135 0.7156 1.1060 1.4884 1.6768

Table 2: Mean (M), Variance (V), and Mean Squared Error (MSE) of p, estimated through different

methods, with sample size n = 50.

estimators, and no other merit assessment may compensate for the absence of such property. While

Lp+ and Lpmin seem to guarantee asymptotically accurate estimates, Lpgm shows an increase in

the estimates’ distortion when moving on from smaller to bigger sample sizes. From an asymptotic

point of view, we can say that the Lpmin method seems more valid in the p < 2 case, while the Lp+

method seems preferable in the p > 2 case.
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p 1.2 1.5 2.0 2.5 3.0 3.5

M(pgm) 1.4924 1.7850 2.1361 2.3298 2.6245 2.8734

V (pgm) 0.0762 0.0841 0.1052 0.1054 0.1296 0.2637

MSE(pgm) 0.1617 0.1653 0.1237 0.1177 0.2706 0.6563

M(p+) 1.4023 1.8087 2.2302 2.6892 3.1675 3.6786

V (p+) 0.0354 0.0691 0.3419 0.5591 0.9547 1.1492

MSE(p+) 0.0763 0.1613 0.3949 0.5948 0.9827 1.1811

M(pmin) 1.3451 1.6206 2.1228 2.5760 3.1464 3.5136

V (pmin) 0.0515 0.1188 0.2535 0.4365 0.8296 1.0814

MSE(pmin) 0.0725 0.1333 0.2688 0.4423 0.8510 1.0815

Table 3: Mean (M), Variance (V), and Mean Squared Error (MSE) of p, estimated through different

methods, with sample size n=100
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p 1.2 1.5 2.0 2.5 3.0 3.5

M(pgm) 1.5307 1.7143 2.0596 2.3458 2.5733 2.7622

V (pgm) 0.0207 0.0446 0.0559 0.0589 0.0514 0.0585

MSE(pgm) 0.1301 0.0905 0.0594 0.0827 0.2335 0.6028

M(p+) 1.4157 1.7386 2.0861 2.5182 2.9188 3.3094

V (p+) 0.0495 0.0221 0.0624 0.1608 0.2747 0.3564

MSE(p+) 0.0960 0.0790 0.0698 0.1611 0.2813 0.3927

M(pmin) 1.2784 1.5553 2.0641 2.5311 3.0423 3.5289

V (pmin) 0.0348 0.0476 0.0975 0.2741 0.4996 0.6135

MSE(pmin) 0.0411 0.0507 0.1016 0.2751 0.5014 0.6143

Table 4: Mean (M), Variance (V), and Mean Squared Error (MSE) of p, estimated through different

methods, with sample size n=200

20


