
feature bayesian belief networks

MAY 2017  |   The  Chemical Engineer   |   page 28

Quantified Risk and 
Uncertainty Analysis

FAYAZ AHMED
SAFETY ASSESSOR,  SELLAFIELD LTD 

THE legal requirement in the UK for the duty holder of 
a chemical process plant to demonstrate that risk is 
as low as reasonably practicable (ALARP) means that  

quantified risk assessments (QRAs) must be accurate and 
robust and that identified risks are adequately mitigated. The 
overall risk assessment process normally applied to chemical 
plants is illustrated in Figure 1. Bayesian belief networks 
(BBN)1,2 is an emerging technique which can be used to deter-
mine the likelihood of an event in support of the QRA process. 
It is a statistical method involving estimating the probability  
distribution for a given hypothesis. The most interesting features 
which distinguish this QRA technique from all the others are:

•	 it can analyse complex systems of any given number of 
variables and their dependability within a single analysis;

•	 it can analyse parameters over a range of probability 
values for any given set of conditions, providing a better 
understanding in terms of sensitivity analysis; 

•	 it engages expert judgement and learning from previous 
events to update the probability distribution, thus 
improving QRA accuracy; and 

•	 it is not just restricted to fault analysis and can be used 
to support plant operational decision making using a 
quantified approach. 

The successful search for the Air France Flight 447 (2009) 
wreckage using Bayesian inference3 is perhaps one of the 
best examples to illustrate the power and accuracy of BBN.  
Principally, BBNs were used to combine evidence gathered from 
the previous failed searches for the flight and expert judgement, 
to update the probability distribution. This led to precisely 
locating the wreckage in the Atlantic.   

In this article I will illustrate the principles behind 
the Bayesian technique and how it actually provides the 
benefits listed above. Through a plant case study, I will also  
demonstrate how BBNs can be used to undertake other forms of 
uncertainty analysis such as plant operability issues.  

Bayesian Belief Networks – The Concept
Bayesian inference essentially uses a statistical hypothe-
sis commonly referred to as the Bayes Theorem, which is  
expressed mathematically as follows. 

P (X|Y) = P (Y|X) P (X) 
         P (Y)

where:

•	 P(X) and P(Y) are the probabilities of observing events X 

Bayesian belief networks provide a powerful means for analysing  
uncertainty in terms of accident risk, and aid key decision making

Figure 1: Quantified Risk Assessment Process (QRA)
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and Y which are independent of one another;
•	 P(X) is referred to as the prior probability, ie before any 

information is available about the event; 
•	 P(X|Y), is a conditional probability which represents the 

likelihood of observing event X given that Y is true; and
•	 P(Y|X) represents the probability that event Y occurs, 

given that X is true.

We can apply the above equation to a typical hydrogen safety 
issue concerning the likelihood of a hydrogen explosion in a 
sealed process pipe. Suppose the probability of an explosion 
occurring in the pipe is P(X) and the probability that hydrogen 
is present in a pipe is P(Y). In this case Bayes Theorem 
can be used to update the likelihood of an explosion event  
occurring in the light of new evidence, as illustrated by the 
following example. 

Consider a plant consisting of 1,000 sealed pipes in which 
one explosion incident has previously been observed. Then the 
prior probability P(X) = 1/1,000, or 0.1%. Now let’s assume that 
upon a sampling of the pipes, hydrogen was detected in 5% 
of the cases, so P(Y) = 0.05. If we also assume that the prob-
ability that hydrogen would have been detected given that an  
explosion event occurred, P(Y|X) = 1, then applying Bayes 
Theorem tells us that if hydrogen is detected in a given 
pipe, the probability of an explosion rises from 0.1% to 2%  
(ie P(X |Y) = (1 x 0.001)/0.05 = 2%). 

The hydrogen explosion hypothesis above applies Bayes 
Theorem to a relatively simple analysis with only two 
events. However, for a large number of events and interac-
tions, the Bayesian algorithm for the hypothesis would be 

almost impossible to compute manually. Hence commercial 
software applications such as Netica4 have been developed, 
based on Bayes Theorem. The software enables modelling of a  
hypothesis of any given number of variables, in the form of a 
graph network, commonly referred to as the Bayesian belief 
network (BBN). 

So how do Bayesian Belief Networks actually work?
The construction of Bayesian networks consists of the  
following key steps:

1.	 Identifying variables for the problem in question and 
causal relations between the variables in the form of 
a directed acyclic graph. A directed acyclic graph is a 
group of random variables or nodes. If there is a causal 
dependability between two nodes, the corresponding 
two nodes are connected by an arc or a link. In  
Figure 2 the arcs from nodes A and B to a node C 
indicates random variables A and B (often termed as 
parent nodes) cause random variable C (child node).

2.	 Identifying a conditional probability distribution for 
each node. Here, conditional probability tables (CPTs) 
are constructed for each node. A CPT for a child node 
identifies probabilities of the node accepting each of 
its values which are conditional on values of the parent 
node. The nodes can be either ‘discrete’ and expressed 
as end states such as ‘yes’ or ‘no’ or they can be 
‘continuous’ in the form of a range or a distribution. 

3.	 Verification of CPT data through either discussions with 
experts or experimental evidence. 

Suppose the risk analyst has predicted that the likelihood 
of a detonation or a deflagration in a pipe (child node) is  
influenced by the parent nodes: pipe diameter, flamma-
bility of the hydrogen in air gas mixture, and if an ignition 
source is present in the pipe. This hypothesis is illustrated in  
Figure 3 using Netica software4 which models all of the parent 

Figure 2: Bayesian Network Showing Relationship between Parent 
and Child Nodes
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Figure 3: Simple Bayesian Network for Hydrogen Detonation in a Sealed Pipe

HYDROGEN EXPLOSION

DETONATION	             0.92

DEFLAGRATION	             2.52

NONE		              96.6

HYDROGEN FLAMMABILITY

HIGH		              68.3

LOW		              10.7

LESS THAN LFL	             20.9

IGNITION SOURCE PRESENT INSIDE PIPE?

YES		              5.00

NO		              95.0

PIPE DIAMETER

APPROX 15 MM OR LESS             20.0

ABOVE 15 MM	             80.0
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nodes as discrete nodes with varying probabilities for each 
state. For illustration purposes, Figure 3 calculates that even 
with a high probability (68.3% chance) of high hydrogen 
flammability, but only a 5% chance that an ignition source is 
present, there is still only a 0.9% probability that a detonation 
will occur.  

Case Study – Applying BBNs to  
Process Plant Operability Issues 

The following case study will demonstrate how the 
technique can be applied to resolve a plant operabil-
ity issue and aid operational decision making. It looks at 
the uncertainty associated with mixing process sludge  
(magnesium hydroxide) and the likelihood of sludge of  
acceptable product quality being easily retrieved from the 
mixing vessel. 

The Hypothesis
Chemical plant A provides the process for treatment and 
encapsulation of magnesium hydroxide sludge retrieved from 
underwater storage of metallic magnesium in plant B. 

The waste encapsulation process in plant A primarily  
involves transferring the sludge from plant B donor plants via 
a skip to a mixing vessel in plant A and mixing the sludge 
with cement grout. Subsequently the grouted contents of the 
mixing vessel are tipped into a waste encapsulation drum for 
curing. A key plant operability requirement is that the grouted 
product within the mixing vessel should be sufficiently 
mobile to enable it to be transferred or tipped into the waste  
encapsulation drum.

Identifying BBN Variables and their Dependabil ity
This particular analysis assumed the following variables 
would affect sludge mobility:

•	 Water/solids ratio, which is a function of free water, 
sludge internal water content quantity of dry cement 
and organics grout plus the sludge dry solids content.

•	 The dry sludge mass – this is affected by the amount of 
total material present in the skip and quantity of water 
associated with the sludge. 

•	 Fluidity, which is dependent on the dry sludge and dry 
powder grout (DPG) mass, the water/solids ratio and 
sludge stickiness.

•	 Product quality, ie mix too hard, too runny or 
acceptable, which is a function of the parent node 
fluidity and mixing parameters including mixing time 
and speed.

The BBN Results
For the above variables and their dependability, a Bayesian 
belief network was constructed using Netica, as shown in  
Figure 4. Three of the parent nodes in the network are 

observational, requiring input of the CPT data by the user. 
These are  skip fill volume, active water mass fraction, and dry 
powder grout mass. The conditional probabilities for all the 
remaining nodes were calculated by the network using equa-
tions based on the relationships outlined in the previous bullet 
points. The network shows that at the selected values for the 
three input parent nodes there is a 78% chance that the sludge 
will come out from the mixing vessel. 

the main challenges revealed during 
construction of the network were that the 

analysis is  dependent on accurate prediction  
of key variables and their dependability as 

 well as expert judgement of the CPT data 

The maximum and minimum ranges for the input parent  
node values used in Figure 4 are hypothetical values to illus-
trate the sensitivity associated with the key variables. As 
for any modelling work, the BBN output required validation. 
To test the validity, the values for the input parent nodes in  
Figure 4 were changed to replicate previous experimentally 
trialled values. With the modified values for the input parent 
nodes, the updated water/solids calculated ratio by the BBN 
compared well with the actual trialled water/solids ratio. 

Learning from the BBN Case Study
The comparison of the BBN output with the experimental data 
clearly showed that the BBN model is reasonably accurate, 
which can be used to analyse real plant conditions. Effec-
tively, this would suggest that the network could be used by 
plant operators to determine the effect of change in plant  
parameters on the mixing vessel performance and mix 
quality, without the need for additional trials, which can be 
costly and time consuming. That said, the main challenges 
revealed during construction of the network were that the 
analysis is dependent on accurate prediction of key varia-
bles and their dependability as well as expert judgement of 
the CPT data. Using expert judgement may be acceptable for 
plant operability type uncertainties. However when the BBN 
analysis is being used to support a key safety case, in particu-
lar when the perceived risk is considered to be high – eg due to 
hydrogen explosions – then for ALARP purposes the CPT data 
would require a high level of confidence, for example through  
experimental evidence. 

is  the BBN technique tenable?
One may argue that there are other QRA techniques such as 
fault tree analysis (FTA)5, so why should we choose to use 
Bayesian networks? The main benefit of BBNs is that, unlike 
FTA, they enable parameters of uncertainty to be modelled 
over a range or a distribution, thus providing a better under-
standing in terms of sensitivity of key variables. Additionally, 
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Figure 4: Bayesian Belief Network Analysis of Uncertainty Associated with Mixing Magnesium Hydroxide Sludge

INACTIVE WATER MASS (KG)

0–400	 0	  
400–800	 31.4	
800–1,200	 23.8
1200–1,600	 24.4
1600–2,000	 20.4

ACTIVE WATER VOLUME FRACTION

0.5–0.6	 7.13	  
0.6–0.7	 19.4	
0.7–0.8	 31.0
0.8–0.9	 32.7
0.9–1	 9.71

0.768 ± 0.11

DENSITY OF SLUDGE (KG/M3)

1,000–1,140	 12.0	  
1,140–1,280	 32.6	
1,280–1,420	 31.0
1,420–1,560	 18.3
1,560–1,700	 6.14

1,310 ± 160

DRY SLUDGE TO DPG MASS RATIO

0–0.9	 94.2	  
>=0.9	 5.76	

WATER/SOLIDS RATIO

0–0.6	 5.87	  
0.6–1.3	 46.5 
>= 1.3	 47.7

1.25 ± 0.46

FLUIDITY (INPUT)

LOW	 14.1	  
MEDIUM	 23.6 
HIGH	 62.3

MIXING TIME

SHORT	 10.0	  
MEDIUM	 50.0 
LONG	 40.0

MIXING SPEED

SLOW	 25.0	  
MEDIUM	 5.0 
FAST	 70.0

MIX QUALITY

POOR	 37.6	  
GOOD	 62.4 

SLUDGE STICKINESS

LOW	 35.0	  
HIGH	 65.0 

WILL PRODUCT COME OUT?

NO	 21.8	  
YES	 78.2 

SPLASHING LEVEL

LOW	 30.0	  
HIGH	 70.0 

SKIP FILL VOLUME (%)

0–10	 30.0	  
10–40	 10.0	
40–60	 20.0
60–80	 10.0
80–100	 30.0

48 ± 35

DRY SLUDGE MASS (KG)

0–300	 53.6	  
300–600	 27.6	
600–600	 12.8
900–1,200	 5.12
1,200–1,500	 0.86

366 ± 290

PRODUCT QUALITY

HARD	 21.8	  
GOOD	 15.1 
RUNNY	 63.2

DRY POWDER GROUT MASS (KG)

500–600	 10.0	  
600–900	 30.0	
900–1,000	 10.0
1,000–1,100	 30.0
1,100–1,200	 20.0

920 ± 200

ACTIVE WATER MASS FRACTION % (w/w)

30–45 	 8.20	  
45–50	 18.9	
50–60	 22.9
60–70	 22.9
70–80	 18.9 
80–90	 8.2

60.7 ± 14
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as explained earlier, in the search for Air France Flight 447, 
this technique can update the probability of known variables 
through evidence, and improves accuracy of the analysis. 

the most unique feature is  that BBNs are  
not just restricted to fault analysis. . . 

they are already being used in the outside  
world to aid key decision making

Interestingly, the most unique feature is that BBNs are not 
just restricted to fault analysis. As illustrated in the case 
study, it can use Bayes Theorem to quantify the likelihood 

of an uncertainty to aid key operational decision making. 
Most often the process industry is also required to carry out 
optioneering studies in order to arrive at the best practicable 
design or environmental option, and usually methods such 
as value engineering (VE) studies are used. VE studies use a 
qualitative approach, whereas the Bayesian technique uses a 
more structured and quantified method for deriving the best 
option. 

BBNs are already being used in the outside world to aid key 
decision making. For example the medical profession uses 
this technique for patient diagnosis and prognosis. If impor-
tant decisions are being made which would affect human life, 
then surely there is enough confidence that the technique can 
be used to for QRA in the process industry. 
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Layer of Protection Analysis (LOPA)

Find out more: www.icheme.org/lopa

Learn more about this process risk assessment 
technique, including its methodology and the 
detailed stages of its application. 
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