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Abstract
This paper treats a well-established public evaluation problem, which is the analysis of the
funded research projects. We specifically deal with the collection of the research actions
funded by the European Union over the 7th Framework Programme for Research and Tech-
nological Development and Horizon 2020. The reference period is 2007–2020. The study is
developed through three methodological steps. First, we consider the networked scientific
institutions by stating a link between two organizations when they are partners in the same
funded project. In doing so, we build yearly complex networks. We compute four nodal cen-
trality measures with relevant, informative content for each of them. Second, we implement a
rank-size procedure on each network and each centrality measure by testing four meaningful
classes of parametric curves to fit the ranked data. At the end of such a step, we derive the best
fit curve and the calibrated parameters. Third, we perform a clustering procedure based on
the best-fit curves of the ranked data for identifying regularities and deviations among years
of research and scientific institutions. The joint employment of the three methodological
approaches allows a clear view of the research activity in Europe in recent years.
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1 Introduction

The funded joint projects can well describe the scientific interconnections among Research
Institutions and Universities. Thus, one can observe an intuitive complex network structure
of the research activity (Amoroso et al., 2018; Barber et al., 2006; Heller-Schuh et al., 2011;
Lee et al., 2012; Schütz & Strohmaier, 2020).

In this context, the research actions funded by the European Union represent a relevant,
high-quality instance for a clear view of such scientific interrelations and their evolution over
time (Bastidon & Parent, 2022; Cerqueti et al., 2022; Cinelli et al., 2021).

One of the most relevant factors towards success in the development and implementation
of projects and innovative initiatives is the presence of an innovative environment, charac-
terized by a network of public and private actors and analyzed under different perspectives
(Bogers et al., 2017) ; in particular, networking between research centers, industries and
public institutions are often referred as the Triple Helix model (Etzkowitz & Leydesdorff,
1995), which finds application also for the European research funding schemes (Etzkowitz,
2002). Networks of public-private partnerships were analysed under different point of view,
with an evaluation of their impact on rural areas (Esparcia, 2014), consortium characteristics
(Wanzenböck et al., 2020), engagement of actors (Huggins et al., 2020), effectiveness (de
Arroyabe et al., 2021) or on the scientific literature (Bergé et al., 2017).

This paper enters this theme. We build time-dependent networks associated with the
European research projects generated by the data available at the official portal for European
data regarding the 7th Framework Programme for Research and Technological Development
(FP7) and the Horizon 2020 (H2020).

Each network corresponds to one year of research projects. The nodes are the participants
in European projects, namely higher education institutions (HES), research organizations
(REC), public bodies (PUB), private sector (PRC) or other participants (OTH). An edge
connects them if they participated in the same project. The reference period is from 2007 to
2013 for FP7 and from 2014 to 2020 for H2020.

The final scope of the paper is to cluster years of networked research projects on the basis
of two main criteria. On one side, we adopt some meaningful centrality measures of the
networks, each of which has relevant informative content on the considered scientific inter-
connections. On the other side, we provide a rank-size analysis of such centrality measures
to create a unified system from the granular data of the individual organizations. In doing
so, we give a comparison among years of research/networks based on how research organi-
zations form an overall system as interconnected entities, according to their nodal centrality
measures. Specifically, we exploit the functional properties of the best-fit curves, that depend
on the values of the calibrated parameters. As we will see below, such properties lead to an
illustration of the way the nodes are related with the others in terms of their centrality mea-
sures. The clustering exercise illustrates similarities and discrepancies among the considered
years of research on the ground of the involved networked research institutions. Therefore,
such a statistical procedure gives a clear idea on the topological structure of the networks and,
consequently, on the role of the institutions within the collections of research projects starting
in a given year. More in detail and as we will see below, the clustering procedure allows us
to detect similar hubs over the years–hence, lumping together years when institutions had
analogous scientific connections with the others–or years with a similar set of institutions
playing a leading role in connecting the others.

As intuition suggests, the reference methodological literature comprises three areas: com-
plex network theory, rank-size analysis and cluster analysis.
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Complex networks theory is an interdisciplinary field of studies aiming to understand
the structure, development and dynamics of networks through different methods and tools
attributed to several disciplines such asmathematics, statistics, physics, and computer science
(Newman, 2018). In this respect, it can be considered as an abstraction of observable reality
able to explain the performance of real systems since it correlates form with functions and
structure with behaviours (Barabási, 2016; Lewis, 2009). Complex networks tools can be
significant in revealing complex systems’ underlying structure and organization, which can
be evaluated with quantitative measures. This explains the popularity of complex networks
for modelling purposes in contexts like social network (Borgatti & Everett, 2006; Scott &
Carrington, 2011), but also significantly in finance (Bastidon & Parent, 2022; Boginski et
al., 2006; Cerqueti et al., 2021, 2022; Cinelli et al., 2021; Yan & Qi, 2021; Zhu et al., 2018)
, or healthcare and physiology (Butenko & Wilhelm, 2006; Vieira et al., 2010) and even for
the understanding of the historical patterns (Pablo-Martí et al., 2021).

The rank-size analysis is a statistical methodology that allows deriving a unique system
from disaggregated and properly ordered data. The starting point is a collection of some
observations of a quantitative phenomenon – the size; then, such observations are ranked
in decreasing order. The observation with the highest value has rank 1 and the one with the
lowest value has a rank equal to the cardinality of the observed sample. In doing so, we obtain
a descending scatter plot in the rank-size plan, which a decreasing curve can approximate
through a best-fit procedure. The selection of the parametric family of curves and the value
of the calibrated parameters provides information about the system’s structure described by
the ranked data. In this, the optimal best-fit curve describes the properties and regularities of
the observed sample as a unique set. There are important applications of rank-size analysis in
the literature (see e.g., Ausloos, 2014; Cerqueti et al., 2022b; Ficcadenti & Cerqueti, 2017;
Ficcadenti et al., 2019; Gabaix, 1999a, b; Vitanov & Ausloos, 2015). The most widely used
parametric families of curves are the power law, the Zipf law (see Zipf, 1949) and the Zipf-
Mandelbrot law (seeMandelbrot, 1953). Recently, (Ausloos &Cerqueti, 2016) introduced a
so-called universal law,which allows us to capture system deviations at high and low ranks. In
this work, we test the four aforementioned laws, obtaining that the universal law can suitably
approximate the considered systems related to these years of research funding.

Finally, cluster analysis is an unsupervised learning task that aims to find groups of similar
units. To this aim, defining a dissimilarity measure among the statistical units is crucial. In
what follows, we aim to cluster complex networks – i.e. the years of networked research
projects – through rank-size laws. In this way, the dissimilarities are determined on the
basis of parameters characterizing the rank-size curves. We take inspiration from a strand of
literature proposing clustering approaches of model-based type, where clusters are identified
on the basis of parameters estimated from a statisticalmodel. Examples are, among the others,
the parameters of ARMA (Corduas & Piccolo, 2008) and GARCH (Caiado & Crato, 2010)
processes or cepstral coefficients (D’Urso et al., 2020) for time series data, the regression
coefficients for spatial data(Lee et al., 2020;Kopczewska, 2021;Kopczewska& Ćwiakowski,
2021) but also the parameters of probability distributions (Wang et al., 2011; D’Urso et al.,
2017; Cerqueti et al., 2021, 2022a). In our setting, the model is the rank-size law. The rank-
size curves’ parameters are used, for example, for clustering time series related to COVID-19
at a country level (see Cerqueti & Ficcadenti, 2022) and Italian soccer championships and
teams (see Ficcadenti et al., 2022). In what follows, we propose a novel rank-size approach
for clustering complex networks in the context of research projects.

We take degree, betweenness, closeness and eigenvector as centrality measures. Such
selected instruments capture different aspects of the considered networks, identifying those
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nodes that are best connected to others or have the most influence, indicating highly and
tightly linked ones.

As already discussed above and for any nodal centrality measure, we rank the nodes in
decreasing order so that rank 1 is associated with the largest value of the centrality measure
while the highest rank is associated with the lowest value of the centrality measure. Then, we
implement a best-fit procedure on the four parametric decreasing curves mentioned above
– the power, the Zipf, the Zipf-Mandelbrot and the universal law – and identify the family
leading to a statistically satisfactory data representation, alongwith the calibrated parameters.
The clustering exercise and the interpretation of the calibrated parameters lead to the assess-
ment of similarities or deviations in how scientific communities have conducted research
over the years.

The proposed rank-size clustering procedure is based on two main steps. In the first
step, we estimate the parameters characterizing the rank-size law through non-linear least
squares regression. In the second step, considering a Euclidean distance among the estimated
parameters, we use the fuzzy k-medoids clustering algorithm of Krishnapuram et al. (2001).
First, we adopt a Partition Around Medoids (PAM) approach because it is more robust to the
presence of outliers than other available alternatives, like the k-means. Second, we consider
a fuzzy approach to account for the uncertainty in the clustering process. Indeed, fuzzy
clustering allows a statistical unit to be allocated to more clusters with a membership degree
representing the uncertainty related to its assignment. Results offer relevant insights into the
scientific institutions and years of funded research.

To the best of our knowledge, this is the first time that the networks of the EU research
funds are considered along with their centrality measures and clustered on the basis of a
rank-size analysis.

The paper is structured as follows. Section 2 is devoted to developing the research network
models, with a focus also on the considered data. Section 3 outlines the methodological
techniques used for carrying out the study, with a proper distinction among complex network
theory, rank-size analysis and clustering models. Section 4 collects the main results of the
study, along with related comments. In the end, Section 5 provides some conclusions and
lines for future research.

2 The European collaborative research networks model

2.1 Data setting and preprocessing

Weuse data provided by the EuropeanCommission regarding the 7th Framework Programme
for Research and Technological Development (FP7) and the Horizon 2020 (H2020). Such
initiatives are the most significant EU Research and Innovation programmes, and they have
the active strategic objective of fostering scientific and technological development across
Europe. FP7 was active from 2007 to 2013 with a total budget of over e50 billion1, while
H2020 was active from 2014 to 2020 with a total budget of over e80 billion2.

BothFP7 andH2020data come in the formof a tablewith columns listing project acronyms
and respective participants, and their network properties have been a matter of recent inves-

1 European Commission Research & Innovation, FP7 in brief: https://op.europa.eu/en/publication-detail/-/
publication/56f1ac29-3315-4ca2-95de-b1e098838965; accessed: February 17th, 2022.
2 Horizon 2020 definitive reference documents: https://ec.europa.eu/programmes/horizon2020/en/official-
documents; accessed: February 17th 2022.

123

https://op.europa.eu/en/publication-detail/-/publication/56f1ac29-3315-4ca2-95de-b1e098838965
https://op.europa.eu/en/publication-detail/-/publication/56f1ac29-3315-4ca2-95de-b1e098838965
https://ec.europa.eu/programmes/horizon2020/en/official-documents
https://ec.europa.eu/programmes/horizon2020/en/official-documents


Annals of Operations Research

Table 1 Main information about yearly networks of financed research projects

Year n m HES OTH PRC PUB REC

FP7 2007 452 4594 132 23 141 63 93

2008 7750 136606 1175 408 4074 618 1315

2009 6880 111865 1123 489 3320 523 1317

2010 7806 119435 1186 610 4112 501 1312

2011 8341 137220 1162 600 4452 535 1467

2012 9188 128863 1119 614 5478 538 1334

2013 9808 183728 1177 664 5804 588 1442

H2020 2014 5088 72990 854 458 2492 393 834

2015 9625 149384 1205 1174 5108 810 1315

2016 9081 157975 1273 1041 4718 790 1259

2017 9263 156812 1250 1139 4841 795 1238

2018 8417 160690 1195 1126 4297 676 1123

2019 9145 169377 1246 1168 4641 800 1290

2020 4133 67521 900 487 1724 299 723

Size (n), dimension (m) and network nodes’ types are reported for each network (Year). The types of organi-
zation are: higher education institution (HES), research organization (REC), public body (PUB), private sector
(PRC) or other participants (OTH).

tigations (Balland et al., 2019; de Arroyabe et al.,, 2021; Heller-Schuh et al., 2011). We
extract from the tables the projects having the starting date within a given year. In so doing,
we construct 14 networks of collaboration, one for each year: from 2007 to 2013 for FP7 and
from 2014 to 2020 for H2020.

For each year, we build up a bipartite network G(V1, V2, E) in which one partition (V1) is
made up of financed projects while the other (V2) is made up of participants to such projects.
A link in E between the partitions exists if an organization participated in a project. We then
project the bipartite network onto the participants’ partitions (through an operation called
one-mode projection (Newman, 2018) ), thus obtaining another network G ′(V2, E ′) in which
two organizations in V2 are connected if they participate in the same project in V1.

We repeat this procedure for all the 14 years. Thus we obtain 14 undirected networks, one
for each year. The number of nodes n and links m for each projected network are reported in
Table 1.

The same table also reports the number of nodes for each type of organization. Indeed, the
original data reports information about the type of each organization, which can be: higher
education institution (HES), research organization (REC), public body (PUB), private sector
(PRC) or other participants (OTH). Table 2 shows the same information in percentage, and
it is possible to see how the PRC constitutes the most prominent type, ranging from 31.2%
(2007) to 59.6% (2012). However, if we rank organizations by their network degree k, i.e.,
their number of connections (seeTable 6),we cannote a different setting. In particular, Table 3,
Table 4 andTable 5 show that organizations that are in the top ten rank according to their degree
for at least one the observed years 2007, . . . , 2020. They are thirty different organizations and
are limited to higher educational institutes (HES, 12 organizations), research organizations
(REC, 15 organizations) and public bodies (PUB, 3 organizations).

123



Annals of Operations Research

Table 2 Percentage of nodes’
types for each network (Year)

Year %HES %OTH %PRC %PUB %REC

FP7 2007 0.292 0.051 0.312 0.139 0.206

2008 0.152 0.053 0.526 0.080 0.170

2009 0.163 0.071 0.483 0.076 0.191

2010 0.152 0.078 0.527 0.064 0.168

2011 0.139 0.072 0.534 0.064 0.176

2012 0.122 0.067 0.596 0.059 0.145

2013 0.120 0.068 0.592 0.060 0.147

H2020 2014 0.168 0.090 0.490 0.077 0.164

2015 0.125 0.122 0.531 0.084 0.137

2016 0.140 0.115 0.520 0.087 0.139

2017 0.135 0.123 0.523 0.086 0.134

2018 0.142 0.134 0.511 0.080 0.133

2019 0.136 0.128 0.507 0.087 0.141

2020 0.218 0.118 0.417 0.072 0.175

Note that some rows do not sum to 1 since, for some organizations (the
nodes), the type is not reported. The types of organization are: higher
education institution (HES), research organization (REC), public body
(PUB), private sector (PRC) or other participants (OTH).

3 Methodology

This section provides the methodological devices used for the analysis.

3.1 Centrality measures

This paper considers some of the main centrality measures, which are commonly used in
complex and social network analysis to assess the involvement of nodes in network (Borgatti
& Everett, 2006; Scott &Carrington, 2011). Indeed, centrality measures represent the relative
importance – in some sense – of a node within a network, with the assertion that the higher
the centrality index of a node, the higher its perceived centrality in the graph.

Several centrality measures describe the node’s involvement, all of them with specific
informative content. Hence, deciding which option to choose requires some consideration of
the system under observation and the aspects to be highlighted. In other terms, the concept
of centrality has an inherent ambiguity, and there is no point in including all measures in one
method (Rowley, 1997).

For all the 14 networks,we consider: degree centrality k, closeness centralityCC , between-
ness centrality CB and eigenvector centrality CE . A brief description of such measures with
their informative content is reported in Table 6.

3.2 Rank-size analysis

We rank the nodes according to the centrality measures described in Subsection 3.1 in
descending order, so that the node with the highest value of the centrality measure is ranked
to r = 1. We implement a ranking exercise for the four centrality measures.
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Table 4 Organizations that are in the top ten rank according to their degree for at least one the observed years
2007, · · · , 2020 – years 2007–2013

Name 2007 2008 2009 2010 2011 2012 2013

Aarhus Universitet

Agencia Estatal Consejo Superior 6 6 5 8 7 4

Deinvestigaciones Cientificas

Bundesministerium fuer Bildung und 10

Forschung

Centre National de la Recherche Sci- 1 2 1 2 2 2 2

entifique Cnrs

Commissariat a‘ l’Energie
Atomique et aux
E’nergies Alternatives

6 3 5 3 3 4 3

Consiglio Nazionale Delle Ricerche 2 4 3 4 5 3 5

Danmarks Tekniske Universitet 10 5 7

Deutsches Zentrum fuer Luft- und 4 8

Raumfahrt

E’cole Polytechnique F’ed’erale De Lau- 10

sanne

Eidgenoessische Technische 7 8

Hochschule Zuerich

Ethniko Kentro Erevnas Kai Tech-

nologikis Anaptyxis

Fraunhofer Gesellschaft zur Fo- 1 2 1 1 1 1

erderung der Angewandten Forschung

E.V.

Fundacion Tecnalia Research & Inno- 9 9

vation

Imperial College Of Science Technol- 9 6 9

ogy And Medicine

Institut National de la Sant’e et de la

Recherche M’edicale

Istituto Nazionale di Fisica Nucleare 7

Jrc - Joint Research Centre - Euro- 10 7 7

pean Commission

Katholieke Universiteit Leuven 10 7 10

Nederlandse Organisatie voor 9 9 4 6 6

Toegepast Natuurwetenschappelijk

Onderzoek Tno

Politecnico Di Milano
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Table 4 continued

Name 2007 2008 2009 2010 2011 2012 2013

Science and Technology Facilities 5

Council

Sofia University St Kliment Ohridski 8

Stichting Wageningen Research 10

Technische Universiteit Delft

Teknologian Tutkimuskeskus 5 4 6 8 8

The Icelandic Centre For Research 3

The University Of Manchester 8

United Kingdom Research And Inno-

vation

University College London

Vetenskapsradet - Swedish Research 9

Council

Let define the size as y and f (r , θ) the rank-size law with r the rank and θ be the vector
including the rank-size parameters. We test the following four rank-size curves:

• Power law

y = f (r , θ) = f (r , A, α) = A

rα
, (1)

where r is the rank, while A and α are positive parameters to be calibrated.
• Zipf-Mandelbrot law

y = f (r , θ) = f (r , B, λ, β) = B

(r + λ)β
, (2)

where r is the rank, while B, λ and β are positive parameters to be calibrated.
• Exponential law

y = f (r , θ) = f (r , C, γ ) = C exp (−γ r) (3)

where y is the size, r is the rank and C, γ are positive parameters to be calibrated.
• Universal law

y = f (r , θ) = f (r , D, η1, ζ1, η2, ζ2) = D(w + η1)
−ζ1(1 − w + η2)

ζ2 (4)

where y is the size, D, η1, η2, ζ1, ζ2 are positive parameters to be calibrated and:

w = r − 1

N − 1
,

where r is the rank and N is the maximum rank – which coincides with the number of the
ranked data.

For choosing among the aforementioned alternative rank-size curves, we evaluate their
performances in terms of goodness of fit over the considered networks and for each centrality
measure. Specifically, we estimate the parameters for each rank-size curve, by solving the
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following least-squares minimization problem:

min
θ

[
y − f̂ (r , θ)

]2
(5)

where f̂ (r , θ) is the size predicted by the rank r according to the specific rank-size curve
f (r , θ) and θ is the vector collecting the rank-size parameters. To estimate the parameters,
we adopt the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) . For
measuring the goodness of fit we compute the R2 associated with each rank-size curve by
selecting the rank-size curve with the highest value of R2 (see e.g., (Ausloos & Cerqueti,
2016; Cerqueti & Ficcadenti, 2022; Ficcadenti et al., 2022) ).

Since we evaluate the rank-size curves associated with the networks over different years,
one can hypothetically experience different best fitting curves over time for a fixed centrality
measure. If this is the case, we select the rank-size curve with the highest average R2 over the
years. However, as we will see in the empirical experiments, we can substantially identify a
rank-size curve that is the best one for all the considered years.

3.3 Clustering procedures

The proposed rank-size clustering approach considers the difference in parameters estimated
by a rank-size law as the dissimilarity among the statistical units, i.e. the complex networks.
Let us collect the rank-size law parameters in the following matrix:

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

θ1,1 . . . θ1,k . . . θ1,K
... . . .

... . . .
...

θi,1 . . . θi,k . . . θi,K
... . . .

... . . .
...

θN ,1 . . . θN ,k . . . θN ,K

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

of dimension N × K , where K is the number of rank-size law parameters and N the number
of networks, i.e. the years (N = 14 in our case). For example, in the case of power law in
(1), the matrix (6) can be written as follows:

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1 α1
...

...

Ai αi
...

...

AN αN

⎤
⎥⎥⎥⎥⎥⎥⎦

(7)

In this paper, we propose to cluster networks on the basis of their rank-size relationships.
Thus, let us define 	i = (

θi,1, θi,2, . . . , θi,K
)
the vector containing the rank-size parameters

for a given network i (i = 1, . . . , N ). 	i is the i-th row of matrix � in (6). We compute the
dissimilarity between two networks i and j (i = 1, . . . , N ; j = 1, . . . , N ) by means of the
following rank-size dissimilarity:

Di, j =
√(

	i − 	 j
)′ (

	i − 	 j
) =

√√√√ K∑
k=1

(
θi,k − θ j,k

)2 (8)
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For clustering networks, we consider the fuzzy k-medoids algorithm (Krishnapuram et
al., 2001) that is based on the solution of the following problem:

min :
N∑

i=1

C∑
c=1

um
i,c D2

i,c (9)

s.t.
N∑

i=1

C∑
c=1

ui,c = 1

where ui,c is the membership degree of the i-th object to the c-th cluster,m is the fuzziness
parameter and D2

i,c is the squared distance (8) between the i-th object with the c-th cluster
centroid. The membership degree indicates the degree to which an i-th statistical unit – an
i-th network in our case – belongs to c-th cluster. While in fuzzy clustering each i-th network
belongs to all the C clusters with a given membership degree ui,c, with a not fuzzy clustering
approach each i-th unit is assigned to c-th cluster with the highest membership, that is ui,c

is binary, either 0 (the i-th network does not belong to the c-th cluster) or 1 (the i-th network
belongs to the c-th cluster).

Two important choices are the selection of the fuzziness parameter m and the number of
clusters C .

The fuzziness parameter has to be chosen within the interval m ∈ (1,+∞), avoiding
very large values. Indeed, for large values of m we get a very fuzzy partition, where all
the statistical units have memberships equal to 1/C to each c-th cluster (D’Urso, 2015).
Some authors (see e.g., Choe & Jordan, 1992) show that the performance of fuzzy clustering
algorithms is not so sensitive to the variation of the fuzziness parameter, particularly for
relatively small values of m. Therefore we choose m = 1.5, also in line with previous studies
(see e.g., Krishnapuram et al., 2001).

In order to choose the number of clusters C , we consider the value of C maximizing
the Fuzzy Silhouette (FS) criterion of Campello and Hruschka (2006). The FS introduces
fuzziness in the Average Silhouette Width (ASW), which is a well-established validity index
for evaluating the quality of a partition(Arbelaitz et al., 2013; Batool &Hennig, 2021), which
measures the within-cluster cohesion and inter-cluster dispersion. The Silhouette for an i-th
object can be computed as follows:

Si = (bi − ai )

max{bi , ai } (10)

where ai is the average distance of the i-th units to the other units belonging to the same
cluster c and bi is the average distance of the same unit to others belonging to the closest
different cluster c′ �= c – we use the Euclidean distance (8) in our case. In other words, for
an i-th unit belonging to a cluster c we have that (Batool & Hennig, 2021) :

ai = 1

nc − 1

nc−1∑
j=1

Di, j and bi = min
c′ �=c

1

nc′

nc′∑
j=1

Di, j

where nc denotes the size of cluster c and nc′ the size of cluster c′ �= c. The quantity∑nc−1
j=1 Di, j is the sum of the distances – computed according to (8) – between the i-th unit

and all the remaining nc −1 units belonging to the same cluster c. Therefore, ai is the average
distance of the i-th network of research projects to the other networks belonging to the same
cluster c. Then, the term

∑nc′
j=1 Di, j is the sum of the distances between the i-th unit from

the nc′ belonging to the c′ cluster. Hence, bi is the average distance of the i-th network to
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others belonging to the closest different cluster c′ �= c, as we take the minimum among the
sums over the C − 1 clusters different from c.

A large Silhouette value Si means that the i-th unit is closer to those belonging to its
cluster than to the others belonging to the closest different cluster. The ASW is computed by
averaging the values of Si for all the N (i = 1, . . . , N ) units as follows:

ASW = 1

N

N∑
i=1

Si

Therefore, the higher the ASW, the better the partition’s quality. The FS considers a
weighted average for the Silhouettes Si instead of a simple average by using the membership
degrees ui,c as weights, as follows:

F S =
∑N

i=1(ui,c − ui,c′)ε Si∑N
i=1(ui,c − ui,c′)ε

(11)

where Si is the Silhouette computed as in (10), ui,c and ui,c′ are the first and second-largest
elements of the i-th row of the fuzzy partition matrix, respectively. The parameter ε ≥ 0 is a
weighting coefficient that is usually set equal to 1. Therefore, the FS stresses the importance
of units closely placed to the cluster prototypes in the case of highmembershipwhile reducing
the importance of the units placed in overlapping areas for low membership values.

4 Results and discussion

Our procedure starts by estimating the rank-size laws for each of the centrality measures
discussed in Table 6. We choose the rank-size law that better fits the data. Particularly,
we aim to find a unique law valid for modelling all the networks (i.e. the years) for each
considered centrality measure. We compare the rank-size laws discussed in Section 3.2 in
terms of R2, which is defined as the ratio between the variance of the power law predictions
and the variance of the actual ranked data. Therefore, the higher the value better is the power
law fit with the actual ranked data. In particular, we choose the rank-size law whose fit is
better than others for all the 14 yearly networks. The values of the R2 obtained with the
universal law are excellent and very close to the maximum value of 1 (see Figs. 1, 2, 3, 4).

From the analysis of Figs. 1, 2, 3, 4, it is evident that the universal law fits better the data
for most of the centrality measures, since its lines (the black ones) are above the alternatives
for all the considered years. Only in the case of eigenvector centrality (see Fig. 4) the line
corresponding to the R2 of the universal law in (4) is lower than the power law in two years
(2016 and 2020). However, it can be observed that the power law is very close to the universal
law in terms of goodness of fit for these years, so there is no need of selecting a different
best-fit law. Additional evidence supporting this conclusion is provided in Table 7, showing
the average R2 over the years for each rank-size law according to the alternative centrality
measures.

Similar conclusions can be derived by comparing the rank-size curve with actual data.
Actual data refers to the network’s nodes, which are ranked in terms of a given centrality
measure. For example, Fig. 5 shows the comparison considering the network in the year
2012, whose nodes are ranked according to the closeness centrality measure.

From Fig. 5 it is evident the superior fit obtained with the universal law. The same results
are obtained in Fig. 6 that shows the comparison for the year 2020.

The arguments above justify the use of the universal law in (4) for clustering the networks.
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Fig. 1 R2 for betweenness centrality measure. The vertical line refers to the year 2014 and separates FP7
(left) from H2020 (right) projects. R2 is defined as the ratio between the variance of the power law predictions
and the variance of the actual ranked data. Therefore, the higher the value better is the power law fit with the
actual ranked data. Higher the value, the better the fit. We choose the rank-size law with the highest R2 value

Fig. 2 R2 for closeness centrality measure. The vertical line refers to the year 2014 and separates FP7 (left)
from H2020 (right) projects. R2 is defined as the ratio between the variance of the power law predictions and
the variance of the actual ranked data. Therefore, the higher the value better is the power law fit with the actual
ranked data. Higher the value, the better the fit. We choose the rank-size law with the highest R2 value

Fig. 3 R2 for degree centrality measure. The vertical line refers to the year 2014 and separates FP7 (left) from
H2020 (right) projects. R2 is defined as the ratio between the variance of the power law predictions and the
variance of the actual ranked data. Therefore, the higher the value better is the power law fit with the actual
ranked data. Higher the value, the better the fit. We choose the rank-size law with the highest R2 value
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Fig. 4 R2 for eigenvector centrality measure. Vertical line refers to year 2014 and separates FP7 (left) from
H2020 (right) projects. R2 is defined as the ratio between the variance of the power law predictions and the
variance of the actual ranked data. Therefore, higher the value better is the power law fit with the actual ranked
data. Higher the value, better the fit. We choose the rank-size law with the highest R2 value

Table 7 Average R2 for each rank-size law

Power law ZM law Exp law Universal law

Betweenness 0.9428 0.0155 0.7763 0.9784

Closeness 0.7652 0.8627 0.8658 0.9835

Degree 0.9157 0.1193 0.8316 0.9883

Eigenvector 0.8545 0.9649 0.8733 0.9674

On the rows we have the considered centrality measures, while on the columns we have the families of rank-
size curves: Power law is the one in (1), ZM law is the Zipf-Mandelbrot law in (2), Exp law is the Exponential
law in (3) and Universal law is the (4)

Fig. 5 Fitted versus actual values - closeness centrality measure for the network in the year 2012. Ranked
actual data refers to the network’s nodes, which are ranked in terms of a given centrality measure. Fitted
values refer to the predictions obtained with alternative rank-size laws. The rank-size curve whose predictions
overlap most with the actual ranked data is the one with the best fit

Therefore, we have that K = 5 and θ·,1 = D·, θ·,2 = η1,·, θ·,3 = ζ1,·, θ·,4 = η2,·,
θ·,5 = ζ2,·, to be computed over the considered networks.

The estimated rank-size parameters of each centrality measure are shown in Table 8.
Each panel of Table 8 contains amatrix� as shown in (6) for any given centralitymeasure.
The panels in Table 8 represent the entries of the clustering exercise for the four centrality

measures.
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Fig. 6 Fitted versus actual values - closeness centrality measure for the network in the year 2020. Ranked
actual data refers to the network’s nodes, which are ranked in terms of a given centrality measure. Fitted
values refer to the predictions obtained with alternative rank-size laws. The rank-size curve whose predictions
overlap most with the actual ranked data is the one with the best fit

Fig. 7 Fuzzy Silhouette for different number of clusters and alternative centrality measures. We choose the
number of clusters (x-axis) that maximizes the Fuzzy Silhouette (y-axis)

A crucial preliminary step is the selection of the number of clusters C . To this aim, we
compute the FS described in Subsect. 3.3. The values of the FS are shown in Fig. 7.

Accordingly, we choose C = 2 clusters for betweenness, closeness and eigenvector cen-
trality measures, while C = 3 for the degree measure. The results of the rank-size clustering,
in terms of crisp assignment, are shown in Table 9. With crisp assignment we adopt a binary
approach to the assignment, meaning that each statistical unit – a network in our case – is
assigned to the cluster with the highest membership degree.

The clusters obtained with degree (three clusters) and eigenvector (two clusters) centrality
measures are the most balanced ones. Indeed, with the degree, we identify three clusters of
size 5 (cluster 1), 6 (cluster 2) and 3 (cluster 3), while with the eigenvector measure, we have
two clusters of almost equal size. On the other side, betweenness identifies two groups, with
the first one (cluster 1, 10 units) being more numerous than the other one (cluster 2, 4 units).
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Table 8 Estimated rank-size
curve coefficients of the
Universal law (4). Different
panels refer to alternative
centrality measures

Years D η1 ζ1 η2 ζ2

Panel A: betweenness centrality

2007 0.1257 0.1643 6.5038 0.0000 2.2603

2008 23.5449 0.0000 0.5385 0.5373 14.6620

2009 37.0482 0.0002 0.5537 0.2970 22.4469

2010 23.9427 0.0000 0.5506 0.5191 14.9906

2011 26.0452 0.0000 0.5463 0.5269 14.7775

2012 22.6805 0.0000 0.5506 0.5606 14.6665

2013 21.6792 0.0000 0.5749 0.6069 13.5803

2014 21.6877 0.0001 0.5449 0.4675 15.5515

2015 25.2991 0.0000 0.5243 0.5207 15.7597

2016 26.6434 0.0001 0.5642 0.4932 15.6801

2017 22.8072 0.0001 0.6249 0.5699 13.6114

2018 40.6537 0.0003 0.6773 0.3619 17.1845

2019 33.4681 0.0001 0.5804 0.4058 17.6861

2020 41.1999 0.0002 0.4072 0.2308 29.0501

Panel B: closeness centrality

2007 0.0008 0.0001 0.0315 0.0298 0.1859

2008 0.0000 0.0037 0.0574 0.0003 0.0616

2009 0.0001 0.0034 0.0559 0.0000 0.0587

2010 0.0000 0.0017 0.0507 0.0000 0.0612

2011 0.0000 0.0023 0.0502 0.0001 0.0588

2012 0.0000 0.0003 0.0426 0.0000 0.0598

2013 0.0000 0.0030 0.0561 0.0000 0.0574

2014 0.0001 0.0014 0.0456 0.0001 0.0873

2015 0.0000 0.0002 0.0400 0.0000 0.0680

2016 0.0000 0.0004 0.0484 0.0000 0.0619

2017 0.0000 0.0002 0.0422 0.0000 0.0620

2018 0.0000 0.0011 0.0529 0.0000 0.0512

2019 0.0000 0.0003 0.0426 0.0000 0.0676

2020 0.0001 0.0020 0.0576 0.0001 0.0714

Panel C: degree centrality

2007 21.2182 0.0011 0.2533 0.1459 1.0085

2008 0.1902 0.0006 0.5151 1.4824 5.6010

2009 0.2421 0.0007 0.5220 1.7825 4.5466

2010 0.1812 0.0003 0.5063 1.5554 5.3086

2011 0.2924 0.0006 0.5550 1.7997 4.2379

2012 0.3208 0.0003 0.5493 1.8622 3.8800
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Table 8 continued Years D η1 ζ1 η2 ζ2

2013 0.3105 0.0003 0.4923 1.2954 5.7294

2014 0.2006 0.0002 0.4215 1.7583 4.9107

2015 0.3654 0.0003 0.5189 1.7546 4.0994

2016 0.2199 0.0010 0.5873 1.9640 4.2512

2017 0.3747 0.0004 0.5242 1.9347 3.8781

2018 0.1732 0.0006 0.4935 1.6134 5.5190

2019 0.2708 0.0005 0.5325 2.0212 4.1447

2020 0.0437 0.0024 0.5247 2.1504 5.6003

Panel D: eigenvector centrality

2007 0.0476 0.0281 0.4333 0.3856 4.6012

2008 0.0067 0.0006 0.6479 0.0000 1.2692

2009 0.0084 0.0005 0.6080 0.0000 1.2876

2010 0.0069 0.0008 0.6742 0.0000 1.2995

2011 0.0003 0.0007 0.6422 0.8946 4.9160

2012 0.0004 0.0003 0.5704 0.8640 5.0126

2013 0.0057 0.0010 0.7274 0.0000 1.4102

2014 0.0008 0.0006 0.4986 0.8217 5.6913

2015 0.0060 0.0004 0.6474 0.0000 1.6065

2016 0.0000 0.0034 2.0328 0.1602 1.3528

2017 0.0004 0.0003 0.5797 0.9997 4.5830

2018 0.0036 0.0065 1.0833 0.0000 1.9099

2019 0.0004 0.0014 0.7043 1.0984 4.1965

2020 0.0412 0.0003 0.4584 0.0000 1.7807

Table 9 Rank-size clustering
(fuzzy k-medoids)—crisp
assignment. With crisp
assignment we adopt a binary
approach to the assignment,
meaning that each statistical
unit—a network in our case—is
assigned to the cluster with the
highest membership degree. The
medoids are in bold

Betweenness Closeness Degree Eigenvector

2007 1 2 3 1

2008 1 1 2 2

2009 2 1 1 2

2010 1 1 2 2

2011 1 1 1 1

2012 1 1 3 1

2013 1 1 2 2

2014 1 2 2 1

2015 1 1 1 2

2016 1 1 1 2

2017 1 1 3 1

2018 2 1 2 2

2019 2 1 1 1

2020 2 1 2 2
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Table 10 Rank-size clustering
(fuzzy k-medoids): membership
degrees associated to the
assigned cluster. The membership
degree indicates the degree to
which an i-th network belongs to
c-th cluster

Betweenness Closeness Degree Eigenvector

2007 0.89 0.70 0.34 1.00

2008 1.00 0.99 1.00 1.00

2009 1.00 0.99 0.76 1.00

2010 1.00 1.00 1.00 1.00

2011 0.99 1.00 0.97 1.00

2012 1.00 1.00 0.98 1.00

2013 1.00 0.99 0.99 1.00

2014 1.00 1.00 0.89 1.00

2015 0.99 0.94 1.00 1.00

2016 0.97 1.00 0.76 0.99

2017 1.00 1.00 1.00 1.00

2018 0.99 0.99 1.00 1.00

2019 0.95 0.97 0.54 1.00

2020 0.99 0.84 0.95 1.00

In comparison, closeness also identifies two groups but with one (cluster 2) including only
two networks (i.e. 2007 and 2014). The medoids (highlighted in bold) are very different and
change on the basis of the considered centralitymeasure. In terms of FS, the partition obtained
with the eigenvector has the highest values (FS equal to 0.9479), meaning that the groups
are compact and well separated. However, in the other cases, we still have good results, with
rather large FS values. In particular, we have an FS equal to 0.6935 for betweenness and
0.8142 for closeness, so the obtained partitions are quite satisfactory. We obtain the lowest
silhouette with the degree centrality measure, but with a value almost equal to 0.5.

The membership degrees are shown in Table 10.
Overall most of the networks are assigned to the clusters with high membership degrees.

The only fuzzy units – for the definition of a unit as “fuzzy”, we can follow the indications
of previous studies (Dembele & Kastner, 2003; D’Urso & Maharaj, 2009; Maharaj et al.,
2010) suggesting thresholds of 0.7 for C = 2 clusters and 0.6 for C = 3 – are the network of
the European research project in the years 2007 and 2019 (degree centrality measure, third
column of Table 10) since 2007 has a membership of around 0.3 and 2019 a value that is
slightly larger than 0.5.

The rank-size curve parameters associated with the clusters’ medoids are in Table 8 in
light of the results of Table 9. However, to better insight the clusters’ whole composition,
we analyze the average parameters’ value within each cluster instead of looking at the single
medoids. Table 11 and Table 12 show the mean and standard deviation of the Universal law
parameters associated with the networks – constructed in terms of the different centrality
measures – included in the clusters. Hence, Table 11 and Table 12 provide details about the
main characteristics of the networks included in the clusters.

Some differences can be highlighted. For betweenness, we observe that the second cluster
is characterized by an average D value much greater than the one in cluster 1. Moreover, the
within-group variability of D is larger in the second group than in the first one. Next, cluster 2
shows values of both η1 and ζ1 much smaller than those in cluster 1 (0.0001 versus 0.016 for
η1, while 0.55 versus 1.15 for ζ1) but with a higher degree of heterogeneity within the cluster
for both the parameters. The value of ζ2 is larger in the second cluster than in the first one but
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Table 11 Average Universal rank-size curve parameters (D, η1, ζ1, η2, ζ2)within each cluster, obtained with
alternative centrality measures (the Panels)

Cluster Average
D η1 ζ1 η2 ζ2

Panel A: betweenness

1 21.445558 0.016476 1.152306 0.480214 13.553996

2 38.092450 0.000193 0.554654 0.323845 21.591901

Panel B: closeness

1 0.000044 0.001537 0.049730 0.000057 0.061649

2 0.000446 0.000749 0.038547 0.014925 0.136600

Panel C: degree

1 0.278133 0.000602 0.543145 1.864427 4.255939

2 0.183231 0.000723 0.492226 1.642571 5.444838

3 7.304575 0.000616 0.442300 1.314278 2.922228

Panel D: eigenvector

1 0.008333 0.005244 0.571429 0.843994 4.833430

2 0.009810 0.001692 0.859906 0.020030 1.489544

Table 12 Standard deviation of Universal rank-size curve parameters (D, η1, ζ1, η2, ζ2) within each cluster,
obtained with alternative centrality measures (the Panels)

Cluster St. Dev.
D η1 ζ1 η2 ζ2

Panel A: betweenness

1 3.591233 0.000091 0.111754 0.076487 5.508648

2 7.686183 0.051936 1.880535 0.173228 4.040807

Panel B: closeness

1 0.000013 0.001308 0.006505 0.000087 0.005368

2 0.000535 0.000978 0.010018 0.020983 0.069683

Panel C: degree

1 0.056060 0.000289 0.028423 0.119856 0.174431

2 0.08501880 0.0008260401 0.03682455 0.2918793 0.2962651

3 12.049579 0.000427 0.164119 1.012468 1.657305

Panel D: eigenvector

1 0.019250 0.011217 0.097070 0.245984 0.509349

2 0.012931 0.002170 0.506027 0.056625 0.246589

with lowerwithin-group variability. According to closeness, we find that the second group has
an average D value greater than the one in cluster 1 but also η2 e θ2 are larger, on average, for
the second cluster. Overall, the second cluster shows a higher degree of variability for most of
the parameters, suggesting the presence of a greater within-group heterogeneity. Considering
the degree centrality measure, we identify the presence of a group (cluster 3) with an average
value of D that is exceptionally larger than the other two groups (7.3 versus 0.28 e 0.18).
This happens since cluster 3 includes the network in 2007, which is characterized by a very
large value of D with respect to the other years. Therefore, also the variability in terms of
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D is exceptionally high for this cluster compared with the other two. According to the other
parameters, the clusters show relatively similar values with the only exception represented
by ζ2 for which clusters 1 and 2 have larger values than the one in cluster 3. In particular,
the cluster with the lowest value of D is associated with the highest ζ2. The first group is
characterized by a higher degree of homogeneity in terms of parameters’ variability since
all the parameters show the lowest standard deviations. In the end, we analyze the results in
terms of eigenvector centrality. Also in this case, we observe a distinction across the groups
in terms of average D values, with the second group showing the larger value. Further, η2 and
ζ2 are larger for cluster 1, while the ζ1 associated with the second cluster is larger than cluster
1. Finally, standard deviations suggest that cluster 2 is characterized by higher variability in
the parameter ζ1, while cluster 1 shows higher variability for the other parameters.

We now provide the analytic interpretation of the parameters in (4). The parameter D
increases as the absolute value of the element at rank 1 – i.e., the highest size of the sample
– increases. The parameters η1 and ζ1 refer to the low ranks. Specifically, the value of η1
increases as the deviation between the sizes at two consecutive (small) ranks – e.g., size at
r = 1 and r = 2; r = 2 and r = 3, etc. – increases. A large value of ζ1 amplifies such
an increasing behavior. Indeed, when η1 is large and/or ζ1 is large, then the best-fit curve is
steeper at low ranks. The parameters η2 and ζ2 behave in a similar way but for large values of
r , at high ranks. Therefore, large values of η2 and ζ2 explain large values of the discrepancy
between the sizes of two consecutive high ranks. The curve flattens at high ranks for low
values of η2 and/or ζ2.

The obtained results can be then interpreted in the context of complex networks, with
specific reference to the considered centrality measures. Figure 8 reports the density plots
for such measures, i.e. betweenness, closeness, degree, and eigenvector centrality. Each plot
reports the density plots for all the 14 networks colored according to theirmembership cluster.

We can observe a clear distinction between the two clusters for betweenness and closeness
centrality measures. Indeed, for the first measure, the lowest values for networks in cluster 1
are considerably higher than the lowest values for networks in cluster 2. Differently, for the
second measure, networks in cluster 1 have values around a common value, while networks
in cluster 2 have very different behaviour (red curves) that are in accord with the results in
Table 11 (Panel A and B) where the D and the other coefficients are different within each
Panel.

In terms of social network analysis, we can observe from Table 9 that according to the
betweenness, the networks are assigned from 2007 to 2017 to cluster 1 (except for 2009),
highlighting the trend that goes from less to more scattered values. This means that interme-
diation tends to concentrate in hubs which are all public institutions (see Table 3). Regarding
the closeness centrality, in cluster 2 we have the year 2007, which is the starting year, and
2014, with a density plot not so different from the others, i.e., information flows among the
participants similarly along the time horizon.

When we consider degree and eigenvector centrality measures, the difference between
the clusters is less evident. In Fig. 9 we reported their density plots limited to values higher
than a certain threshold, in particular, ki ≥ 50 for the degree centrality and CE ≥ 0.05 for
eigenvector centrality.

The two plots let to observe the tails of the density plots in Fig. 8. We can note that for
the degree, networks in cluster 2 are basically more variable than the networks in the other
clusters (as confirmed by the values of the standard deviations in Table 11, Panel C). In
contrast, the networks in cluster 3 tend to zero faster than those in the other cluster. In other
words, maximum degrees are lower. Finally, networks in cluster 1 show more regular trends,
with a slope to zero slower than that of the other networks.
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Fig. 8 Density plots for the four centrality measures (top left: betweenness centrality; top right: closeness
centrality; bottom left: degree centrality; bottom right: eigenvector centrality). Each plot reports the 14 curves
for each network, colored according to their cluster membership
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Fig. 9 Density plots for the degree (left) and eigenvector centrality (right) measures limited to their highest
values. Each plot reports the 14 curves for each network, colored according to their cluster membership

Regarding the eigenvector centrality, values for networks in cluster 1 decrease with a
smoothed slope than those in cluster 2, highlighting that networks in cluster 1 have more
influential nodes than those in cluster 2.

The analysis performed in this section can be considered as an ex-post advanced evaluation
of several years of the funded project in EU. Under this perspective, it could be of great help
for practitioners and policymakers to understand under a different point of view if endogenous
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or exogenous factors have had an impact during the years of the FP7 and H2020 initiatives
on the system as a whole.

In the case of the closeness, the starting years of the two initiatives are gathered in cluster
2, which clearly identifies the fact that in the first year of the two initiatives the system is less
cohesive and it suffers a sort of cold start, having density and average path much higher than
those in cluster 1. In other terms, since a short length of the shortest paths is usually considered
a signal of self-organised systems, then cluster 2 identifies systems less self-organised.

5 Conclusions

This paper addresses a central issue in the context of public policy evaluation: the analysis of
scientific institutions in the context of research funding. In particular, we explore the organi-
zations involved in European project funding, proposing an analysis of their interconnections
based on joint research projects. We place ourselves within three methodological strands:
first, the study of complex networks and their applications, which allows analyzing specific
entities with their interconnections; second, the rank-size analysis, which allows studying
the system resulting from disaggregated data that are properly ranked; third, the cluster anal-
ysis, which captures regularities and deviations among the considered statistical units. The
application of such techniques to the specific context analyzed here enables us to derive rel-
evant insights about the dynamics of the funded European research activity and the scientific
institutions involved. The selection of a wide range of nodal centrality measures leads to a
clear view of many aspects related to the research centers in Europe, hence identifying the
relevance of institutions and years of research under different perspectives.

It is worth mentioning some main lines for future research. First, it is possible to complete
the study of the considered research networks through other centrality measures by pointing
specific attention to community detection and link formation. In this respect, the present work
represents a crucial first step toward a deeper exploration of this challenging task. Second,
one can implement different clustering strategies based on other concepts of distance with
additional informative content. In so doing, it is possible to derive the regularities among
research institutions and years of European research funds when taking different similarity
criteria.

Finally, and importantly, we notice that while closeness is a measure affected by endoge-
nous characteristics, betweenness, degree and eigenvector centrality are more related to the
qualities of the nodes or to external factors. For the specific case of participants to FP7 and
H2020, their actions, commitment and perceptions could be strongly influenced by programs
of incentives, macroeconomics factors, local policies as well as from innovation paths or
market requirements. Under these perspectives, it is of paramount importance to study the
relationships among networks clustering and the above mentioned factors – and potentially
many others - and we will devote to these topics further researches in the next future.
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