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Abstract

Pods are mechanical devices constituted of two rigid bodies, the base and the
platform, connected by a number of other rigid bodies, called legs, that are
anchored via spherical joints. It is possible to prove that the maximal number
of legs of a mobile pod, when finite, is 20. In 1904, Borel designed a technique to
construct examples of such 20-pods, but could not constrain the legs to have base
and platform points with real coordinates. We show that Borel’s construction
yields all mobile 20-pods, and that it is possible to construct examples where
all coordinates are real.
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Introduction

A multipod is a mechanical linkage consisting of two rigid bodies, called the
base and the platform, and a number of rigid bodies, called legs, connecting
them. Each leg is attached to base and platform with spherical joints (see
Figure 1), so platform points are constrained to lie on spheres — the center
of each sphere is then the base point connected to the respective leg. If the
platform can move respecting the constraints imposed by the legs we say that
the multipod is mobile.

Note that multipods are also studied within Rigidity Theory as so-called
body-bar frameworks [1], as two rigid bodies (platform and base) are connected
by multiple bars (legs). Mobile multipods correspond to flexible body-bar frame-
works, whose study is of great practical interest e.g. for protein folding [2].

We can model the possible configurations of a multipod using direct isome-
tries of R3, by associating to every configuration the isometry, which maps a
reference configuration into the respective one. At this point one can consider a
motion, namely a one-dimensional set of direct isometries, and try to construct
a multipod moving according to this motion. This approach has a long history;
there are motions allowing multipods with infinitely many legs, but among those
that allow only a finite number of legs, the maximal number is 20. This was
proved by Schoenflies, see Remark 2.6 below. Borel proposed a construction for
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icosapods (namely multipods with 20 legs) leading to linkages whose motion is
line-symmetric, i.e. whose elements are involutions, namely rotations by 180◦

around a line (see Figure 1).

`

Figure 1: Base points (pink) and platform points (yellow) of an icosapod. Notice that for
every leg there is a symmetric one obtained by rotating the first one by 180◦ around the
axis `. The symmetry reverses the role of base and platform points.

This paper provides two results on icosapods. First, we show that all mobile
icosapods (with very mild restrictions) are instances of Borel’s construction.
Second, we exhibit a mobile icosapod that is an instance of Borel’s construction
(Borel, in fact, obtained equations for the base and platform points of a mobile
icosapod, but could not prove the existence of solutions in R3). The second part
is closely related to the theory of quartic spectrahedra, which has been studied
in [3].

Section 1 provides an historical overview of line-symmetric motions. In Sec-
tion 2 we set up the formalism and the objects that are needed for our approach
to the problem; in particular we recall a compactification of the group of direct
isometries that has already been used by the authors to deal with problems on
multipods, and we show how the constraints imposed by legs can be interpreted
as a duality between the space of legs and the space of direct isometries. In
Section 3 we use these tools to prove that, under certain generality conditions,
mobile icosapods admit line-symmetric motions. In Section 4 we show how it
is possible to construct example of mobile icosapods employing results in the
theory of quartic spectrahedra.
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1. Review on line-symmetric motions

Krames [4] studied special one-parametric motions, obtained by reflecting
the moving system ς in the generators of a ruled surface in the fixed system Σ.
This ruled surface is called the base surface for the motion. He showed some
remarkable properties of these motions (see [4]), which led him to name them
Symmetrische Schrotung (in German). This name was translated to English
as symmetric motion by Tölke [5], Krames motion or line-symmetric motion
by Bottema and Roth [6, page 319]. As each Symmetrische Schrotung has
the additional property that it is equal to its inverse motion (cf. Krames [7,
page 415]), it could also be called involutory motion. In this paper we use the
name line-symmetry as it is probably the most commonly used term in today’s
kinematic community.

Further characterizations of line-symmetric motions (beside the cited one of
Krames [4]) where given by Tölke [5], Bottema and Roth [6, Chapter 9, § 7],
Selig and Husty [8] and Hamann [9]. If one uses the so-called Study parameters
(e0 : e1 : e2 : e3 : f0 : f1 : f2 : f3) to describe isometries, then it is possible to
characterize line-symmetric motions algebraically in the following way. Given
such a motion, there always exist a Cartesian system of coordinates, or frame
(o;x, y, z) for the moving system ς and a Cartesian frame (O;X,Y, Z) for the
fixed system Σ so that e0 = f0 = 0 holds for the elements of the motion. With
this choice of coordinates, the latter are rotations by 180◦ around lines; the
Study coordinates (e1 : e2 : e3 : f1 : f2 : f3) of these isometries coincide with
the Plücker coordinates of the lines.

1.1. Historical results on line-symmetric motions with spherical paths
In this paper we study line-symmetric motions that are solutions to the still

open problem posed by the French Academy of Science for the Prix Vaillant
of the year 1904 (cf. [10]): "Determine and study all displacements of a rigid
body in which distinct points of the body move on spherical paths." Borel and
Bricard were awarded the prize for their papers [11] and [12] containing partial
solutions, and therefore this is also known as the Borel Bricard (BB) problem.

1.1.1. Krames’s results
Krames [7, 13, 14] studied some special motions already known to Borel and

Bricard in more detail and stated the following theorem [7, Satz 6]:

Theorem 1.1. For each line-symmetric motion, that contains discrete, 1 or
2-dimensional spherical paths, the set f of points with spherical trajectories is
congruent (direct isometry) to the set F of corresponding sphere centers.

Moreover Krames noted in [7, page 409] that1 ". . .most of the solutions given
by Borel and Bricard are line-symmetric motions. In each of these motions both
geometers detected this circumstance by other means, without using the above
mentioned result" (Theorem 1.1). In the following we will take a closer look at
the papers [11, 12], which shows that the latter statement is not entirely correct.

1The following extract as well as Theorem 1.1 has been translated from the original German
by the authors.
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1.1.2. Bricard’s results
Bricard studied these motions in [12, Chapitre VIII]. His first result in this

context (see end of [12, § 32, page 70]) reads as follows (adapted to our notation):
Dans toutes les solutions auxquelles on sera conduit, les figures liées F et f

seront évidemment égales et semblablement placées par rapport aux deux trièdres
(O;X,Y, Z) et (o;x, y, z).

In the remainder of [12, Chapitre VIII] he discussed some special cases,
which also yield remarkable results, but he did not give further information on
the general case.

1.1.3. Borel’s results
Borel discussed in [11, Case Fb] exactly the case e0 = f0 = 0 and he proved

in [11, Case Fb1] that in general a set of 20 points are located on spherical
paths but without giving any result on the reality of the 20 points. Moreover
he studied two special cases in Fb2 and Fb3.

Borel did not mention the geometric meaning of the assumption e0 = f0 = 0.
He only stated at the beginning of case F [11, page 95] that the moving frame
(o;x, y, z) is parallel to the frame obtained by a reflection of the fixed frame
(O;X,Y, Z) in a line. This corresponds to the weaker assumption e0 = 0. He
added that this implies the same consequences as already mentioned in [11,
page 47, case C], which reads as follows (adapted to our notation):

. . . dans le cas où les trièdres sont symétriques par rapport à une droite, si
deux courbes sont représentées par des équations identiques, l’une en X,Y, Z,
l’autre en x, y, z, elles sont symétriques par rapport à cette droite.

But Borel did not mention, neither in case Fb1 nor in his conclusion section,
that f with #f = 20 is congruent to F (contrary to other special cases e.g. Fb3,
where the congruence property is mentioned explicitly.)

1.2. Review of line-symmetric self-motions of hexapods
We denote the platform points of the i-th leg in the moving system ς by pi

and its corresponding base points in the fixed system Σ by Pi.
For a generic choice of the geometry of the platform and the base as well

as the leg lengths di the hexapod can have up to 40 configurations. Under
certain conditions it can also happen that the direct kinematic problem has
no discrete solution set but an n-dimensional one with n > 0. Clearly these
so-called self-motions of hexapods are solutions to the BB problem.

In practice hexapods appear in the form of Stewart-Gough manipulators,
which are 6 degrees of freedom parallel robots. In these machines the leg lengths
can be actively changed by prismatic joints and all spherical joints are passive.

Moreover a hexapod (resp. Stewart-Gough manipulator) is called planar if
the points p1, . . . , p6 are coplanar and also the points P1, . . . , P6 are coplanar;
otherwise it is called non-planar. In the following we review those papers where
line-symmetric self-motions of hexapods are reported.

1.2.1. Non-planar hexapods with line-symmetric self-motions
Line-symmetric motions with spherical paths already known to Borel [11]

and Bricard [12] (and also discussed by Krames in [7, 14]) were used by Husty
and Zsombor-Murray [15] and Hartmann [16] to construct examples of (planar
and non-planar) hexapods with line-symmetric self-motions.
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Point-symmetric hexapods with congruent platform and base possessing line-
symmetric self-motions were given in [17, Theorem 11]. Further non-planar
hexapods with line-symmetric self-motions can be constructed from overcon-
strained pentapods with a linear platform [18].

1.2.2. Planar hexapods with line-symmetric self-motions
All self-motions of the original Stewart-Gough manipulator were classified

by Karger and Husty [19]. Amongst others they reported a self-motion with the
property e0 = 0 (see [19, page 208, last paragraph]), "which has the property
that all points of a cubic curve lying in the plane . . . and six additional points
out of this plane have spherical trajectories. This seems to be a new case of a
BB motion, not known so far." Based on this result, Karger [20, 21] presented
a procedure for computing further "new self-motions of parallel manipulators"
of the type e0 = 0, where the points of a planar cubic c have spherical paths.

Another approach was taken by Nawratil in his series of papers [22, 23,
24, 25], by determining the necessary and sufficient geometric conditions for
the existence of a 2-dimensional motion such that three points in the xy-plane
of ς move on three planes orthogonal to the XY -plane of Σ (3-fold Darboux
condition) and two planes orthogonal to the xy-plane of ς slide through two fixed
points located in the XY -plane of Σ (2-fold Mannheim condition). It turned out
that all these so-called type II Darboux-Mannheim motions are line-symmetric.
Moreover a geometric construction of a 12-parametric set of planar Stewart-
Gough platforms (cf. [25, Corollary 5.4]) with line-symmetric self-motions was
given. It was also shown that the algorithm proposed by Karger in [20, 21]
yields these solutions.

While studying the classic papers of Borel and Bricard for this historical
review we noticed that the solution set of the BB problem mentioned in the
last two paragraphs was already known to these two French geometers; cf. [11,
Case Fb3] and [12, Chapter V] (already reported by Bricard in [26, page 21]).
But in contrast to the above listed approaches (of Karger and Nawratil) both
of them assumed that the motion with spherical trajectories is line-symmetric.
Each of them additionally discovered one more property:

• Borel pointed out that there exist further 8 points (all 8 can be real) with
spherical trajectories. This set of points splits in four pairs, which are sym-
metric with respect to the carrier plane of the cubic c.

• Bricard showed the following: If we identify the congruent planar cubics of
the platform and the base, i.e. c = C, then the tangents in a corresponding
point pair P and p with respect to c = C intersect each other in a point of
the cubic c = C (P and p form a so-called Steinerian couple).

Bricard communicated his result (published in [26, page 21]) to Duporcq,
who gave an alternative reasoning in [27], which sank into oblivion over the
past 100 years. Only a footnote in the conclusion section of Borel’s work [11]
points to Duporcq’s proof (but not to the original work of Bricard [26]), which
is based on the following remarkable motion (see Figure 2):

Let P1, . . . , P6 and p1, . . . , p6 be the vertices of two complete quadrilaterals,
which are congruent. Moreover the vertices are labelled in a way that pi is
the opposite vertex of Pi for i ∈ {1, . . . , 6}. Then there exist a two-parametric
line-symmetric motion where each pi moves on a sphere centered at Pi.
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Figure 2: Illustration of Duporcq’s complete quadrilaterals.

It can be easily checked that this configuration of base and platform points
corresponds to an architecturally singular hexapod (e.g. [28] or [29]). As archi-
tecturally singular manipulators are redundant we can remove any leg — w.l.o.g.
we suppose that this is the sixth leg — without changing the direct kinematics
of the mechanism. Therefore the resulting pentapod P1, . . . , P5 and p1, . . . , p5

also has a two-parameter, line-symmetric, self-motion.
Note that this pentapod yields a counter-example to Theorem 4.2 of [30] and

as a consequence also the work [31] is incomplete as it is based on this theorem.
For the erratum to [30] please see [32] and the addendum to [31] is given in [33].

Remark 1.2. If we assume for this pentapod that the line [P1P2] is the ideal
line of the fixed plane (so [p4p5] is the ideal line of the moving plane) then we
get exactly the conditions found in [22], which the points and ideal points of
the plane’s normals must fulfill in order to get a type II Darboux-Mannheim
motion. Note that P2, P3 can also be complex conjugates (so p5, p6 are complex
conjugate too).

1.2.3. Computer search for mobile hexapods
In [34], Geiss and Schreyer describe a rather non-standard way to find mobile

hexapods. They set up an algebraic system of equations equivalent to mobility,
and then try random candidates, with coordinates in a finite field of small
size, by computer. After collecting statistical data indicating the existence of
a family of real mobile hexapods, they try a (computationally more expensive)
lifting process in the most promising cases. The method is extremely powerful
and could still be used for finding new families of mobile hexapods. However,
the family reported in [34] can be seen as an instance of Borel’s family Fb1.
The line symmetry is not apparent because the method starts by guessing 6
legs, which may not form a line symmetric configuration; only if one adds the
remaining 14 legs, or at least all real legs among them, one obtains a symmetric
configuration. The question posed in Problem 5 in [34] is easily answered from
this viewpoint: two legs have the same lengths because they are conjugated by
line symmetry.

2. Isometries, legs and bond theory

This section illustrates the concepts and techniques that will be needed to
carry on our analysis. From now on, by an n-pod we mean a triple (~p, ~P , ~d) where
~p, ~P are n-tuples of vectors in R3 (respectively, platform and base points), and
~d is an n-tuple of positive real numbers. Multipods with 20 legs are called
icosapods.
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Remark 2.1. The description of admissible configurations that we adopt allows
independent choices for two coordinate systems, one for the base and one for the
platform: this is why also the leg lengths have to be included in the definition of
a pod. Moreover, we do not require that the identity belongs to the admissible
configurations.

2.1. Isometries and leg space
Throughout this paper we use a compactification of the group SE3 of di-

rect isometries that was introduced in [35] and in [36]. We briefly recall this
construction.

Consider a point a lying on a sphere centered at b and with radius d, the
equation expressing this coincidence can be written,

‖a− b‖2 − d2 = 0.

Expanding this gives (
〈a, a〉+ 〈b, b〉 − d2

)
− 2 〈a, b〉 = 0,

where 〈·, ·〉 is the Euclidean scalar product. This can be written as a scalar
product of two 5-vectors, one containing information on the sphere the other
only information about the point,

(
−2bt, (〈b, b〉 − d2), 1

) a
1
〈a, a〉

 = 0.

Now a direct isometry σ, of R3 can be described by a pair (M,y), where
M is an orthogonal matrix with det(M) = 1 and y is the image of the origin
under the isometry. If the point a remains on the sphere after the action of σ,
then we have, ‖σ(a)− b‖2 − d2 = 0. In terms of the 5-vectors we can write this
condition as,

(
−2b, (〈b, b〉 − d2), 1

)M y 0
0 1 0

2xt r 1

 a
1
〈a, a〉

 = 0,

where the matrix represents the action of the isometry and we have defined
x := −M ty = −M−1y and r := 〈x, x〉 = 〈y, y〉. Notice that this determines a
5-dimensional representation of the group SE3, displaying the direct isometries
as a subgroup of the group of conformal transformations of space.

If a, b ∈ R3 and d ≥ 0, then the condition ‖σ(a)− b‖2 − d2 = 0 on a direct
isometry σ is linear, and in particular has the following form:(

〈a, a〉+ 〈b, b〉 − d2
)
h+ r − 2 〈a, x〉 − 2 〈y, b〉 − 2 〈Ma, b〉 = 0, (1)

where the homogenizing variable h has been included. We will usually refer to
Equation (1) as the sphere condition imposed by (a, b, d).

So, if we take coordinates m11, . . . ,m33, x1, x2, x3, y1, y2, y3 and r, h in P16
C
,

a direct isometry defines a point in projective space satisfying h 6= 0 and

MM t = M tM = h2 · idR3 , det(M) = h3,

M ty + hx = 0, Mx+ hy = 0,

〈x, x〉 = 〈y, y〉 = r h.

(2)
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The equations in (2) define a variety X in P16
C
, whose real points satisfying h 6= 0

are in one to one correspondence with the elements of SE3. A direct calculation
shows that X is a variety of dimension 6 and degree 40.

Given an n-pod Π = (~p, ~P , ~d), we can consider its configuration space, namely
the set of direct isometries σ in SE3 such that ‖σ(pi)− Pi‖2 − d2

i = 0 for all
i ∈ {1, . . . , n}. The fact that Equation (1) is linear in the coordinates of P16

C
means that the configuration space of Π can be compactified as the intersection
of X with a linear space Λ, determined by the n conditions imposed by its
legs; we denote such variety by KΠ. We say that the pod Π is mobile if the
intersection KΠ(R) ∩ {h 6= 0} — where we denoted by KΠ(R) the real points
of KΠ — has (real) dimension greater than or equal to one. Notice that if Π is
mobile, then KΠ has (complex) dimension greater than or equal to one.

Notation. From now on, by the expression mobility one icosapod we mean a
20-pod with mobility one which cannot be obtained by removing legs from a
multipod with the same configuration set.

Remark 2.2. For reasons of completeness it should be noted that system in
Equation (2) was already used by Mourrain [37, page 293] to prove that a non-
mobile pod has at most 40 configurations. Similar systems of equations were
also used by Lazard [38, page 179] and Wampler [39, Equation (2)] for the same
task.

For our purposes, it is useful to introduce another 16-dimensional projective
space, playing the role of a dual space of the one containing X, where the duality
is given by a bilinear version of Equation (1). We start by introducing a new
quantity, called corrected leg length, defined as l := 〈a, a〉 + 〈b, b〉 − d2, so that
Equation (1) becomes

l h+ r − 2 〈a, x〉 − 2 〈y, b〉 − 2 〈Ma, b〉 = 0.

We think of the points a = (a1, a2, a3) and b = (b1, b2, b3) as points in P3
C
by

introducing two extra homogenization coordinates a0 and b0. In this way, the
pair (a, b) can be considered as a point in the Segre variety Σ3,3

∼= P3
C
× P3

C
; the

latter is embedded in P15
C
, where we take coordinates {zij} so that the points

of Σ3,3 satisfy zij = ai bj for some (a0 : a1 : a2 : a3), (b0 : b1 : b2 : b3) ∈ P3
C
. If

we homogenize Equation (1) with respect to the coordinates {zij} and l, then
we get

l h+ z00r − 2 (z10x1 + z20x2 + z30x3)−

− 2 (z01y1 + z02y2 + z03y3)− 2

3∑
i,j=1

mij zij = 0
(3)

Notice that the left hand side of Equation (3) is a bilinear expression in the co-
ordinates (h,M, x, y, r) and in the coordinates (z, l). We denote this expression
by BSC (for bilinear sphere condition). Hence, if we denote by P̌16

C
the projec-

tive space with coordinates (z, l), then we obtain a duality between P16
C

and P̌16
C

sending a point (h0,M0, x0, y0, r0) ∈ P16
C

to the hyperplane in P̌16
C

of equation
BSC(h0,M0, x0, y0, r0, z, l) = 0, and a point (z0, l0) ∈ P̌16

C
to the hyperplane

in P16
C

of equation BSC(h,M, x, y, r, z0, l0) = 0.
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Remark 2.3. Suppose that (z0, l0) ∈ P̌16
C

belongs to the cone Y with vertex
(0 : · · · : 0 : 1) over the Segre variety Σ3,3 — namely (z0)ij = ai bj for some
(a0 : a1 : a2 : a3) and (b0 : b1 : b2 : b3). Suppose furthermore that a0 = b0 = 1
and a2

1 + a2
2 + a2

3 + b21 + b22 + b23− l0 ≥ 0. Then from the definition of BSC we see
that the hyperplane BSC(h,M, x, y, r, z0, l0) = 0 in P16

C
is the same hyperplane

defined by Equation (1) where we take a = (a1, a2, a3), b = (b1, b2, b3) and
d =

√
a2

1 + a2
2 + a2

3 + b21 + b22 + b23 − l.
Remark 2.3 indicates that the cone Y in P̌16

C
plays a sort of dual role to the

one of the compactification X in P16
C
, and we will exploit this in our arguments.

Since the Segre variety Σ3,3 has dimension 6 and degree 20, we see that Y has
dimension 7 and degree 20.

Definition 2.4. Let C ⊆ X be a curve. We define the leg set LC as the set
of all points (z, l) ∈ Y such that the BSC — instantiated at (z, l) — holds
for all points in C. The leg set is a compactification of the set of all triples
(a, b, d) ∈ R3 × R3 × R≥0 such that the image of a under any point in C lying
in the image of SE3 (hence considered as an isometry) has distance d from b.

Proposition 2.5. Let C ⊆ X be a curve. If LC has only finitely many complex
points, then its cardinality is at most 20. If LC has exactly 20 points, then the
linear span of LC in P̌16

C
is a projective subspace of dimension 9.

Proof. By construction LC is defined by linear equations as a subset of Y ; in
other words LC = Y ∩ span(LC). Then the statement follows from general
properties of linear sections of projective varieties. In fact, any linear subspace
of codimension less than 7 intersects Y in a subvariety of positive dimension,
hence dim

(
span(LC)

)
≤ 9. A general linear subspace of dimension 9 intersects Y

in deg(Y ) = 20 points. In order to prove that dim
(
span(LC)

)
= 9 when LC

has 20 points we assume the contrary, that dim
(
span(LC)

)
< 9. Then we

take a general linear superspace Λ of span(LC) of dimension 9. It intersects Y
again in 20 points, which must coincide with LC . On the other hand, if the
Hilbert series of Y is P (t)

(1−t)16 , then the Hilbert series of Λ∩ Y is P (t)
(1−t)9 , but this

contradicts the fact that Λ∩Y = LC is contained in a linear space of dimension
strictly smaller than 9.

In order to show the maximal number of 20 intersections can be achieved in
Proposition 2.5, we need to find a curve C ⊆ X such that the bilinear sphere
conditions of its points define a linear subspace in P̌16

C
of dimension 9. This is

equivalent to asking dim
(
span(C)

)
= 15−9 = 6. We will deal with this problem

in Section 3.

Remark 2.6. The proof of Proposition 2.5 also gives a simple alternative proof
for the number of solutions (over C) of the spatial Burmester problem, which
reads as follows: Given seven poses ς1, . . . , ς7 of a moving system ς, determine
all points of ς, that are located on a sphere in all seven poses.

The given poses correspond to seven points in X, which span in the general
case a P6

C
. Therefore its dual space is of dimension 9, and so intersects Y in

exactly 20 points.
This number was first computed by Schoenflies in [40, page 148] and con-

firmed by Primrose (see [41, footnote 3]) as well as by Wampler et al. [42,
Section 5]. We conclude noticing that the first solution of the spatial Burmester
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problem using an approach based on polynomial systems was presented by In-
nocenti [43], who also gave an example with 20 real solutions.

2.2. Bond theory
The second ingredient for our arguments is bond theory, a technique for

analyzing mobile multipods that was introduced and developed (in the form
we need here) in [36]. If KΠ is the configuration curve of a multipod Π of
mobility one, then the bonds of Π are defined as the intersections of KΠ with
the hyperplane H =

{
h = 0

}
. Note that such intersections always arise in

conjugate complex pairs since KΠ is a real algebraic variety and has no real
points.

Recall, that the elements of SE3 are in 1-to-1 correspondence with the real
points of the variety X so long as h 6= 0. So the bonds are points in the closure
of SE3 in this model of the group. The set B = H ∩X has dimension 5, and its
points, although they do not represent isometries, still have geometric meaning
as conditions imposed on the legs: we mean that if the configuration set KΠ

passes through a point in B than base and platform points of Π must satisfy a
certain condition. The variety B can be partition into five subsets, which differ
by the condition imposed on base and platform points of multipods. Detail of
these subsets can be found in [36], here we simply list the possibilities. We just
point out that we are not going to use the properties of inversion and similarity
points, we report them here only for the sake of completeness.

vertex the only real point in B; it is never contained in a configuration curve.

inversion points if a multipod Π has a configuration set passing through an
inversion point, then there exists two directions L and R in R3 such that
if we project the base of Π orthogonally along L and the platform of Π
orthogonally along R, we obtain two tuples in the plane that correspond
via an inversion (depending on the boundary point).

similarity points if a multipod Π has a configuration set passing through a
similarity point, then there exists two directions L and R in R3 such that
if we project the base of Π orthogonally along L and the platform of Π
orthogonally along R, we obtain two tuples in the plane that correspond
via a similarity (depending on the boundary point).

butterfly points these correspond to a pair of lines in R3, one for the base
and one for the platform; a multipod Π whose configuration set passes
through a butterfly point either has the base point on the base line or the
platform point on the platform line.

collinearity points these correspond to lines; if a multipod Π has a configu-
ration set passing through a collinearity points, then either its platform
points or its base points are collinear.

A mobile icosapod cannot have butterfly bonds (namely bonds that are
butterfly points), nor can it have collinearity bonds as this would imply that
there are at least 10 legs with collinear base points or platform points. Then
all points of the line carrying those base or platform points would be base or
platform points for a multipod with the same configuration set. We will not
consider these cases in our discussion.

10



Inversion points are smooth points of X, and their tangent spaces are con-
tained in H. Consequently every motion passing an inversion point is tangent
to the hyperplane H at this point. In particular, if a multipod Π of mobility
one has only inversion bonds, the degree of its configuration curve C is twice
the number of inversion bonds: the degree can be computed by intersecting C
with H, and there we see only pairs of double intersections.

Consider the projection P16
C

99K P9
C
keeping only the coordinates h and mij

for i, j ∈ {1, 2, 3}. The real points of the open subset defined by h 6= 0 in the
image of X is the group variety SO3, and the image itself is a subvariety Xm of
degree 8 that is isomorphic to the Veronese embedding of P3

C
by quadrics. This

follows from the bijection between points (e0 : e1 : e2 : e3) ∈ P3
R
and orthogonal

matrices (see [44, Section 4.5]) given by

(e0 : e1 : e2 : e3)
l

1
e20+e21+e22+e23

 e20+e21−e
2
2−e

2
3 2e1e2−2e0e3 2e0e2+2e1e3

2e1e2+2e0e3 e20−e
2
1+e22−e

2
3 −2e0e1+2e2e3

−2e0e2+2e1e3 2e0e1+2e2e3 e20−e
2
1−e

2
2+e23

 . (4)

In fact, if we consider the Veronese variety that is the image of the morphism

P3
C

−→ P9
C

(e0 : e1 : e2 : e3) 7→ (e2
0 : e2

1 : e2
2 : e2

3 : e0 e1 : e0 e2 : e0 e3 : e1 e2 : e1 e3 : e2 e3)

and we apply the projective automorphism given by the matrix

1 1 1 1 0 0 0 0 0 0
1 1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 −2 2 0 0
0 0 0 0 0 2 0 0 2 0
0 0 0 0 0 0 2 2 0 0
1 −1 1 −1 0 0 0 0 0 0
0 0 0 0 −2 0 0 0 0 2
0 0 0 0 0 −2 0 0 2 0
0 0 0 0 2 0 0 0 0 2
1 −1 −1 1 0 0 0 0 0 0

 , (5)

then a direct computation shows that we obtain Xm. The coordinates of P3
C

are called Euler parameters and denoted by e0, e1, e2, e3. The center of the
projection P16

C
99K P9

C
intersects X in the union of the sets of similarity points,

collinearity points and the vertex.

2.3. The subvariety of involutions
We focus our attention on a particular subvariety of X, the compactification

of the set of involutions in SE3. Involutions in SE3 are rotations of 180◦ around
a fixed axis, so their compactification — which we will denote by Xinv — is a 4-
dimensional subvariety of X, because the family of lines in R3 is 4-dimensional.
One reason why involutions are particularly useful in the creation of mobile pods
is that if p and P are a platform and a base point of a pod Π, and σ ∈ KΠ is an
involution in the configuration space of Π, then this means that ‖σ(p)− P‖ = d,
where d is the distance between p and P ; on the other hand, since σ is an
involution we have ‖σ(P )− p‖ = d. This means that if all isometries in the
configuration space of Π are involutions, then we can swap the roles of base
and platform points and obtain “for free” new legs not imposing any further
restriction to the possible configurations of Π.

11



If σ = (M,y) is an involution, then M = M t, that is to say M is symmetric,
and y = x. Hence we can consider the subvariety{

(h : M : x : y : r) ∈ X : M = M t and x = y
}
.

One verifies that this subvariety has two irreducible components, namely the
isolated point corresponding to the identity and another one of dimension 4,
which is cut out by a further linear equation, namely m11 +m22 +m33 +h = 0.

Definition 2.7. The subvariety of X defined by the equations M = M t and
x = y and m11 +m22 +m33 + h = 0 is denoted Xinv.

3. Mobile icosapods are line-symmetric

In this section we will show that if an icosapod of mobility one admits an ir-
reducible configuration curve, then its motion is line-symmetric (Theorem 3.10).
We start by translating this concept into our formalism. Recall from [36, Sec-
tion 2.2] that the group SE3 acts on its compactification X: every isometry
in SE3 determines a projective automorphism of P16

C
leaving X invariant.

Definition 3.1. Let C ⊆ X be a curve. Then C is called an involutory motion
if C ⊆ Xinv. The curve C is called a line-symmetric motion if there exists an
isometry τ such that the automorphism associated to τ maps C inside Xinv.

From Proposition 2.5 we know that the configuration curve of an icosapod
spans a linear subspace of dimension 6. To get an overview of possible examples
of irreducible curves C ⊆ X with dim

(
span(C)

)
= 6, we consider the projection

P16
C

99K P9
C
described at the end of Subsection 2.2. Let Cm ⊆ Xm be the

projection of C, which can be either a point or a curve. It is possible to prove
(see [45]) that if Cm is a point, then there exists a multipod with infinitely
many legs admitting C as configuration set. Since we are interested in pods
with finitely many legs, from now we suppose that Cm is a curve. Let Ce ⊆ P3

C
be its isomorphic preimage under the Veronese map.

Proposition 3.2. If C ⊆ X is an irreducible curve such that dim
(
span(C)

)
=

6, then Ce is either planar or a twisted cubic.

Proof. The projection of span(C) in P9
C
is a linear subspace of dimension at

most 6. Hence the ideal of Cm contains at least 3 linear independent linear
forms. Hence the ideal of Ce contains at least 3 linear independent quadratic
forms. If any of such quadratic form is reducible, namely splits into the union
of two planes, the statement follows; thus from now on we can suppose that all
of them are irreducible. Then the intersection of the zero sets of two of these
quadrics is a quartic curve D such that Ce ⊆ D. It cannot happen that Ce = D,
because this would contradict the fact that there are three independent quadrics
passing through Ce. Therefore the degree of Ce can only be 1, 2 or 3. If the
degree is 1 or 2, then Ce is planar; if the degree is 3, then Ce is either planar
or a twisted cubic, because by construction Ce is irreducible. The proposition
then follows.

From now on, since we aim for a result on mobile icosapods, we will consider
curves C allowing exactly 20 legs, that is satisfying the following condition:{

C is an irreducible real curve with real points,
LC consists of exactly 20 real finite points. (†)

12



Here by real “finite” points we mean that their z00-coordinates are not zero; in
other terms, such points determine pairs of base and platform points in R3 (and
not at infinity).

Remark 3.3. Notice that condition (†) does not comprise every mechanical de-
vice that one could name a “mobile icosapod”: there may exist a device admit-
ting infinitely many complex points in its leg space, of which only 20 are real
and finite; we believe that such situation cannot occur, but we were not able
to provide an argument for this. Still, we believe that condition (†) is a good
compromise because it will allow a uniform treatment of the topic.

Remark 3.4. Notice that condition (†) implies that dim
(
span(C)

)
= 6. More-

over, from Section 2.2 it follows that C does not pass through any butterfly or
collinearity point.

Lemma 3.5. Suppose that C ⊆ X satisfies condition (†). Then Ce cannot be
a cubic (neither a twisted cubic, nor a plane cubic).

Proof. Suppose that C satisfies condition (†) and Ce is a twisted cubic. Then the
curve Cm, isomorphic to Ce under the Veronese embedding, is a rational normal
sextic, and therefore spans a linear space of dimension 6. This means that the
projection C −→ Cm is a projective isomorphism — since by Remark 3.4 also
the curve C spans a linear space of dimension 6. This forces the center of the
projection to be disjoint from span(C). By Section 2.2, this implies that C does
not admit similarity or collinearity points. Recall from Remark 3.4 that the
curve C does not admit butterfly points, so the only ones left are the inversion
points. However, since the degree of C is twice the number of inversion points,
we would get 3 of them, and this is not possible, since they occur in conjugate
pairs.

Now, suppose that Ce is a planar cubic. Then the curve Cm spans a linear
space of dimension 5. This means that the center of the projection C −→ Cm

intersects span(C) in a single point. Since similarity points occur in pairs, as
remarked at the beginning of Section 2.2, such intersection cannot be a similarity
point; as before, Remark 3.4 ensures that the curve C does not admit butterfly
or collinearity points, so C has only inversion points. Hence we can conclude as
in the previous case.

We focus therefore on curves C satisfying (†) such that Ce is planar of degree
different from 3. First we rule out the case when Ce is a line or a conic.

Lemma 3.6. Suppose that C ⊆ X satisfies condition (†). Then Ce cannot be
a line.

Proof. If Ce is a line the corresponding motion can only be a Schoenflies motion2.
These motions with points moving on spheres where previously studied by Husty
and Karger in [46]. It is not difficult to see that no discrete solution can exist,
as any leg can be translated along the axis of the Schoenflies motion without
restricting the self-motion. Therefore we always end up with an ∞-pod.

2These motions can be composed by a rotation about a fixed axis and an arbitrary trans-
lation.
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Lemma 3.7. Suppose that C ⊆ X satisfies condition (†). Then Ce cannot be
a conic.

Proof. Assume that Ce is a conic. The bilinear spherical condition BSC deter-
mines a subspace P̌9

C
⊆ P̌16

C
as dual to the linear projection P16

C
99K P9

C
. By

a direct inspection of Equation (3) one notices that the subvariety Y∞ ⊆ Y
composed of those pairs (a, b) of points with a0 = b0 = 0 (namely legs for
which both the base and the platform point are at infinity) is contained in P̌9

C
.

The dimension of Y∞ is 5 and its degree is 6, since it is a cone over the Segre
variety P2

C
× P2

C
.

Consider now the set of linear forms in P9
C
vanishing on Cm: this is a vector

space of dimension 5, since it is isomorphic to the vector space of all quadratic
forms on P3

C
that vanish along Ce. In this way we get a linear space P̌4

C
⊆ P̌9

C
.

The intersection P̌4
C
∩ Y∞ ⊆ LC is non-empty and is in general constituted of

6 points. Thus the number of real legs not at infinity is at most 14, and this
contradicts the assumption that LC has 20 real finite points.

For the remaining cases, when Ce is a planar curve of degree greater than or
equal to 4, we want to prove that there exists an isometry τ such that the image
of C under the corresponding projective automorphism is contained in Xinv.
Recall from Section 2.2 that we denoted e0, . . . , e3 the coordinates of the P3

C
where Ce lives. We may assume without loss of generality that e0 = 0 holds for
the points of Ce; this can be achieved by a suitable rotation of the coordinate
frame of the platform — specifically by acting on C with a suitable rotation —
since by assumption Ce is planar. In terms of the coordinates of X, this means
that we can apply an automorphism of P16

C
induced by an isometry so that the

points of C satisfy mij = mji and m11 +m22 +m33 + h = 0: this follows from
the relations between the variables (h : M) and the variables (e0 : e1 : e2 : e3)
(see in particular Equations (4) and (5) when e0 = 0).

We can use the assumption e0 = 0 in order to simplify the embedding. Let
X1 be the intersection of X with the linear space{

(h : M : x : y : r) ∈ P16
C

: mij = mji and m11 +m22 +m33 + h = 0
}
.

Notice that X1 is the set-theoretical preimage of the locus {e0 = 0} under the
projectionX 99K P3

C
, where such projection is obtained composing the projection

to P9
C
on the (h : M)-coordinates with the inverse of the Veronese embedding

P3
C
−→ P9

C
. We project X1 from the point (0 : · · · 0 : 1) in P16

C
— the only

singular point of X of order 20 — obtaining a subvariety X2 of P15
C
, which is

actually contained in a linear subspace isomorphic to P11
C

because of the linear
equations imposed on X1.

If we express the coordinates h and mij for i, j ∈ {1, 2, 3} in terms of the
Euler coordinates e1, e2, e3, and apply the coordinate change

pi = xi + yi, qi = xi − yi, for i ∈ {1, 2, 3},

then we obtain a map from X2 to the weighted projective space PC(~1,~2) (see
[47, Example 10.27] for a reference for weighted projective space). Here ~1 =
(1, 1, 1) and ~2 = (2, 2, 2, 2, 2, 2) and we take coordinates e1, e2, e3 of weight 1
and p1, p2, p3, q1, q2, q3 of weight 2. The image of X2 is a weighted projective
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variety Z ⊆ PC(~1,~2) of dimension 5 defined by the equations

e1 p1 + e2 p2 + e3 p3 = p1 q1 + p2 q2 + p3 q3 =

e1 q2 − e2 q1 = e1 q3 − e3 q1 = e2 q3 − e3 q2 = 0,

as a direct computation using computer algebra confirms. Therefore, for a
curve C ⊆ P16

C
for which Ce is planar and satisfies e0 = 0 we get a map C −→

Cz ⊆ Z that is the composition of a projection, a linear change of variables and
a Veronese map.
Remark 3.8. At the beginning of the section we pointed out that isometries
determine automorphisms of P16

C
leaving X invariant. Notice that the auto-

morphisms corresponding to translations leave X1 invariant, since its equations
comprise only the rotational part of isometries. Therefore translations also act
on Z.

Lemma 3.9. Suppose that C ⊆ X satisfies condition (†). Let Cz ⊆ Z be the
image of the curve C under the previously defined maps. Then there exists a
translation of the platform such that the corresponding automorphism maps Cz

to a curve C ′z whose points satisfy q1 = q2 = q3 = 0.

Proof. From the discussion so far we may infer that deg(Ce) > 3. We are espe-
cially interested in the q-vector, so let W ⊆ PC(1, 1, 1, 2, 2, 2) be the projection
of Z to the e and q-coordinates and let Cw be the image of Cz under such
projection. The set W has dimension 4, and its equations are

e1 q2 − e2 q1 = e1 q3 − e3 q1 = e2 q3 − e3 q2 = 0. (6)

By a direct inspection of the map C −→ Cw one notices that forms of weighted
degree 2 on Cw correspond to linear form on C. It follows that the vector space
of weighted degree 2 forms on Cw has dimension at most 7. There are 9 forms
of weighted degree 2 on PC(1, 1, 1, 2, 2, 2) and they are all linear independent as
forms on W because the latter is defined by equations of weighted degree 3.
Hence Cw satisfies at least 2 equations E1 = E2 = 0 of weighted degree 2.

By construction, the polynomials Ei are of the form Ei = Li (~q) + Qi (~e),
where Li is linear and Qi is quadratic. Notice that L1 (~q)L2 (~e)− L1 (~e)L2 (~q)
vanishes on W , because it is a multiple of the polynomials in Equation (6).
Therefore on Cw we have

E1 (~e, ~q) L2 (~e)− E2 (~e, ~q) L1 (~e) = Q1 (~e) L2 (~e)−Q2 (~e) L1 (~e) = 0.

The latter is a cubic equation only in the variables ~e, thus it is satisfied by Ce.
On the other hand, Ce is a planar curve of degree greater than 3, so Ce cannot
satisfy a nontrivial cubic equation. Therefore we conclude that Q1 (~e) L2 (~e)−
Q2 (~e) L1 (~e) is zero on P2

C
. Since L1 and L2 cannot be proportional (otherwise

we would be able to obtain from E1 and E2 a quadratic equation in ~e satisfied
by Ce) we conclude by unique factorization that Li is a factor of Qi for i ∈ {1, 2}.
Hence Qi (~e) = L (~e) Li (~e) for some linear polynomial L.

From Equation (6) we infer that L1 (~q) ej = L1 (~e) qj for j ∈ {1, 2, 3}. Since
E1 is zero on Cw, we have −L1 (~q) = L (~e) L1 (~e) on Cw. Multiplying by ej the
last equation yields:

−L1 (~e) qj = −L1 (~q) ej = L (~e) L1 (~e) ej ,
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implying that qj = L (~e) ej holds on Cw for j ∈ {1, 2, 3}.
One can verify that the automorphism corresponding to the translation by

a vector ~a = (a1, a2, a3) ∈ R3 acts on the coordinates of PC(1, 1, 1, 2, 2, 2) by
sending

(~e, ~q) 7→ (~e, ~q + `~a ~e) ,

where `~a = a1 e1 + a2 e2 + a3 e3. Hence, if L (~e) = α1 e1 + α2 e2 + α3 e3, it is
enough to apply to Cw the automorphism corresponding to the translation by
the vector α = (α1, α2, α3) to get that q1 = q2 = q3 = 0 holds on Cw. This
proves the statement.

We are now ready to prove our main result.

Theorem 3.10. Let Π be a mobile icosapod such that its configuration curve KΠ

is irreducible and satisfies (†). Then KΠ is a line-symmetric motion.

Proof. From the discussion so far (Proposition 3.2, Lemma 3.5 and the para-
graph following Lemma 3.7) we know that it is possible to apply a projective au-
tomorphism toKΠ so that the equationsmij = mji andm11+m22+m33+h = 0
hold. Hence we only need to ensure x = y. However, in the new embed-
ding in PC(1, 1, 1, 2, 2, 2) defined in Lemma 3.9 those equations correspond to
q1 = q2 = q3 = 0, so Lemma 3.9 shows the claim.

Remark 3.11. From Theorem 3.10 the set of base and platform points of the
icosapod possesses a line-symmetry during the complete self-motion. But this
property holds for any pod with a line-symmetric self-motion (see Theorem 1.1).
As a consequence one could call these mechanical linkages "line-symmetric icos-
apods" by analogy to the "line-symmetric Bricard octahedra".

4. Construction of real icosapods

Borel proposed the construction of line-symmetric icosapods simply by inter-
secting Xinv with a general linear subspace T of dimension 7 in P10

C
, as explained

in Section 4.1. Since Xinv is a variety of codimension 6 and degree 12 in P10
C
,

the intersection C = Xinv ∩ T is an irreducible curve of degree 12. Indeed, C is
a canonical curve of genus 7, as one can read off from the Hilbert series of Xinv.
The projection Ce of C to the Euler parameters is a planar sextic. Recall that
the leg set LC is the intersection of Y with the dual of span(C), a linear sub-
space of codimension 7; this is, in general, a set of 20 complex points. It was not
previously known whether there are examples with 20 real legs, and the goal of
this section is to show that there are instances of such curves C for which this
is the case. We reduce the problem to a question on spectrahedra whose answer
is well-known.

4.1. Borel’s construction
We rephrase Borel’s construction using the terminology and concepts intro-

duced in this paper. Let S be the linear subspace defined by the equations
M = M t and x = y. Notice that S has projective dimension 10 and con-
tains Xinv, although span(Xinv) is a linear subspace of dimension 9. The re-
striction of the bilinear sphere condition from Equation (3) can be written in a

16



symmetric way as

l h+ z00r − 2

3∑
i=1

s0ixi − 2

3∑
i=1

ziimii − 2

3∑
1≤i<j

sijmij = 0, (7)

where sij = zij + zji for 1 ≤ i < j ≤ 3. We denote this equation by SBSC, for
symmetric bilinear sphere condition. It defines a duality between S and a linear
subspace P̌10

C
⊆ P̌16

C
whose projective coordinates are l,z00, . . . , z33,s01, . . . , s23.

The intersection of the leg variety Y with such a P̌10
C

parametrizes pairs of legs
obtained by swapping the roles of the base and the platform points. Denote by
π : P̌10

C
99K P̌9

C
the projection defined by removing the l-coordinate. We denote

by Yinv the image of the map α : P3
C
× P3

C
−→ P̌9

C
,(

(a0 : · · · : a3), (b0 : · · · : b3)
)
7→ (a0 b0︸︷︷︸

z00

: · · · : a3 b3︸︷︷︸
z33

: a0 b1 + a1 b0︸ ︷︷ ︸
s01

: · · · : a2 b3 + a3 b2︸ ︷︷ ︸
s23

).

One can easily prove that Yinv is nothing but the projection under π of the
intersection Y ∩ P̌10

C
. Note that α is a 2 : 1 map, since α(a, b) = α(b, a) for all

a, b ∈ P3
C
. Because of this, it might happen that two pairs of complex points are

sent by α to a real point of Yinv.
For any curve C ⊆ Xinv, the leg set LC is equal to the intersection of

the linear space Γ̃, dual to span(C), with the cone over Yinv in P̌10
C
, namely

π−1 (Yinv). If dim span(C) = 6, then dim Γ̃ = 3. Since Xinv is contained in the
hyperplanem11+m22+m33+h = 0, it follows that Γ̃ passes through the point pe
with coordinates l = −2, z11 = z22 = z33 = 1 and all other coordinates being
zero. Borel’s construction can be rephrased as simply choosing a 3-space passing
through pe and intersecting with the cone over Yinv. This cone has degree 10 and
codimension 3 in P̌10

C
, so generically there are 10 solutions (possibly complex),

each corresponding to a pair of legs. For a general 3-space Γ̃ passing through
pe, one can ask three questions on reality:

1. How many of the 10 points of Γ̃ ∩ π−1 (Yinv) are real?

2. How many of the real points above have real preimages under α? Namely,
how many real legs does the curve C admit?

3. Does the curve Xinv ∩ Λ have real components, where Λ is the dual to Γ̃
under SBSC?

The answers to Question (1) and (2) only depend on the projection of Γ̃ to P̌9
C
.

In order to obtain positive answers for Question 3, it is also convenient to start
with the projection to P̌9

C
.

Definition 4.1. A Borel subspace Γ is a 3-space in P̌9
C
passing through π(pe).

The following proposition settles Question (3).

Proposition 4.2. Let Γ be a Borel subspace. Then there exists a 3-space Γ̃
passing through pe such that π(Γ̃) = Γ and Xinv ∩Λ has real components, where
Λ is the dual of Γ̃ under SBSC.
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Table 1: Points in Γ̃ ∩ π−1(Yinv).

no. of real points 2 4 6 8 10
frequency 22 1067 3638 4035 1238

Table 2: Points in α−1
(
Γ̃ ∩ π−1(Yinv)

)
.

no. of real points 2 4 6 8 10 12 14 16 18 20
frequency 0 4107 0 5240 0 650 0 3 0 0

Proof. Let f : S 99K P4
C
be the projection from the linear subspace U dual

to π−1(Γ). Note that U is contained in the hyperplane m11 +m22 +m33 +h = 0.
Hence the image of Xinv under f is contained in a linear 3-space, and f |Xinv

has
one-dimensional fibers. Since Xinv has real components, it follows that there
exist fibers (f |Xinv)−1(q) with real components, for some q ∈ P4

C
. We just need

to choose Γ̃ dual to f−1(q); then Xinv ∩ Λ coincides with (f |Xinv)−1(q) and
therefore has real components.

In order to get some statistical data on the answers to Question (1) and (2),
we tested 10000 random examples3 of Borel subspaces. The results are shown
in Tables 1 and 2.

As one can see, the experimental data do not reveal any example of pods
with 20 real legs. This is, however, misleading; see the next section.

4.2. Icosapods via spectrahedra
We conclude our work by showing how it is possible to construct a mobile

icosapod with 20 real legs using some result in convex algebraic geometry.
Consider a 4-dimensional vector space A of symmetric 4×4-matrices over R.

Classically, the spectrahedron defined by A is the subset of A comprised of
positive semidefinite matrices. One can also consider the spectrahedron as a
subset of the projective space P(A) ∼= P3. The boundary of the spectrahedron
consists of the semidefinite matrices with determinant 0, and hence its Zariski
closure is a quartic surface in P3, called the symmetroid defined by A. In general,
a symmetroid has 10 double points, corresponding to matrices of rank 2.

Given a spectrahedron whose symmetroid has 10 complex double points, its
type is the pair of integers (a, b), where a is the number of real double points
of the symmetroid and b is the number of real double points of the symmetroid
that are also contained in the spectrahedron.

Theorem 4.3. There is a bijective correspondence between quartic spectrahedra

containing the matrix E :=

(
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
and Borel subspaces. For a spectrahedron

defined by a vector space A and the corresponding Borel subspace Γ, the following
statement holds: if the spectrahedron has type (a, b), then Γ intersects Yinv in a
real points, and a− b of them have real preimages under α.

3The Maple code used to perform such experiments can be downloaded from http://
matteogallet.altervista.org/main/papers/icosapods2015/Icosapods.mpl
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Proof. We identify P̌9
C
with the projectivization of the vector space of symmetric

4 × 4 matrices in the following way: a point with homogeneous coordinates
z00, . . . , s23 corresponds to the class of the matrix

2 z00 s01 s02 s03

s01 2 z11 s12 s13

s02 s12 2 z22 s23

s03 s13 s23 2 z33

 .

A linear subspaceA of dimension 3 in the space of symmetric matrices containing
the matrix E corresponds then to a Borel subspace Γ.

The subvariety Yinv corresponds to the subvariety of matrices of rank 2.
A real matrix of rank 2 does not lie on the spectrahedron if and only if the
quadratic form defined by it is a product of two distinct real linear forms, and
this is true if and only if its preimage under α is real.

Degtyarev and Itenberg in [48] determined all possible types of quartic spec-
trahedra. In particular, spectrahedra of type (10, 0) do exist, hence by Theo-
rem 4.3 they provide Borel subspaces intersecting Yinv in 10 real points, each of
them having two real preimages under the map α. This implies that there exist
Borel icosapods with 20 real legs.

In [3], the authors give explicit examples of spectrahedra for all possible
types. The given example of type (10, 0) does not contain the matrix E, but it
is easy to adapt their example to one of the same type that does contain E.

4.3. Example
Starting from [3, Section 2, Case (10, 0)] we computed4 the following exam-

ple, which is suitable for graphical representation:

P1 = p4 =
(
− 19493

142100 ,−
2088
94325 ,−

24
9625

)
, p1 = P4 =

(
− 36411

267844 ,−
1608

177793 ,
504

25399

)
,

P2 = p5 =
(
− 269

5000 ,
39

1000 ,
17
500

)
, p2 = P5 =

(
− 47

368 ,−
12

1771 ,
21

1265

)
,

P3 = p6 =
(
− 1863

14645 ,−
106851
1555400 ,

2509
222200

)
, p3 = P6 =

(
− 15185

112462 ,−
120

149303 ,
48

3047

)
.

We apply a half-turn to the platform about a line ` through the point
(− 1

10 , 0, 0) in direction (1, 7003716944
10000000000 ,

8
10 ). In the resulting initial position, which

is illustrated in Figure 1, the squared leg lengths of the first six legs read as fol-
lows:

d2
1 = d2

4 = 1081643179736912972309543483891375692
276669953748621822688942197018838171875 ,

d2
2 = d2

5 = 219482305781081742844809989061
29002829339836395492656900000000 ,

d2
3 = d2

6 = 4185335506762812187908674782558830797
636621874987061375644008358435317156000 .

For this input data the self-motion consists of two components. The trajectories
of the component which passes through the initial position are illustrated in
Figures 3 and 4. In the latter figure also the associated basic surface is displayed.
An animation of this line-symmetric self-motion can be downloaded from www.
geometrie.tuwien.ac.at/nawratil/icosapod.gif.

We close the paper by mentioning two open questions that we find of interest:

4The Maple code containing a similar computation can be downloaded from http:
//matteogallet.altervista.org/main/papers/icosapods2015/Icosapods.mpl
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`

Figure 3: The 20 spherical trajectories passing through the initial position of the icosapod.

- Starting from spectrahedra of type (a, b) with a−b ≥ 4 one may construct
mobile pods with 16, 12 or 8 legs: is it true that a general mobile pod
with 16, 12 or 8 legs is line-symmetric? (It is known that a, b have to be
even numbers.)

- Identify all cases where more than 20 points move on spheres during a
line-symmetric motion; i.e. (a) 1-dim, (b) 2-dim or even (c) 3-dim set of
points with spherical trajectories. Case (c) is completely known due to
Bricard [12], but cases (a) and (b) are still open. Examples for both cases
are known (cf. Section 1.2.2 and [11, 12, 14, 18]).
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