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Abstract 
 

PiezoForce Microscopy (PFM) has been used to determine the domain structure of lead 

zirconate titanate (PZT) (30/70) on an Indium Tin Oxide (ITO)/Glass substrate with a 

TiO2 boundary layer. The PZT nucleates into the perovskite form in a random 

crystallographic manner, which leads to a random domain structure in the final film. 

Using PFM it has been possible to visualise the domain structure of the PZT and 

determine that the domain structure has features as fine as 8nm herringbone patterns. The 

possible impact of these structures for future devices utilising nanoscale features of PZT 

and especially FeRAM developments is highlighted. 

 

 

Here we report the use of an SPM (scanning probe microscope), modified to perform 

PFM (piezoresponse force microscopy), to visualise the domain structure in PZT 30/70 

(lead zirconate titanate 30/70) thin films with nanometric resolution and the possible 

impacts for ferroelectric memories. The use of ferroelectric thin film materials as the 

storage medium in memory devices is not a new phenomenon [1-4] The potential 

advantages of using the ferroelectric layer to store data was first highlighted during the 

1950’s with work continuing up to the present day [5, 6]. Further development of non-
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volatile memory devices for use in information technology applications is becoming 

increasingly reliant on the ability to produce high quality ferroelectric thin films [7, 8]. A 

thorough understanding of their behaviour at the nanoscopic level is essential if we are to 

understand the problems of retention and fatigue associated with many ferroelectric 

materials when applied to memory devices.  The use of PFM to study and manipulate the 

domain structure of a ferroelectric materials at nanometric resolution has been widely 

reported [9-12]. Here we show that it is possible to image features as fine as 8nm in the 

domain structure of PZT 30/70 films deposited on ITO (indium tin oxide) coated glass 

and that the domain structure in the PZT is not homogeneously distributed. 

 

Using the polarisation state of a ferroelectric material it was proposed that a device with a 

very fast access time and low power consumption, could be manufactured [13]. However, 

when such devices were produced they suffered from excessive fatigue[2, 14], i.e. reduced 

ability to store charge upon subsequent cycling. Two broad solutions have been 

investigated to reduce the fatigue demonstrated by the device. These are the use of 

oxygen donating electrodes[15-18] such as ITO or RuO2 or substituting the ferroelectric 

layer for a so-called ‘fatigue free’ ferroelectric material[19-21]. Fatigue free materials have 

proved difficult to grow in an orientation suitable for use as the capacitor layer in Fe-

RAM devices [21]. It is possible to produce ferroelectric material, such as PZT, on 

oxygen donating electrodes such as iridium/iridium oxide or ruthenium oxide. The 

resulting ferroelectric layer can be too ‘leaky’ (the charge stored leaks away rather than 

remaining in the memory cell) for use in non-volatile applications. However, the 

deposition of PZT onto ITO coated glass has been shown to increase the fatigue life of 

PZT [22] and has been attributed to the ability of the ITO to behave in a non-blocking 
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way to charged defects by conducting anions. Previous investigations have concentrated 

on determining the fatigue properties of the films using devices such as the Radiant 

Technologies RT66A and ‘Fatigue’ software (further information can be found at 

http://www.ferrodevices.com/vision.html#mt). These studies have derived information 

regarding the fatigue and ferroelectric properties of the material on a micro-meter scale. 

By using PFM and intermittent contact mode SPM we have determined that there are 

significant variations in the domain structure of the PZT below this scale and that these 

domains vary from region to region across the film surface. 

 

Our films were prepared by spin coating a sol of PZT pre-cursor materials to produce a 

film 70nm thick. The PZT film was “dried” at 450ºC and annealed at 570ºC for 20 

minutes producing a fully-perovskite film. A full discussion of the nature of the 

nucleation, the effect this has on the topography and the crystallography of the film is 

given by Shaw et al [23, 24].A Digital Instruments Dimension 3000 SPM was modified 

to perform PFM, shown schematically in Figure 1. An oscillating AC signal at 17.68kHz 

and 1.5 V peak to peak was applied between the SPM tip and the back electrode (held at 

ground) across the PZT sample. This induces a converse piezoelectric effect in the PZT 

thin film with the resulting signal being detected by a lock-in amplifier (EG+G, 7260) 

and used to generate the PFM domain map. For further information regarding the 

technique of PFM, it’s history, usefulness, physical interactions that govern the response 

of the cantilever and methods of data analysis the reader is directed to the following 

references[11, 25-33]. The SPM tips used for these experiments were Nanosensors 
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Electrostatic Force Microscopy tips coated in PtIr with a resonant frequency around 270 

kHz. All PFM experiments were performed in contact mode. 

 

A topographic image for the region investigated is shown in Figure 2. This indicates that 

the PZT has not grown into a smooth layer. Individual plates have formed during 

crystallisation of the pyrochlore phase into the perovskite phase, resulting in the surface 

topography seen. Within each of the large plates (2-5μm across) individual crystallites of 

PZT can be seen as small bumps on the surface of the sample. A PFM image for the same 

region is shown in Figure 3. The plate boundaries are easily seen as well as the large 

variation in the contrast in the image.  

 

The PFM technique maps the domain structure of the material by detecting the phase 

shift in the converse piezoelectric effect for oppositely poled regions in the film. When a 

film has been deposited by a sol-gel technique it usual and indeed thermodynamically 

predicted that the domain structure of the surface will have a zero net polarization. This is 

achieved by the surface of the film having a random orientation of domains that add to 

give a net neutral surface. If the film was poled in one direction, for example, with the 

spontaneous dipole up then the image produced would be all white. The variation in 

contrast across the image indicates that the domains, and hence crystal structure, in the 

as-deposited material are not homogeneously orientated. If the structure of the material 

was homogeneously orientated, i.e. a [111] or [100] psudo-epitaxal structure, then the 

image would contain only regions of black and white, with no gray or grayscale areas. 

This finding is supported by the XRD pattern for the sample, which is similar to that of 
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the powder pattern for PZT [24] indicating that the crystallographic orientation in the 

film is not constrained to one orientation. This result means that the PZT grown on the 

ITO is only able to exhibit maximum spontaneous polarization, due to the perpendicular 

alignment of the axis of maximum polarisation in certain areas of grains at discrete 

regions across the surface. Some regions of the surface contain material that is aligned 

with the axis of maximum polarisation parallel to the surface and, as such, application of 

an electric field to these regions will not induce the maximum polarization for the 

sample. The result of this is that it is not possible to produce an image that is all black or 

after the application of the poling voltage. This variation of the polarisable dipole means 

that the material in this region is unsuitable for use as a ferroelectric memory cell. As 

PFM measures the displacement of the surface due to the converse piezoelectric effect, 

the variation in polarisation is due to the variation in effective d33 of the sample in the 

regions under the probe tip. 

 

The scale of the regions that show a variation in the domain structure varies across the 

image. In region A, see Figure 3 a PFM image of the surface of the PZT, the domain 

structure of the PZT changes over a period of about 500nm, whereas, in region B the 

domain structure is varying over a period of 8nm. The PZT image shown is a raw data 

Digital Instruments screen capture of the SPM signal input into the AFM, no post capture 

data manipulation has been performed. Variations in the native polarisation direction of 

the ferroelectric at these dimensions are likely to have a marked effect on the 

performance of a FeRAM device made from PZT grown on ITO. Some memory cells 

could exhibit excellent retention performance due to the high polarisability with other 
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cells behaving less well or not at all. These variations in polarisability lie in the 

transformation process for perovskite development, which is directly attributed to the 

electrode system used. PZT grown on Pt electrodes can be produced as very highly 

orientated [111] but this system is not suitable for FeRAM devices[14]. 

 

It is also worth noting that the domain structure produces a herringbone like pattern along 

one site of the two crystallite interfaces. These structures are about 8nm in cross section, 

shown in Figure 4 a higher magnification image of region B shown in Figure 3. The 

presence of such fine domains with the associated increase in density of the domain walls 

is likely to have implications on the rate of fatigue for these regions. Although it is 

accepted that an increase in defect density, especially oxygen defects, is mainly 

responsible for fatigue in PZT ceramics the presence of domains walls also adds to the 

fatigue in the ferroelectric. This is due to the stress relaxation as orthogonal domains 

relax back to 180º and the resulting mechanical stresses on the film and domain wall 

pinning. The increase in the mechanical stress within the material reduces the polarisation 

of the material. Significant increases in the number of domain walls within the sample 

increase the local stress and therefore reduce the number of cycles required for fatigue.  

 

The magnified section of the PFM image of Figure 4 shows that, along with the 

herringbone pattern present in the PZT, the surface is made up of number of discrete pits. 

The origin of these pits are believed to stem from noise in the system and can also been 

seen in Figure 3 as a speckling of the image. The speckling seen in the image can also 

been seen on the real time output from the lock-in amplifier and is believed to be due to 
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come from the vibration induced by air flow over the sample during analysis. The pits are 

not visible in the topographic image due to larger amplitude of z-signal when obtaining a 

topographic image (the topographic height variation is shown on a 50nm scale, vertical 

displacement of the piezoresponse signal is at best 50pm[34]). These herringbone 

features are therefore associated with the piezoelectric structure of the sample. A cross 

sectional TEM image of the sample shows features of a similar dimension to the 

herringbone pattern shown in the PFM image, and is shown in Figure 5. It is likely then 

the nanometre sized crystallites within the large plates of the PZT are responsible for the 

variation in the piezoelectric response found by PFM. The TEM image also shows that 

the origin of the plates formed in the PZT stems from the transformation mechanism of 

pyrochlore to perovskite PZT [24]. The mechanism of transformation from pyrochlore to 

perovskite PZT that was grown on ITO/Glass produces a material that has considerable 

variation in the piezoelectric structure. 

 

We have shown that a PZT film deposited by spin coating and subsequent firing onto a 

substrate highly suitable for FeRAM applications has a variation in domain orientation. 

The scale of variation in the domain orientation and changes in polarisability across the 

sample has implications for using the material as the storage layer in FeRAM devices. 

Current device design relies on homogeneity of materials properties throughout the active 

areas, this was not found for the PZT evaluated.  The ability to image the domains of a 

material and show that they exist with nanometric resolution allows the further 

development of processes and materials suitable to produce materials for FeRAM 

devices. 
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List of figures: 
 
Figure 1, Schematic of apparatus used to complete PFM measurements showing 
modifications made to Dimension 3000 SPM system. 
 
Figure 2, Tapping mode topographic image for PZT 30/70 grown on ITO/Glass. 
Individual crystallites are visible as the boundaries between them. 
 
Figure 3, PFM domain map for region shown in Figure 2. The interfaces between 
crystallites are easily seen as is the variation in domain structure shown by the 
variation in contrast across the image. Region A indicated on the image shows a 
region of large scale (500nm) variation in domain structure. Region B seen on 
the image shows a region of small scale variation (8nm) in domain structure. 
 
Figure 4, High resolution PFM scan of Region B indicated in Figure 3. The 
striations produced by the herringbone domain structure are clearly visible. 
 
Figure 5, Cross sectional TEM image for PZT film grown on ITO/Glass 
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