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Theoretical considerations of the mechanics of whisker sensors
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Summary. Employing elastic rod theory we study the question which forces and moments measured at the base of a mammal’s whisker
(tactile sensor) allow for the prediction of the location in 3D space of the point at which the whisker makes contact with an object. We
show that, in the case of non-tip contact, the minimum number of independent forces or moments is three but that conserved quantities
of the rod equilibrium equations prevent certain triples from giving a unique solution. The existence of these conserved quantities
depends on the shape and material properties of the whisker. For tapered or intrinsically curved whiskers there is no obstruction to the
prediction of the contact point. Our results explain recent numerical observations in the literature and offer guidance for the design of
robotic tactile sensory devices.

Introduction

Mammal whiskers (vibrissae) allow terrestrial animals to obtain information about geometrical and mechanical properties
of the environment [1]. Animal whiskers are thin flexible rods grown out of follicles and consist of dead cells; there are no
sensors along the length of a whisker. Sensing therefore relies on the detection by mechanoreceptors at the whisker base of
forces and moments induced by contact with an external object and transmitted through the elastic medium. Knowledge
of how whiskers perform their sensory functions is of interest to engineers designing artificial tactile sensors [2]. To use
such artificial whiskers in robotics, it is essential to be able to determine the location, with respect to a reference frame,
of the point along the whisker shaft at which contact with an object occurs.
If three forces and three moments (in three independent spatial directions) are measured at the (fixed) whisker base,
then a suitable mechanical model of the whisker (e.g., a 1D continuum elastic rod or beam model [3]) allows the entire
configuration of the whisker, and hence the contact point, to be determined. These six measurements, however, require an
expensive six-axis load cell. It is natural, therefore, to ask whether fewer measurements would suffice to uniquely predict
the location of the contact point.
Past studies of this contact problem have mainly focussed on the planar case, where the contact point is specified by
two coordinates [4]. Whisker configurations, especially those with intrinsic curvature, may generally be non-planar. The
whisker contact problem was numerically studied in 3D in [5]. All 20 possible combinations of triples of base forces and
moments were analysed, however no theoretical explanation of the results was given.. Here we show that the difference
in the predictive ability of triples of forces and moments is mainly caused by the existence of conserved quantities, which
arise for whiskers with certain geometrical profiles (curvature, taper, etc.).

Boundary conditions and conserved quantities

The solution of an nth-order ODE, du/ds = f(u), u ∈ Rn, s ∈ [a, b], involves n integration constants. In physical
problems a unique solution is then usually obtained by imposing n boundary conditions at s = a and/or s = b to fix
those integration constants. For a linear ODE it is a rigorous result that a unique solution is obtained if the n boundary
conditions are linearly independent. For a nonlinear ODE (or nonlinear boundary conditions) the result is only true locally
(i.e., near a given solution) and only ‘generically’, i.e., away from branching points (bifurcations) for special values of
any parameters in the equations or values imposed at the boundary. (In the special case that all boundary conditions are
specified at one end, i.e., for an initial-value problem, a unique solution is guaranteed also for a nonlinear ODE.)
A conserved quantity (first integral) of the ODE is a function of the dependent variables ui (i = 1, ..., n) whose value
is constant along solutions of the equation. The presence of such quantities may put constraints on the specification of
boundary conditions [6]. For instance, in the simple case that one of the variables itself, say uk, is a conserved quantity
and we choose the boundary condition uk(a) = c, then uk(b) = d is not a proper boundary condition at the other end:
if c and d were unequal there would obviously be no solution, while if c and d were equal there might be infinitely
many solutions (depending on the other boundary conditions). In either case the BVP is said to be ill-posed. Another,
independent, boundary condition needs to be imposed instead to obtain a locally unique solution (i.e., a solution with no
infinitesimally close solutions). It is not always a priori clear that a given ODE has one or several conserved quantities
and well-posedness of a nonlinear BVP is generally not straightforward.
Conserved quantities can be viewed as continuous symmetry properties of the ODE. A more obvious example of contin-
uous symmetry is rotational symmetry of the equations, in which case for a well-posed BVP one has to impose boundary
conditions that break the symmetry, thereby picking out one of the continuous family of solutions. Besides continuous
symmetry a BVP may also have discrete symmetry, for instance, reflection symmetry, in which case the BVP has multiple
isolated solutions. Each of these will generally be locally unique and the BVP is considered well-posed, with the solution
being globally non-unique. ‘Modes’ (i.e., eigenfunctions) in eigenvalue problems, which also occur as isolated solutions,
are other examples of globally non-unique solutions. Conserved quantities do not necessarily distinguish between such
solutions.
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Equilibrium equations for an elastic whisker
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Figure 1: Coordinate systems for a whisker in
point contact with an object at s = s∗. For fric-
tionless contact the contact force Fn is normal
to the whisker.

We model the whisker-object contact problem by formulating a two-point
boundary-value problem using Kirchhoff rod theory [3]. Let Oxyz be an
orthogonal laboratory frame fixed at the base of the whisker (Fig. 1). The
whisker is taken to be inextensible and unshearable and to have length L.
Its centreline is denoted by r(s) = (x(s), y(s), z(s)), where s ∈ [0, L] is
arclength along the whisker, s = 0 corresponding to the base O and s = L
corresponding to the tip. Under the above assumptions we can introduce an
orthonormal material frame {d1,d2,d3} with d1 tangent to the centreline r,
i.e., r′ = d1, and d2 and d3 directed along principal axes of the whisker’s
cross-section (here and in the following a prime denotes differentiation with
respect to s). By orthonormality of the material frame there exists a vector
Ω such that d′

i = Ω × di (i = 1, 2, 3). The components of this vector
in the material frame, (ω1, ω2, ω3) =: ω, ωi = Ω · di, are the strains of the
theory, i.e., the curvatures ω2 and ω3, about d2 and d3, and the twist ω1,
about d1 [3].
The force and moment balance equations for the whisker are

F′ + ω × F = 0, M′ + ω ×M + i× F = 0, (1)

where F = (F1, F2, F3) and M = (M1,M2,M3) are triples of force and
moment components in the material frame and i = (1, 0, 0). We assume
the linear constitutive relations: M1 = C(s)ω1, M2 = B(s)ω2, M3 =
B(s)(ω3−ω30(s)). Here, B(s) and C(s) are the bending and torsional stiff-
nesses, resp. They are not constant in the particular case of a tapered rod.
The undeformed shape of the whisker is assumed planar but may be curved with intrinsic curvature ω30(s).
Eqs. (1) imply, respectively, that F · F and F ·M are constant. If ω30 ≡ 0, then M1 = const. The Hamiltonian
H = M2

1 /(2C) + (M2
2 +M2

3 )/(2B) +M3ω30 + F1 is conserved provided B, C and ω30 are constant, i.e. the rod is
translationally symmetric in the arclength s [6].

Table 1: Triples P of measurements that give
rise to an ill-posed BVP with non-isolated so-
lutions, for various intrinsic shapes of the rod
(* stands for any of the other quantities).

rod cylindrical tapered
(M1, ∗, ∗)

straight (α, β, ∗)
(ω30 = 0) (F1,M2,M3)

(F1,Mn, ∗)
curved - -

(ω30 6= 0)

We assume the whisker to be fixed in both position and orientation at the
base (s = 0). At the contact point (s = s? ≤ L) a normal contact force will
act from the surface of the object onto the whisker for a frictionless single-
point contact. We therefore consider the following boundary conditions:
r(0) = 0,di(0) = di,0,P(0) = P0, F1(s

?) = 0,M(s?) = 0, where
P = (P1, P2, P3) is the vector of base measurements consisting of three
components chosen from the six force and moment components. We also
introduce polar representations of the force and moment in the whisker [5].
Thus we write F2 = Fn cosα, F3 = Fn sinα, M2 = Mn cosβ, M3 =
Mn sinβ. Here Fn =

√
F 2
2 + F 2

3 and Mn =
√
M2

2 +M2
3 are the magni-

tudes of the normal force and moment components, while α and β are the
angles these components make with the material axes.
We note that three base measurements are sufficient for the well-posedness
of the tactile sensing BVP. We analyse how this well-posedness depends on
the precise choice of measured components Pi.

Summary of results

The results of our analysis are summarised in Table 1, where those combinations of force/moment measurements are listed
that are not appropriate in the design of an effective set of sensors at the base of a robotic whisker. A tapered whisker
may here be interpreted as any whisker whose B or C is not constant.
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