
PEER REVIEW 1

A Generic Framework for Deploying Video
Analytic Services on the Edge

Vassilios Tsakanikas, Student Member, IEEE, Tasos Dagiuklas, Senior Member, IEEE

Abstract—This paper introduces a novel distributed model for handling in real-time, edge-based Artificial Intelligence analytics, such
as the ones required for smart video surveillance. The novelty of the model relies on decoupling and distributing the services into
several decomposed functions which are linked together, creating virtual function chains (V FC model). The model considers both
computational and communication constraints. Theoretical, simulation and experimental results have shown that the V FC model can
enable the support of heavy-load services to an edge environment while improving the footprint of the service compared to state-of-the
art frameworks. In detail, results on the V FC model have shown that it can reduce the total edge cost, compared with a Monolithic and
a Simple Frame Distribution models. For experimenting on a real-case scenario, a testbed edge environment has been developed,
where the aforementioned models, as well as a general distribution framework (Spark ©) and an edge-deployement framework
(Kubernetes©), have been deployed. A cloud service has also been considered. Experiments have shown that V FC can outperform
all alternative approaches, by reducing operational cost and improving the QoS. Finally, a caching and a QoS monitoring service based
on Long-Term-Short-Term models are introduced and evaluated.

Index Terms—edge computing, AI applications, Virtual Function Chaining, caching, cost optimization, long-short term memory, QoS
constraints

F

1 INTRODUCTION

Artificial Intelligence (AI), as expressed by the latest de-
velopments of Machine Learning (ML) and Deep Learning
(DL), has produced numerous models which are mature
enough to reach the market massively during the next few
years. The main reasons for this, mainly involves the im-
provements on data-capturing devices, the re-engineering
of several ML algorithms and the release of ML and DL
toolkits, like PyTorch and TensorFlow [1].

Video analytics is an umbrella term for describing ap-
plications like object tracking, pedestrian detection, face
recognition, behavioral analytics etc. The common business
- technology model for deploying AI surveillance services
nowadays is Cloud Computing [2], where the captured
video streams are uploaded to a centralized data center. This
imposes a round-trip time to the throughput of the service
which, in many cases reduces significantly the Quality of
Service (QoS). This leads the service providers to either
reduce the processing frames per second (fps) or lower the
resolution of the captured videos, nullifying the advances of
new video sensors, like UHD and HDR sensors.

Edge Computing has been proposed as a computing
paradigm according to which the data are processed ’near’
the generating data devices and comprises many low-
capacity devices [3]. While this paradigm addresses the
large round-trip times of Cloud Computing, the QoS is now
limited due to the capacity of the edge devices. Not only
academia, but lately industry has placed focus on Edge
Computing, by providing software (e.g., Google Lite Tensor-
Flow©) and hardware (e.g., NVIDIA Jetson AGX Xavier©

(Corresponding author: VT)
Authors are with the Smart Internet Technologies (SuITE), Division of
Computer Science and Informatics, School of Engineering, London South Bank
University

and AWS DeepLens©) solutions which are suitable for edge
processing. As discussed in several works ([4], [5]), current
edge computing approaches face several challenges and
limitations. These limitations mainly involve the insufficient
computational capacities for heavy loaded tasks, like AI
model training and the low storage space usually the edge
devices are equipped with.

Cooperative and distributed models with the capacity to
address the aforementioned limitations and enable real-time
processing at the edge of the network are widely discussed
in several recent research works [6]. The obvious reasons for
targeting this research area mainly involve the efficient har-
vesting of the computational resources of the heterogeneous
edge networks while reducing the total operational cost of
such networks.

This paper proposes a novel distributing framework
which explores the Virtual Function Chaining (V FC) con-
cept inspired from the Software-Defined Networks and en-
ables the real-time inference for surveillance applications at
the Edge, supported by edge learning services build on deep
learning models with the capacity to monitor, assess and
predict the QoS of the supported services. In this model,
an AI smart video analytics service is decomposed to a
set of Virtual Functions (V Fs), which can be deployed on
different edge devices. Using these V Fs, a V FC is created
which process the streaming data in a distributed fashion.

The V FC framework deploy several modules which
aim to optimal design the service, monitor its QoS metrics
and fine-tune its configuration in order to avoid failures.
More specifically, a computational engine is responsible for
proposing the optimal setup of the V FC while an edge-
learning service monitors the performance of the edge de-
vices and propose possible alterations.

Authors, in a recent publication [7] have presented
the V FC architecture for effectively distributing an AI

PEER REVIEW 2

Fig. 1. Conceptual architecture of the proposed system.

surveillance service to the Edge. This architecture seam-
lessly integrates VFCs. The proposed architecture’s services
are mainly hosted on the Virtual Function Orchestrator
(V FO). In the same publication, a model for designing
the optimum setup for a V FC , in terms of V F instances
and V F placement on the edge devices is presented. Each
V F may appears in the V FC at several instances(replicas)
and interconnected V FCs (Fig. 2). This publication acts as
the base for extending our work. The contributions of this
manuscript mainly include:

1) An edge learning service is built on deep learning
models for assessing the QoS of the deployed ser-
vices and alerting in case a V FC is about to fail.

2) A caching mechanism, which demonstrates the scal-
ability of the proposed model when multiple ser-
vices are requested.

3) A prototype of the described architecture, which is
used to evaluate the described models and provide
a proof of concept, in terms of effectiveness and
feasibility, on enabling V FCs as a model for real-
time AI surveillance applications.

Additionally, within this work an extensive comparison
with generic distribution engines (Spark©, Kubernetes©) is
presented, along with a set of new experiments.

While the proposed model is inspired by the Service
Function Chaining (SFC) concept, it alters and extends
several of its features, in order to meet the requirements
of video analytics. First, it introduces a load-balancing
mechanism connected with the desired QoS, which mon-
itors the output of the service and rearranges the V FC
automatically. Additionally, it extends the SFC model by
allowing one V F instance to be part in several V FCs (e.g.
face detection, gender identification, etc.), so that several
video analytic services can be deployed simultaneously. The
different deployment modes of the V FCs are presented
in Fig. 2. The management of the V FC (autoscaling, QoS
monitoring, etc.) is facilitated by an edge-learning model

with the capacity to assess the performance of the edge
devices within a specific time-frame and inform the V FO
about possible failures.

The rest of this paper is organized as follows. Section
2 provides a brief state-of-the-art approaches for utilizing
Edge for hosting AI services, while Section 3 describes
the V FC model. Section 4 includes the implementation
details of all the tools developed to evaluate the proposed
concept. In Section 5, the results from the experiments are
presented. Finally, the results are discussed in Section 6 and
the conclusions and future work are drawn in Section 7.

Fig. 2. Different modes of V FC deployment. (a) Basic V FC deploy-
ment, (b) V FC deployment with V F replicas and (c) Two V FCs with
caching enabled.

2 STATE OF THE ART

During the last decade, academia and industry have intro-
duced a set of novel architectures which aim to efficiently
utilize low-end hardware at the edge of the network, near
the data generation sites. Such architectures, like Multi-
access Edge Computing, Fog Computing, Cloudlet Comput-
ing, and Mobile Cloud Computing, while differ in several
aspects, like communication network ownership, device
mobility and device power supply, all share in common
the same need for distributed architectures and approaches,
which can enable the hosting of more demanding services
[5]. Additionally, most of the relevant technologies which
support Internet of Things and management of data coming
from sensing devices are discussed in [8].

Several research studies have been focused on enabling
edge computing to support demanding latency sensitive
applications. Author in [9] has proposed a scheme for
handling mass video data coming from city surveillance
services on heterogeneous digital devices. Zhou et al. [10]
have described a model for offloading cloud by utilizing
an edge meshed network. Li et al. [11] have proposed a
general virtualization architecture, based on VMs, mainly
focusing on its networking aspects. Chen et al. [12] have
described an architecture which explores fog computing as
a processing infrastructure for supporting dynamic urban
surveillance streams. Dautov et al. [13] have performed a
comparison study among cloud, fog and edge computing

PEER REVIEW 3

for supporting intelligent surveillance applications. Mao et
al. [14] presented a wireless powered mobile-edge com-
puting system where the users have the capacity to share
communication and computation resources, under an ef-
ficient cooperation scheme, after formulating the relevant
optimization problem and solving it. Finally, Chen et al. [15]
presented an IoT-based smart grids model, which facilitate
the connection, management and real-time analysis and
processing of massive data, based on digitalization of power
smart grids.

The authors in [16] provide a survey of the applications
that can be supported from Edge Computing. Finally, the
author in [17] provides a holistic vision about surveillance
applications on edge/fog computing paradigms, where the
basic concepts, challenges and opportunities are discussed.

Our model has compared with the current state-of-the
art literature and does not require any special virtualization
(e.g. Virtual Machines) [11] or distribution [18] (e.g. Apache
Spark©) middle-ware in order to perform the real-time
calculation of AI analytics, offloading the edge devices from
the substantial overhead these approaches require. Addi-
tionally, surveillance applications are decomposed in virtual
functions that are deployed in nodes with the available
resources. Such functions are scaled up based on demands.

Deep learning techniques have been widely used during
the last years to extract information from various kinds of
data ([19]). Depending on the characteristics of input data,
several architectures for deep learning have been proposed,
such as the recurrent neural networks ([20]), convolutional
neural networks ([21]), and deep neural networks ([22]).
As deep and convolutional networks do not have the ca-
pacity to manage temporal information of input data, areas
involving data such as text, audio or video, recurrent neural
networks (RNNs) are usually applied. More specifically,
there are two types of RNNs: discrete-time RNNs and
continuous-time RNNs([23]). The main characteristic of the
RNN architecture is a cyclic connection, which enables the
RNN to possess the capacity to update the current state
based on past states and current input data.

Long short-term memory (LSTM) networks have been
proposed for input data which hold dependencies with
a large temporal distance [24], which fit the problem de-
scribed in the present model.

3 VIRTUAL FUNCTION CHAINING MODEL

Aiming to enable edge as a real time inference mechanism
for AI video analytics services, a generalization distribution
framework is proposed, according to which a video analytic
service is decomposed to a set of V Fs, creating a V FC . The
proposed model aims to facilitate the efficient offloading of
surveillance cloud services to a cooperative distributed edge
environment, where heterogeneous edge devices formulate
a service chain and jointly implement a service.

The basic principles of the proposed model (Figure 1) are
the following:

• Each surveillance service is decomposed to set of
processes. Each process implements certain tasks,
like image enhancement, edge detection, AI model
inference, etc.,

• Each process instantiates a V F and is deployed as
an edge node. Each V F comprises three parallel
threads: the Input Queue, the Output Queue and
the Running agent (Fig. 3). The running agent im-
plements the logic part of the V F (e.g. image fil-
tering) while the Input and Output queues handle
the packaging and communication of the V F with
the previous V F and the next V F in the V FC
respectively. The communication between the V Fs is
unidirectional, as surveillance services are streaming
processes.

• A surveillance service is realized by a V FC , similar
to the service function chaining proposed by the IETF
WG [25]. A V FC must include at least one instance
of each V F . The main concept of the model proposed
by [25], includes network services, like firewall and
packet filtering.

• V FO manages the V Fs allocation to the physical
devices and established the communication chan-
nels among them. Additionally, V FO monitors the
performance criteria of the service (e.g. processed
frames/sec, total cost, etc.) and performs actions in
order to meet them, while hosting the edge learning
AI model for QoS monitoring.

Fig. 3. Implementation of a V F .

3.1 Model Formulation
Each service is described by a V FC , and in general, a single
V F can have multiple instances (replicas) within the edge
environment. The rationale behind the replication of the
V Fs is that when a V F requires a processing time larger
than the one prescribed by the required QoS (note that (i)
the processing time of the whole V FC is actually equal
with the processing time of the most demanding V F in
the V FC , and (ii) the processing time of the V Fs must
be almost identical, due to the streaming nature of the
described services. If V Fi produces data faster than V Fi+1

can consume, then data will flood V Fi+1 leading to the
overflow of the input queue of the relevant edge device.)

When a user subscribes to a service (e.g. object detec-
tion, etc.), V FO instantiates the V FC by implementing the
following tasks:

PEER REVIEW 4

TABLE 1
Basic entities of the proposed V FC model.

Entity Formulation Description

Surveillance
service

−→
S =
[fps, {V Fj}]

fps is the processed frames /
sec the service requires (QoS)
{V Fj} is the set of processes
comprise the service

Virtual
Function

−−→
V F =
[cpuload,
outdata]

cpuload is the required CPU in-
structions per frame
outdata is amount of data vir-
tual function produces after
processing the input data

Edge
Node

−→
K =
[m, c(l), r(l)]

m is the CPU instructions /
sec the device can execute

c(l) is the cost function of the
device, when performing l CPU
instructions. Cost is a general
term which includes battery life,
maintenance cost, etc.
r(l) is the required time to pro-
cess l CPU instructions

Link
−−→
Wab = [bw]

bw is the communication
bandwidth among edge
nodes a and b

1) Calculates the required number of instances (repli-
cas) for each V F , in order to meet the service’s QoS
criteria,

2) Allocates the V Fs to edge devices and
3) Establishes communication channels between the

edge devices.

A V F instance can be part of several service chains.
Table 1 summarizes the formulations of the main entities
of the proposed modeling framework. It is important to
mention that we consider as the primary component of
the QoS the number of frames the service can successfully
process per second. This processing frame-rate influences
the data volume injected in the edge network and thus is
is correlated with the capacity of the distributed network to
undertake specific load. As there are additional components
that could be considered, as the resolution of the frame, we
chose not to consider them for defining the QoS, due to the
fact that frame-rate has a much higher contribution to the
data volume.

3.2 Problems definitions and solutions

V FO node needs to assign the V FC to the edge envi-
ronment. In order to achieve this, the following general
assignment constrained problem needs to be solved:

Problem 1: Determine the number of V F instances (replicas)
and assign each instance to an edge device, such that the video
analytics are generated while maintaining the required fps (as
imposed by the QoS), and the total edge environment cost be
minimum.

Problem 1 can be formulated as:

min

n∑

i=1

y∑
j=1

xi,jci,j

 (1)

min

y =
m∑
j=1

instancesj

 (2)

y∑
j=1

xi,j = 1 (3)

n∑
i=1

xi,j ≤ 1 (4)

timecomputational + timecommunication ≤
1

fps
(5)

, with

timecomputational =
j=1..y
max
i=1..n

{xi,jti,j}

timecommunication =
j=1..y−1
max

i,i′=1..n

{
xi,jxi′,j+1

outputj
Wi,i′

}
, where n is the number of edge devices,m is the number

of the V Fs, xi,j =

{
1 if V Fj is assigned on node ni
0 otherwise

,

ti,j is the required time for device Di to execute V Fj

and process the data produced from a single frame and
instancesj is the number of the required instances for V Fj .
Finally, Wi,i′ is the bandwidth of the communication link
between nodei and nodei′ , which host two adjacent V Fs, j
and j+1. This formulation describes a model which aims to
minimize the total cost of the service (eq. 1) while meeting
the QoS constraints (eq. 5), with the minimum number of
V F instances (eq. 2), requiring that each V F instance must
by assigned to exactly one edge device (eq. 3) and each edge
device can undertake no more than one V F instance (eq.
4). It would be possible to allow an edge device to execute
more than one V F by eliminating eq. 4. In the context of
this work, edge nodes are considered low-end devices with
limited resources, thus overwhelming them with more than
one V F is out of scope.

This is a NP-Hard problem [26], which requires a sub-
stantial computational time to be solved. In order to ac-
quire a feasible solution within an acceptable time-frame,
we decouple Problem 1 to two sub-problems: (A) V F in-
stances sub-problem and (B) the assignment (placement)
sub-problem.

Sub-problem A aims to identify the minimum number
of instances for each V F . As discussed in the previous
section, one instance from each V F must be deployed on
the V FC , in order to support the service. Let GV F =
[V F1, V F2, ..., V Fn] be the set of the first instances of each
V F . Each one of these V Fs will be deployed to a different
edge device. At this point of the assigning workflow, the
allocation cost is not considered. Yet, we seek if there is
a feasible solution of the placement, such that the QoS
constraint is met on a specific edge instance. This results
to the following relaxation.

min

{
j=1..y
max
i=1..n

{xi,jti,j}+
j=1..y−1
max

i,i′=1..n

{
xi,jxi′,j+1

outputj
Wi,i′

}}
(6)

m∑
j=1

xij = 1 (7)

n∑
i=1

xij ≤ 1 (8)

PEER REVIEW 5

Regarding ti,j , it can be calculated using the rd() func-
tion of the edge device d. Thus ti,j = ri(Nj), where Nj

refers to the CPU instructions required by V Fj to complete
its task.

Equation 7 reflects the fact that each V F from the GV F
set must be appointed only to one node and (eq. 8) that
each edge node can not undertake more than one V F . Sub-
problem A can be solved in a polynomial time by modeling
it as a Min Cost Flow problem [27]. The utilized solver is
a typical Hungarian algorithm. This process results to an
allocation of the GV F with the minimum required time
that the network can support. Let t∗ be the resulting time.
If t∗ ≤ 1

fpsserv
, then the edge network can support the

service without having to replicate a subset of the V Fs.
In this case, we can re-formulate the assignment problem
as a constrained mixed integer problem, with the following
formulation:

Sub-problem B:

min

n∑

i=1

m∑
j=1

xi,jci,j

 (9)

m∑
j=1

xi,j = 1 (10)

n∑
i=1

xi,j ≤ 1 (11)

j=1..y
max
i=1..n

{xi,jti,j}+
j=1..y−1
max

i,i′=1..n

{
xi,jxi′,j+1

outputj
Wi,i′

}
≤ 1

fpsserv
(12)

The objective function (eq. 9) of this formulation aims
to minimize the total cost of the V FC deployment to edge
network, while fulfilling the QoS constraints of the service
(eq. 12) and assigning all V Fs to a device (eq. 10) while
limiting the number of deployed V Fs to a device (eq.
11). This problem, can be solved by utilizing Constrained
Programming [28] in a polynomial time.

3.2.1 Solving Problem 1
If t∗ > 1

fpsserv
, then the computational capacity of the edge

devices is insufficient to support the service’s QoS, if only
one instance of each V F is deployed. In order to tackle this,
we draw inspiration from the recently launched concept of
Cloud-native functions [29], which handle dynamically the
number of their instances aiming to handle the incoming
requests. Thus, we propose a mechanism according to which
a V F can be launched to multiple devices, and share the
data coming from the previous V F of the V FC following
a round-robin approach. According to this mechanism, V F
replicas are deployed to different nodes, and each replica
undertakes a portion of the data produced by the previous
V F on the chain.

Thus, if a second instance of V Fj is deployed, the
required time for the function to process the data related
to a single frame changes from rk(l) to rk(l)

2 + b, where b is
the time overhead implied for handling the data separation
on V Fk−1 (previous V F in the chain) and data merging
on V Fk+1 (next V F in the chain), assuming that the two
instances of the V F is deployed to identical nodes.

This case leads as to the formulation of a new sub-
problem (sub-problem C). Its objective is to identify the
minimum number of replicate instances for each V F that
need to be deployed on the edge network, in order to meet
the QoS constraints. Let

−→
S = [s1, s2, ..., sm] represent the

number of instances for each one of the V Fs, with si being
an integer larger or equal to one (si ≥ 1). Thus, we derive
the following problem formulation:

min

m∑
j=1

sj

 (13)

m∑
j=1

(
rf (Nj)

sj
+ (sj − 1)b+

outputj
Wff ′

) ≤ 1

fpsserv
(14)

, where Nj are the required instructions per frame re-
quired for executing V Fj on device f , with f ′ undertaking
V Fj+1. Equation 13 drives our model to produce solutions
with the minimum total new instances of the V Fs, while
(eq. 14) satisfies the QoS of the surveillance service. Unlike
the problem formulated by eq. (9-12), this is a non-linear
mixed integer problem, which requires the utilization of
the active set solver APOPT [30]. Let the result of this
sub-problem be instances = [ins1, ins2, ..., insm]. Using
instances, we can revisit Sub-problem B and solve the al-
location problem as before.

The discrepancy of the latest described sub-problem is
that the utilized nodes f and f ′ are unknown. This is ratio-
nal, because we seek the number of the V F instances with
regard to the computational time, which depends not only
on the V F load but also on the node that will undertake
the V F . We resolve this deviation by using Algorithm 1.
This algorithm can provide two approaches: (a) worstCase
scenario, where the edge device used to calculate (eq. 14) is
the one with the lowest processing capacity and (b) bestCase
scenario, where the highest processing capacity device is
utilized.

Algorithm 1: Online placement optimization algo-
rithm.

Input: fps, xij , ε (error tolerance)
deploy(xij);
fpscurrent = measurefps();
if |fps− fpscurrent| < ε then

return xij
else

while (|fps− fpscurrent| > ε) do
sleep(1);
if (fps < fpscurrent − ε) then

xij = addReplicate(xij)
else if (fps > fpscurrent + ε) then

xij = removeReplicate(xij)
else

return xij
end
deploy(xij);
fpscurrent = measurefps();

end
end

PEER REVIEW 6

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0 2 4 6 8 10

p
ro

c
e
s
s
e
d

 f
p
s

time (sec)

Comparison between simulation and real-case implementation

WorstCase (simulation)
BestCase (simulation)

WorstCase (system)
BestCase (system)

Fig. 4. Algorithm 1 comparison between modeling and real-case system
implementation.

Algorithm 1 receives as input the processing fps implied
by the QoS and the allocation of the initial instances of the
V Fs. As depicted in Fig. 4, both approaches converge to the
desired processing fps. The reported results have been de-
rived by a simulation framework that has been developed in
order to evaluated the reported approach (simulation plots)
and by an experimental edge network setup (system plots).
Details on the utilized edge environment are provided in
Section 4.2.

As far as the two functions (addReplicate() and
removeReplicate()) used in Algorithm 1, they calculate for
each V F either the improvement (for the addReplicate())
or the regression (for the removeReplicate()) a new in-
stance will have to the total cost. Let {vi} be these values.
Then, we choose the V F which minimizes the difference
|fpscurrent − vi|. In each iteration, Sub-problem B is solved.

Aiming to evaluate the accuracy of the proposed algo-
rithm for solving Problem 1, a set of scenarios (edge networks
and V FCs) have been setup, solving Problem 1 both using
a naive greedy algorithm (which calculates the optimum
solution) and the proposed approach. Five different V FCs
have been used. For each V FC , 15 scenarios have been
established by setting the parameters presented in Table 2.
The parameters were acquired from the experimental setup,
after following the measurement approaches suggested in
[31] and in [32]. Figures 5 and 6 present the results of this
comparison. The reported results are the average values of
the total cost among the 15 different scenarios. The total
average extra cost imposed by the proposed approach was
≈ 1.97%, while the required time for each algorithm to
solve the problem is ≈ 5.61sec for the proposed approach
and 7.89 × 103sec for the greedy algorithm (Fig. 6). The
solvers, which have been implemented using GEKKO suite
[33], have been executed on a Intel i7 2.8GHz (8core) on 8GB
of RAM.

3.3 QoS monitoring and failure avoidance
The model described in the previous sections is used in
order to initialize and instantiate a V FC for serving a
surveillance service. Yet, during the execution time of a
service, the edge environment, unlike cloud infrastructures,
is highly dynamic. The edge devices, due to low resources,

TABLE 2
Parameters on experiment setup.

Parameter Value
cpuload 104N (10, 0.8)
mk 103N (20, 0.9)
Wtt′ 105N (10, 0.7)
output 103N (200, 0.65)

 0

 2x108

 4x108

 6x108

 8x108

 1x109

 1.2x109

 1.4x109

4 6 8 10 12

to
ta

l
c
o
s
t

number of VFs

Greedy vs proposed approach - Environment Cost

Greedy Algorithm - cost
Proposed Algorithm - cost

Fig. 5. Comparison between the optimum solution (greedy algorithm)
and the proposed algorithm - Environment cost.

appear fluctuations in their main performance metrics, like
available CPU and RAM. A surveillance service, in order
to maintain the QoS standards, adequate resources are re-
quired through its lifecycle. The proposed V FC model is
more prune to the fluctuations on the performance indica-
tors compared to the Monolithic approach, as it depends
not only from one edge device but from a set of edge
devices, where if one of the hosting devices fail (overload,
battery drain, network disconnection), the whole service
collapses.

Aiming to address this issue, a ”failure alert” methodol-
ogy has been designed and developed, based on a well es-
tablished Recursive Neural Network, the Long-Short Term
Memory (LSTM). By failure we consider the overloading of
an edge node at such level that the assigned V F can no

 10

 100

 1000

 10000

 4 5 6 7 8 9 10 11 12

re
q
u
ir

e
d
 t

im
e
 (

s
e
c
)

number of VFs

Greedy vs proposed approach - Required solution time

Proposed Algorithm - time Greedy Algorithm - time

Fig. 6. Comparison between the optimum solution (greedy algorithm)
and the proposed algorithm - Required solution time.

PEER REVIEW 7

longer be executed properly, in terms of assigned mips.
A variation on the LSTM is the Gated Recurrent Unit, or

GRU, introduced by [34]. It combines the forget and input
gates into a single “update gate” while it also merges the cell
state and hidden state compared to the classic LSTM cell.
The core memory cell of the utilized network is presented
in Fig. 7 and governed by (eq.15) - (eq. 18).

Fig. 7. LSTM memory cell.

zt = σ(Wz) · [ht−1, xt] (15)

rt = σ(Wr) · [ht−1, xt] (16)

h̃t = tanh(W · [rt ∗ ht− 1, xt]) (17)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (18)

The model learns long term dependencies on the perfor-
mance metrics of the edge devices. More specifically, two
LSTM models have been established, one for predicting
CPU usage and one for predicting RAM usage. The train-
ing datasets have been created using the benchmark edge
environment and by mimicking artificial fluctuations on the
edge devices. Details on the process are provided in Section
4.3. When the inference of the model predicts high CPU and
/ or RAM utilization, it informs the V FO for the specific
V FC that is possible to face a failure within the specific
time-frame. At this point, V FO recalculates the optimal
placement of the V FC and resets the V FC .

The proposed QoS monitoring model aims to increase
the robustness of the V FC model when the edge devices
have low capacity on CPU and RAM resources compared
with the relative demands of the V Fs. Thus, even when
considering advanced edge servers, with considerably high
capacities on CPU and RAM, the proposed QoS model can
benefit the V FC model in cases when (i) more demanding
V Fs are required, like deep learning models and (ii) edge
devices host multiple tasks (aside V Fs), thus requiring
excessive resources.

3.4 Caching Mechanism
Surveillance as a service is one of the most promising
models for delivering surveillance analytics to the end users.
According to this model, a user can choose a camera feed
and request for specific analytics. It is important to consider
that the V FC model enables the sharing of the results
among different services, in case two (or more) services
share the same(s) V Fs. For instance, a municipality offers

video analytics services on live video streams from the
busiest shopping streets of a region. A user can request
a service named ”Count women” from a specific video
camera for two weeks, as she / he is interested on opening
a beauty salon while another user request a service named
”Detect abandoned items” from the same video stream.
While the two services seems to have nothing in common,
they share a subset of common V Fs, image-enhancement and
light-equalization.

For this, a caching mechanism has been designed and
developed, according to which when a node executes a
V F for data related with frame k, it stores the results in
a stack for a specific time-frame. In case another video
analytics service request from the same V F to process data
related to an already processed frame, it retrieves the results
and forwards them to the next V F of the V FC , without
recalculations.

4 SYSTEM IMPLEMENTATION

Aiming to evaluate the V FC model described in Section
3, both simulation and prototype platforms have been de-
veloped, where all the necessary functionalities have been
deployed to support AI real-time video analytics of surveil-
lance services. More specifically, three discrete tools have
been formulated: (i) a simulation platform, (ii) an edge
benchmark environment and (iii) a cloud-based surveillance
service.

4.1 Simulation Platform
The simulation platform has been developed under Python
3.6. All the entities described in Table 1 have been modeled
as distinct processes. Linux commands cpulimit and ulimit
have been utilized to mock specific computational capacities
for each ’edge device’. In the experiments described in the
Section 5, each video analytic service has been modeled
as a set of n V Fs, where n is a random integer ∈ [3, 7].
Each V F could be either a light V F , a moderate V F or a
heavy V F , with relative computational characteristics each.
Finally, each V F may by identical with another V F with
a probability of 15%, enabling the caching mechanism de-
scribed in the following sections.

Withing the simulation platform, three different Setups
of a surveillance service have been implemented.

• Setup I: The surveillance service has been imple-
mented under a monolithic approach. This means
that each deployed surveillance service has been
hosted in one edge device (details in 4.4.3).

• Setup II: The surveillance service has been imple-
mented under a simplistic distributed method, where
each surveillance service were deployed to multiple
edge devices (details in 4.4.4).

• Setup III: The proposed V FC model.

All of the above setups have been tested under dif-
ferent service demand probability distributions. By service
demand probability distribution, we refer to the probability
a user requests a service at a specific time-point td. More
specifically, various Poisson distributions have been used.
For the Poisson distributions, three different λ parameters
have been used, aiming to mimic low, normal and high user

PEER REVIEW 8

demand rates, according to [35], [36] and [37]. For the same
Setup, the cumulative number of the requested services was
the same. All the different scenarios are presented in Figure
8.

Fig. 8. Probability distributions for user demand.

4.2 Edge environment implementation
The implemented edge network comprise 6 Raspberry PI 3
(model B+) devices, with a Quad Core 64bit CPU @ 1.2GHz
and 1GB RAM and 2 Raspberry PI 4 devices with a Quad
core Cortex-A72 (ARM v8) 64-bit CPU @ 1.5GHz with 4GB
RAM, running Raspbian OS. The feed from the camera has
been mocked as video file from the VIRAT dataset [38].

Two video analytics services have been deployed on the
edge environment. Service A and Service B, require gender
and age classification respectively. For the main inference
model, the pre-trained deep learning models proposed in
[39] have been used. Both Service A and Service B decompose
to 4 V Fs. Service A includes V F1(), V F2(), V F3() and
V F4(), while Service B includes V F1(), V F2(), V F5() and
V F6().

Details on the V Fs are presented in Table 3.

• V F1(): Frame acquisition and image enhancement
(histogram equalization and Multi-scale retinex on
low light conditions,

• V F2(): Blob calculation for a specific frame,
• V F3(): Convolutional Neural Network (MobileNet

v2) pass and probability matrix acquisition,
• V F4(): Coordinates calculation for the detected ob-

jects and non maxima suppression for overlapping
objects,

• V F5(): Convolutional Neural Network (gender CNN
networks) pass and probability matrix acquisition,

• V F6(): Results reporting.

The model’s basic parameters are presented in Table 3.
The values have been selected after performing a set of

experiments for different workloads. A non-linear model
for the cost function has been chosen. V Fs have been
implemented using Python3, utilizing the multiprocessing
library.

TABLE 3
Model’s parameters.

Parameter Value
n 8
W 98± 1.7Mbps
cpuload

[
103, 5× 103, 106, 102

]
instructions/frame

output
[
105, 3× 104, 107, 104

]
bytes

ck(l) l2+0.8
1000

r(l) 20l+9
mk

sec
m1 104 instructions/sec (PI 3)
m2 107 instructions/sec (PI 4)

4.3 LSTM models
As discussed in Section 3.3, a QoS monitoring and fail-
ure avoidance mechanism has been developed, in order
to enable the hosting of demanding surveillance services
throughout their life-cycle. The basic concept is based on
the idea of monitoring the basic performance indicators of
an edge device and trying to predict the value of these indi-
cators within a specific time-window in the future. For this
prediction, two LSTM models have been utilized, one for
each performance indicator. While the possibility of using a
single LSTM model has been explored, by combining RAM
and CPU utilization in a singe metric, the experimental
results have shown that it is more appropriate to deploy
two models, one for each metric.

The challenging part of this approach is to acquire a
suitable dataset for successfully training the LSTM models.
As no suitable dataset came to our knowledge, the edge
environment described in 4.2 has been used in order to
produce the suitable datasets.

An agent hosted in the V FO device constantly col-
lecting data regarding the CPU and RAM utilization for
each device which is part of a VFC. A software which can
mimic overload demand on the edge devices (stress tool)
has been installed on each edge device, under a random
distribution on the required resources. At the same time,
V FO monitors the QoS (processed frames / sec) for each
one of the deployed services (Fig. 9).

The training dataset has been created after 248 hours of
monitoring and collecting data from the eight (8) devices of
the edge environment, with an interval of five (5) secs. This
process has resulted to a set of time series tcr = ci, ri, one
for each V FC service applied on the edge environment.

The models have been implemented by taking 100 neu-
rons in the LSTM layer. The utilized loss function is Mean
Squared Error. Train and test errors are presented in Fig. 10
and Fig. 11.

4.4 Comparison setups
4.4.1 Baseline V F allocation algorithm
The first comparison study refers to the quantification of
the improvement on the V FC placement algorithm in an
edge environment upon the deployment of a V Fs set. To
achieve this, a simple placement algorithm (Algorithm 2)
has been considered, in order to assess the influence of the
proposed placement algorithm. The rationale of the baseline
algorithm is based on an initial random placement of the
V Fs of a V FC on the edge nodes. After the constitution

PEER REVIEW 9

Fig. 9. LSTM dataset creation.

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0 2 4 6 8 10 12 14 16 18 20

lo
s
s

epochs

Train and test error for LSTM model 1 (CPU)

train loss
test loss

Fig. 10. Train and test error for LSTM model 1 (CPU).

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0.006

 0.0065

 0.007

 0 2 4 6 8 10 12 14 16 18 20

lo
s
s

epochs

Train and test error for LSTM model 2 (RAM)

train loss
test loss

Fig. 11. Train and test error for LSTM model 2 (RAM).

of the chain, the processed fps are measured and compared
with the desired QoS. In case the QoS requirements aren’t
met, the baseline algorithm detects the edge node with the
lowest throughput and creates a replica of the relative V F ,
which is again randomly placed on an edge node. The last
step iterates until the QoS requirements are met, or their are
no more resources to commit.

Algorithm 2: Baseline placement algorithm.
Input: fps, V Fi,Kj , ε
xij = random-placement(V Fi,Kj);
fpscurrent = measurefps();
if |fps− fpscurrent| < ε then

return xij
else

while (|fps− fpscurrent| > ε) do
sleep(1);
Klow, V Fh = getLowestThroughput(Kj)
addReplicate(V Fh)
fpscurrent = measurefps();

end
end

4.4.2 Cloud service

Aiming to compare the proposed architecture with the cur-
rent common practice of deploying a surveillance service, a
cloud surveillance service has been deployed. The character-
istics of the utilized Virtual Machine were CPU: Intel Xeon
E5 v3 @2.8GHz and RAM: 32GB. The IaaS of the Google
Platform ©was chosen to host the services.

The services deployed on the Cloud are identical (Service
A and Service B), in terms of implementation, with the
services deployed on the edge environment.

4.4.3 Monolithic model

The simplest approach for deploying a video surveillance
service on the edge would be to host the entire service
on a single edge node using a monolithic model. Despite
the simplicity of this approach, several advantages can be
found, like the easy deployment and the straightforward
management of the service. Yet, the computational capacity
of the edge nodes is expected to limit the QoS.

The specific model has been implemented and deployed
to the edge environment, mainly for identifying the lowest
threshold for the QoS and edge environment cost. For the
implementation of the model, the same V Fs have been used
as the ones in the V FC model.

4.4.4 Simple Frame Distribution model

A second benchmark model has been implemented, also
for comparison purposes. The Simple Frame Distribution
model (SFDM) extends the Monolithic model by de-
ploying the same service on several edge nodes and by
distribution the incoming frames to the nodes. This model
requires an new agent which handles the packaging and
distribution of the frames under a proprietary protocol and
a second agent which sinks and synchronize all responses
and inform the end user about the final result.

PEER REVIEW 10

The implementation and deployment process of the
SFDM model is simpler than the V FC model. Yet, this
approach nullifies benefits of the differential algorithms, like
background subtraction [40]. Nonetheless, the SFDM is
considered, aiming to evaluate the processing capacity of
the V FC model and its cost over the edge environment.

4.4.5 Apache Spark framework
Apache Spark© [40] is a general-purpose distribution sys-
tem, which can utilize the processing capacity of a cluster
to perform complex computations. There are three different
ways in which Apache Spark can be used for distributing
computational tasks: (i) Standalone Mode, in which Spark
and HDFS (Hadoop Distributed File System) directly com-
municate with each other and optionally MapReduce can
submit jobs in the same cluster; (ii) Hadoop Yarn according
to which Spark executes over a Hadoop container manager
distributed across the cluster and (iii) Spark in MapReduce,
where Spark can execute its own jobs along with the one
submitted by MapReduce.

For benchmark purposes, the Standalone deployment
mode of the Apache Spark has been selected, in which both
HDFS and Apache Spark are the part of the cluster. The
master node, which acts as a server, also hosts the streaming
framework of Kafka [41], which is used to collect the input
of the camera and distributed efficiently on the cluster. The
Spark cluster deployed on the same edge devices as the ones
used to test the V FC model. It’s configuration parameters
have been set according to [42].

The acquirement of the data was performed by a single
service which hosted the Apache Kafka © framework,
outside the edge environment, as described in [43].

4.4.6 Kubernetes framework
Kubernetes [44] is an open-source container orchestration
tool, which quickly after its introduction, became the de
facto standard for managing large container deployments.
Kubernetes support by default orchestration and autoscal-
ing of containerized services, based on the users’ demand.
Aiming to evaluate the performance of the autoscaling
capacity of the proposed V FC model, a Kubernetes cluster
has been build using the Raspberry Pi cluster as worker
nodes, based on the blueprint proposed in [45].

The testbed comprise a PC (Intel x64 architecture) serv-
ing as Kubernetes master node and the 8 Raspberry Pi
devices described in Section 4.2. Service A has been deployed
on the cluster and a user simulated the demand alterations
by changing the requested fps processed. Total edge en-
vironment cost and number of deployed V Fs have been
considered when comparing the two approaches.

5 EXPERIMENTAL SETUPS AND RESULTS

A set of experiments have been contacted, aiming to report
the performance of the proposed V FC model. One can
categorize the experimental work in three parts:

• Experiments set out to assess the scalability and
sustainability of the V FC model.

• Experiments set out to assess the contribution and
the benefits of the two add-on services on the V FC
model (caching and QoS mechanisms).

• Experiments set out to compare the V FC model with
alternative frameworks which can host surveillance
services.

The tools described in Section 4 have been used in
order to evaluate the V FC model under specific metrics.
Namely, the QoS of the deployed services, the total cost of
the edge environment and the scaling capacity of the V FC
model have been considered. A set of variants (Setups) have
been used, aiming to examine the aforementioned metrics.
More specifically, (as briefly mentioned in Section 4.1) the
experimental setups described in Tables 4, 5, 6 and 7 have
been implemented on the edge environment detailed in 4.2.

Edge network data collection tools
For implementing the proposed model on a real case sce-
nario, it is necessary to calculate the required data and
calculate the metrics presented in Table 1. More specifically,
the parameters of the cost function, along with the band-
width of the links, need to be probed. To achieve this, the
following tools have been utilized, under a Linux/Ubuntu
20.04 environment.

• Cost function. For collecting the
cost function’s parameters (i.e. CPU
and RAM utilization), the htop (man-
pages.ubuntu.com/manpages/focal/en/man1/htop.1.html)
library has been utilized.

• Links bandwidth and utilization. For supporting
the V FC model, the bandwidth among two edge
nodes, as well as the utilization of a network link, are
required. A star network architecture was selected
for the experiments, according to which each edge
node is connected to a router R (TP-Link©WiFi
Router AX 1500 Archer). The link between two
nodes ni, nj is actually comprise two links (ni ↔ R
and R↔ nj). For each connection, the QoS option of
the router R has been utilized, reassuring that each
node ni will have at least wi bandwidth (upstream
and downstream). As each router supports up
to e edge devices, wi = WR

e , where WR is the
router’s bandwidth capacity. For probing the actual
bandwidth between two nodes, the iperf (man-
pages.ubuntu.com/manpages/xenial/man1/iperf.1.html)
library has been utilized. The measurements
are performed for all possible pairs ni and nj
which are connected to the same router, and
the links are considered symmetrical. Thus,
the required number of measurements are
numlink−measurements = e(e−1)

2 . For probing
the real time throughput of a link, the iftop (man-
pages.ubuntu.com/manpages/focal/man8/iftop.8.html)
library has been utilized. Finally, router to router
link delays are not considered in this model, as
they are assumed wired links (edge backbone
network) with a much greater bandwidth compared
to the other communication links and on dedicated
network interfaces. For the experiments reported in
the following sections, the links were wireless, thus
WR = 1201Mbps and e = 8 edge nodes.

A python script on each edge node collects the output of
htop and iftop, process the required fields and informs the

PEER REVIEW 11

V FO about the measurements every t secs. Time interval
t depends on how dynamic the edge environment is. For
a highly dynamic environment, smaller values of t are
required. For the reported results in the following sections,
t = 60 secs.

5.1 Assessing the scalability of the V FC model

The first metric under consideration is the scalability of the
proposed model under parameters like edge devices num-
ber and user services demand. To examine these parameters,
the simulation platform detailed in Section 4.1 is utilized.

Fig. 12 and Fig. 13 present the experimental results of
the simulation environment for Monolithic model, SFD
model and for the V FC model. All models refer to single
service implementations. More specifically, Fig. 13 presents
the number of required edge devices in order to support a
specific number of services, while Fig. 12 presents the total
cost of the edge environment as the number of requested
services increase. The characteristics of the simulated ser-
vices are given in Table 2. It is obvious that the V FC model
enables the support of a specific number of services with
fewer edge devices and with substantially lower total cost,
as the service demand scales.

An additional aspect to be considered is the affect of the
edge devices computational capacity to the benefits of the
proposed V FC model. More specifically, the experiments
reported in Fig. 12 and Fig. 13 refer to edge devices with
low computational capacity (cpuload is greater than mk). As
edge devices are becoming more and more powerful, it is
interesting to assess then performance of the V FC under
a scenario according to which mk is greater than cpuload.
For this, a set of simulations have been performed, again
with the parameters of 2, but with mk = 107N (20, 0.9).
The relative results are presented in Fig. 14 and Fig. 15.
As one can notice, Monolithic and SFD model outperform
V FC model for a small number of services. Yet, as the
number of services increase, V FC model presents better
metrics, in terms of both edge environment cost and re-
quired number of edge devices. The reason for this behavior
is the distribution of the required processing power over the
edge network, allowing the V FC model to better explore
the available resources, as the different V Fs can be hosted
more efficiently by the edge devices, when compared to both
Monolithic and SFD models.

Next, the scaling of the V FC model in a temporal
simulation scenario is assessed. For this, simulations for
the Monolithic model and the V FC model have been
implemented under a 24 hour scenario, according to which
users request surveillance services under different prob-
ability distributions (Fig. 8). Five parameters have been
examined. Namely, the percentage of served services over
total requested services (Fig. 18), the percentage of rejected
services (due to lack of resources) over total requested
services (Fig. 17), the total edge environment utilization (Fig.
16), the total edge environment cost (Fig. 19) and the edge
network traffic (Fig. 20) have been calculated, as the number
of the edge devices scales up. It is important to mention that
low demand scenarios appear to produce more traffic and
higher environment cost due to the fact that fewer services
are rejected during these setups.

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

to
ta

l
c
o
s
t

(x
1

0
8
)

number of services

Total edge network costfor di�erent number of deployed services

Setup I
Setup II
Setup III

Fig. 12. Total network cost (simulation environment).

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

e
d

g
e
 d

e
v
ic

e
s

number of services

Number of required edge devices for di�erent number of deployed services

Setup I
Setup II
Setup III

Fig. 13. Total edge devices (simulation environment).

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40 45 50

to
ta

l
c
o
s
t

(x
1

0
8
)

number of services

Total network cost for di�erent number of deployed services (high-end servers)

Setup I
Setup II
Setup III

Fig. 14. Total network cost (simulation environment - high-end devices).

PEER REVIEW 12

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35 40 45 50

e
d

g
e
 d

e
v
ic

e
s

number of services

Required edge devices for di�erent number of services (high-end edge servers)

Setup I
Setup II
Setup III

Fig. 15. Total edge devices (simulation environment - high-end devices).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80 90 100

e
n
v
ir

o
n
m

e
n
t

u
ti

li
z
a
ti

o
n
 (

%
)

number of edge devices

Environment utilization (%)

Monolithic - LD
Monolithic - ND
Monolithic - HD

VFC - LD
VFC - ND
VFC - HD

Fig. 16. Edge environment utilization on different user demands (LD -
Low Demand, ND - Normal Demand, HD - High Demand) and number
of edge devices.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f
re

je
c
te

d
 s

e
rv

ic
e
s

number of edge devices

Rejected Services (%)

Monolithic - LD
Monolithic - ND
Monolithic - HD

VFC - LD
VFC - ND
VFC - HD

Fig. 17. Percentage of rejected services on different user demands (LD
- Low Demand, ND - Normal Demand, HD - High Demand) and number
of edge devices.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f
s
e
rv

e
d

 s
e
rv

ic
e
s

number of edge devices

Served Services (%)

Monolithic - LD
Monolithic - ND
Monolithic - HD

VFC - LD
VFC - ND
VFC - HD

Fig. 18. Percentage of served services on different user demands (LD -
Low Demand, ND - Normal Demand, HD - High Demand) and number
of edge devices.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80 90 100

e
n
v
ir

o
n
m

e
n
t

c
o
s
t

(%
)

number of edge devices

Environment Cost (%)

Monolithic - LD
Monolithic - ND
Monolithic - HD

VFC - LD
VFC - ND
VFC - HD

Fig. 19. Edge environment cost on different user demands (LD - Low
Demand, ND - Normal Demand, HD - High Demand) and number of
edge devices.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80 90 100

e
n
v
ir

o
n
m

e
n
t

tr
a

�

c
 (

%
)

number of edge devices

Environment tra�c (%)

Monolithic - LD
Monolithic - ND
Monolithic - HD

VFC - LD
VFC - ND
VFC - HD

Fig. 20. Edge environment network traffic on different user demands (LD
- Low Demand, ND - Normal Demand, HD - High Demand) and number
of edge devices

PEER REVIEW 13

Combining the results of aforementioned figures, one
can notice that the V FC model can achieve higher per-
centages of served services, under all three of the different
user demand distribution probabilities, while maintaining
lower levels of total environment cost. Additionally, V FC
model can achieve higher edge devices utilization while
reducing the percentage of the reject services must faster as
the network scales, always compared with the Monolithic
model.

On top of the aforementioned studies regarding the
scalability of the proposed V FC model, the required time
for deploying a service on an edge network with n devices
is analyzed. Without loss of generality, lets assume an edge
network with wireless devices, based on WiFi 802.11g con-
nections (S Mbps actual bandwidth). Additionally, let j be
the number of V Fs to be deployed using c GB containers
each. The deployment of a service following the V FC
model comprises four steps:

• Initial probe of edge devices available resources. If
a kb is the size of the probing message, then it would
require approximately a×8

S×103 secs for the j devices to
transmit the data.

• Placement problem solving. Based on [30], APOPT
solver requires polynomial time to solve a mixed-
integer problem with one non-linear equation.

• V Fs deployment. For each one of the chosen edge
devices, it would require f × c×8×103

S , where f is
a coefficient which expresses the delay which will be
caused by reaching the limit of the output bandwidth
of the V FO node.

• Monitoring phase. Every T secs, the j selected edge
devices, hosting a V F each, informing the V FO
about their available resources, enabling the QoS
monitoring service to function. This phase requires
j×a kb of data to be transferred in the network every
30 secs, with each transmission to require a×8

S×103 secs.

Based on the described network times, as well as the
times acquired for solving the placement problem (using an
Intel i7 2.8GHz (8core) on 8GB of RAM), the results pre-
sented in Fig. 21 has been obtained. The values of the vari-
ables were: j = n/2, c = 1.2GB, a = 2kb, S = 100Mbps,
T = 30sec. The interval T depends on how stable the
edge environment is (higher values will correspond to more
stable environments.)

One can notice that even when using 1000 edge devices
and 500V Fs, in order to deploy a service, the required time
to select the optimal nodes is kept relatively small, enabling
the efficient scaling up of the model.

5.2 Assessing the add-on services on the V FC model

As described in Section 4.2, a prototype edge environment
with eight low capacity edge devices has been implemented.
Using this environment, a set of experiments (scenarios)
have been implemented, as presented in Table 4 for a single
service and in Table 5 for multiple services.

In order to support Service A, V FO deployed 1 instance
of V F1, 2 of V F2, 4 of V F3 and 1 instance of V F4. For
Service B, the resulted instances were 1, 3, 3 and 1 for V F1,
V F2, V F5 and V F6 respectively. The calculated V FCs

 0.1

 1

 10

 100

10 50 100 300 500 700 1000

ti
m

e
 (

s
e
c
)

number of edge nodes (n)

Timing of the VFC deployment phases

initialization phase
placent-solving

VF monitoring
monitoring phase

Fig. 21. Timing of the different V FC phases.

TABLE 4
Evaluation of VFC services - single service (Service A (gender

classification)).

Scenario Description
S11 VFC model.
S12 VFC model + QoS mechanism.

are in accordance with the V F characteristics, as the most
demanding V Fs (V F3 and V F5) participated in the chains
with the largest number of instances.

5.2.1 QoS monitoring mechanism
This set of experiments aim at assessing the performance of
the QoS mechanism based on the learning service build on
the LSTM models described in Section 3.3. For this, scenarios
described in Tables 4 and 5 have been utilized. Each scenario
has been implemented in the edge benchmark environment
for a real case scenario of 12 hours of continuous execution
of the surveillance services.

The results of this set of experiments are reported in
Fig. 22 and in Fig. 23. QoS monitoring mechanism, which
is supported by the two LSTM models described in Section
4.3, plays a crucial role in the stabilization of the QoS of
the executed services. This applies to both single-service
and multi-service scenarios, as presented in both figures.
Applying the QoS mechanism decreases the variation of the
processed frames by more than 59.24%, resulting to a more
stable surveillance service.

5.2.2 Caching mechanism
As described in Section 3.4, the V FC model enables caching
the processed data and avoiding recalculations when two of
more services require the processing of the same frames. A
set of experiments has been conducted, trying to reveal the
benefits of the V FC approach. Services A and B can share
V F1() and V F2().

Fig. 23 presents the results on the evaluation of the
caching mechanism. The different scenarios were config-
ured in order to support the QoS constraints of Services A
(fps = 12) and B (fps = 10). Caching mechanism reduces
the environment cost by 32.3% from the V FC , while
improving the the QoS by 2.93% and the edge environment
cost by 9.8%1 compared to scenario S21.

PEER REVIEW 14

TABLE 5
Evaluation of VFC services - multiple services (Services A (gender

classification) and B (age classification) deployed on V FCs).

Scenario Description
S21 VFC model.
S22 VFC model + cashing mechanism.
S23 VFC model + cashing + QoS mechanism.

Caching mechanism reduces the total environment cost
by 30% while maintaining the QoS of the services.

0.0x100

5.0x103

1.0x104

1.5x104

2.0x104

VFC VFC + QoS monitoring

 0

 2

 4

 6

 8

 10

 12

 14

to
ta

l
c
o
s
t

p
ro

c
e
s
s
e
d

 f
p
s

scenario

total cost
processed fps /

Fig. 22. Total cost and processed fps for (a) V FC model, (b) V FC
model with QoS model enabled. Single service mode.

0.0x100

5.0x103

1.0x104

1.5x104

2.0x104

2.5x104

3.0x104

3.5x104

4.0x104

VFC VFC + cache VFC + cache + QoS

 17

 18

 19

 20

 21

 22

 23

 24

 25

to
ta

l
c
o
s
t

p
ro

c
e
s
s
e
d

 f
p
s

scenario

total cost
processed fps

Fig. 23. Total cost and processed fps for (a) V FC model, (b) V FC
model with caching enabled and (c) V FC model with caching and QoS
model enabled. Multiservice mode.

5.3 Assessing the performance of the V FC model
This set of scenarios aim to provide evidence about the per-
formance of the V FC model against alternative approaches.

More specifically, section 5.3.1 presents the quantification
of the improvement V FC placement algorithm, when com-
pared with the baseline placement algorithm. Section 5.3.2
describes the results on the comparison of the V FC model
with a cloud-based surveillance service while section 5.3.3
includes the relative results on the comparison of the model
with other distribution schemes.

5.3.1 Baseline placement algorithm compared to V FC
model
The first set of experiments concern the evaluation of the
V FC placement algorithm. For this, the simulation en-
vironment has been utilized, aiming to compare the two
approaches as the edge environment scales up.

For each simulation scenario, a specific number of V FCs
has been considered and the simulation was executed 10
times. For each V FC , the number of V Fs was randomly
selected from the distribution bN (3, 8)c. The relevant results
(average values for the 10 fold executions) are presented in
Fig. 24 and Fig. 25.

More specifically, one can observe that the number of
the required V Fs (including replicas) are reduced at ap-
proximately 95.32% (average value) when using the V FC
placement algorithm, when compared with the baseline
placement algorithm. Additionally, the total edge environ-
ment cost is reduced by 68.22% with the use of the V FC
placement model.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80 90 100

n
u
m

b
e
r

o
f

V
F
s

number of services

Number of VFs (including replicas)

Baseline placement algorithm
VFC placement algorithm

Fig. 24. Baseline vs. V FC placement algorithms - number of V Fs.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 10 20 30 40 50 60 70 80 90 100

to
ta

l
c
o
s
t

number of services

Total environment cost

Baseline placement algorithm
VFC placement algorithm

Fig. 25. Baseline vs. V FC placement algorithms - total environment
cost.

5.3.2 Cloud infrastructure compared to V FC model
The next set of experiments aimed at evaluating the perfor-
mance of the proposed V FC model against a surveillance
service deployed on a cloud infrastructure. For this, Service

PEER REVIEW 15

A has been deployed to the cloud environment described
in Section 4.4.2 and specific performance metrics have been
compared against the V FC model deployed on the edge
environment detailed in Section 4.2.

The first parameter under consideration is the perfor-
mance of the cloud environment under different network
communication channels and on different video resolutions.
These experiments, which results are reported in Fig. 27, aim
to assess the importance of different broadband communi-
cation technologies to the real time QoS (processed fps) of
the deployed service.

 0

 2

 4

 6

 8

 10

640X480 1024X768 1920X1180

n
u
m

b
e
r

o
f

e
d
g

e
 d

e
v
ic

e
s

video resolution

Required number of edge devices.

DSL (24Mbps)
4G

Fiber 100Mbps

Fig. 26. Required number of edge devices

It is obvious that the network link between the surveil-
lance camera and the cloud infrastructure plays an impor-
tant role to the QoS of the service. Next, the second param-
eter under consideration are the number of edge devices
required to meet the same QoS as the one observed on the
cloud infrastructure. This parameter has been calculated for
the different video resolutions. The results, which are pre-
sented in Fig. 26, indicates that with a relative small number
of edge devices, V FC model can meet the performance of a
cloud service.

 0

 5

 10

 15

 20

 25

640X480 1024X768 1920X1180

p
ro

c
e
s
s
e
d

 f
p
s

video resolution

QoS for di�erent broadnand technologies.

DSL (24Mbps)
4G

Fiber 100Mbps

Fig. 27. QoS for different broadband technologies

5.3.3 Comparison with similar distribution frameworks
The experiments for this purpose are summarized in Tables
6 and 7. More specifically, the V FC model has been tested

TABLE 6
Comparison of V FC model - single service (Service A (gender

classification) against other frameworks).

Scenario Description
S31 Monolithic model.
S32 SFD model.
S33 Spark framework.
S34 VFC model + QoS mechanism.

TABLE 7
Comparison of V FC model - multiple services (Services A (gender
classification) and B (age classification) against other frameworks).

Scenario Description
S31 Monolithic model.
S32 SFD model.
S33 Spark framework.
S34 VFC model + cashing + QoS mechanism.

against Monolithic and SFDM models, as well as with
the Apache Spark © both on single service and on mutli-
service scenarios. The relative results are presented in Fig. 28
and in Fig. 29 respectively. Both for the single service and the
multi-service scenarios, V FC model achieved higher QoS
compared with the Monolithic approach (+120.5% for the
single service and +133.3% for the multi-service scenario)
and with the SFDM model (+22.5% for the single service
and +10.8% for the multi-service scenario). At the same time,
the V FC model reduced the operational cost by 43.5% on
average compared with the aforementioned models.

As far as the comparison with the Apache Spark ©
framework is concerned, the V FC model has achieved on
average the same QoS by reducing the operational cost of
the edge environment by approximately 103.3% on the sin-
gle service scenario and by 90.7% on the multi-service sce-
nario. Additionally, while the average value of the achieved
QoS by the V FC model is slightly improved with the one
produced by the Apache Spark ©, the variation of the QoS
throughout the service is reduced by almost 50.3% in both
single service and multi-service scenarios.

0.0x100

5.0x103

1.0x104

1.5x104

2.0x104

2.5x104

3.0x104

3.5x104

4.0x104

monolithic SDM spark VFC + cache + QoS

 0

 2

 4

 6

 8

 10

 12

 14

to
ta

l
c
o
s
t

p
ro

c
e
s
s
e
d

 f
p
s

scenario

total cost
processed fps

Fig. 28. Total cost and processed fps for (a) Monolithic model, (b) SDM,
(c) Apache Spark and (d) V FC model with with caching and QoS model
enabled. Single service mode.

PEER REVIEW 16

0.0x100

1.0x104

2.0x104

3.0x104

4.0x104

5.0x104

monolithic SDM spark VFC + cache + QoS

 0

 5

 10

 15

 20

 25
to

ta
l
c
o
s
t

p
ro

c
e
s
s
e
d

 f
p
s

scenario

total cost
processed fps

Fig. 29. Total cost and processed fps for (a) Monolithic model, (b) SDM,
(c) Apache Spark and (d) V FC model with with caching and QoS model
enabled. Multi-service mode.

5.3.4 V FC Autoscaling capacity evaluation

A set of experiments for assessing the V FC model’s ca-
pacity to autoscale the deployment of the V Fs depending
on the users’ QoS demand has been conducted. According
to the experimental scenario, Service A has been deployed
on both V FC and Kubernetes frameworks, as described in
Section 4.4.6. The simulation has run for 60 minutes on each
framework. Within the simulation time, the required QoS
(requested fps processed) was randomly changed every 5
minutes, within the range [5, 20]. During the first 5 minutes,
the requested fps was set to 0, aiming to assess the zero-
demand footprint of the solutions under comparison. The
total edge environment cost, as well as total number of
deployed containerized V Fs have been probed and the
relative results are presented in Figures 30 and 31.

From the reported results we can observe that the V FC
model can follow the demand changes more efficiently com-
pared with Kubernetes, even if the improvement is small.
As far as the total edge network cost is concerned, V FC
presented a reduction of 12.54% compared to Kubernetes,
averaging the cost over the 60 minutes experiment.

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60
 0

 10

 20

 30

 40

 50

#
 o

f
a
c
ti

v
e
 V

F
s

re
q
u
ir

e
d
 p

ro
c
e
s
s
in

g
 f

p
s

time (min)

Total deployed VFs

required QoS (fps)
VFC model
Kubernetes

Fig. 30. V FC model vs. Kubernetes - deployed V Fs.

1.0x104

1.2x104

1.4x104

1.6x104

1.8x104

2.0x104

2.2x104

 0 10 20 30 40 50 60
 0

 10

 20

 30

 40

 50

to
ta

l
c
o
s
t

re
q
u
ir

e
d
 p

ro
c
e
s
s
in

g
 f

p
s

time (min)

Total edge environment cost

required QoS (fps)
VFC model
Kubernetes

Fig. 31. V FC vs. Kubernetes - Total environment cost.

6 DISCUSSION

Enabling edge computing to support heavy load compu-
tational tasks is crucial for integrating IoT environments
with machine learning and artificial intelligence services.
Towards this direction, a novel approach is proposed, which
introduces the decoupling of the services to independent
micro-services, all integrated under a V FC model.

The proposed V FC model is introduced by incorporat-
ing a decoupling scheme on the main V F allocation process.
It is shown that this particular NP hard problem can be
solved in a viable time-frame, even for edge computing low
level devices.

Aiming to assess the scalability and the performance
of the proposed V FC model, a comparative study has
been performed, both on a simulator and on a real-case
benchmark edge environment. As far as the scalability and
expandability of the model is concerned, the simulation
results have revealed that the V FC model can be deployed
on a high number of edge devices, maintaining each advan-
tages as far as the total cost and the edge devices utilization
are concerned. Additionally, the proportions of the served
services and the rejected services over the total requested
services under different user demand rates show that the
V FC model can operate effectively on large-scale scenarios.

As far as the comparison of the V FC model with
alternative distribution approaches is concerned, a set of
experiments has taken place. The experiments can be catego-
rized into three main categories. Namely, the first category
involve the comparison of the V FC model with baseline
approaches, like the Monolithic service approach and the
SFDM model. The scope of these experiments is to set a
performance borderline, aiming to assess the improvement
level of the V FC model. The relevant results have shown a
substantial improvement over the aforementioned simplis-
tic approaches.

The other two categories of experiments involve more
pragmatic alternative approaches. Namely, a comparison
study with a surveillance service deployed on a Cloud in-
frastructure has been held. The results have shown that with
a relative small number of edge devices, the V FC model
can have the same performance metrics as the Cloud service,
under different technologies of broadband connections. Fi-
nally, a comparison study has been performed with Spark,

PEER REVIEW 17

a generic distribution framework. Both due to the extensive
footprint of Spark on the low-level edge devices and due to
the achieved QoS, the V FC model has outperformed Spark
in all performed scenarios, especially on stabilization of the
achieved QoS.

On top of the V FC model, two add-on services have
been designed, developed and deployed, aiming to boost its
performance. More specifically, a caching mechanism has
been introduced, reducing the operational cost of the edge
environment on multi service usage scenarios. Finally, QoS
monitoring service based on a deep learning framework
attempts to predict possible V Fs failures and inform the
V FO to take the appropriate actions.

The aforementioned results support the conclusion that
the proposed V FC model can act as an efficient and scalable
solution for supporting heavy streaming applications on the
edge. It’s comparison with both cloud solutions and gen-
eralized distribution frameworks, like Apache Spark and
Kubernetes reveals that V FC can be considered a new,
novel approach for edge-deployment architectures. While
several alternative frameworks have been proposed, V FC
bundles all the key features such frameworks should ex-
plore, like optimization of V F placement, auto-scaling and
QoS monitoring.

7 CONCLUSIONS AND FUTURE WORK

Edge computing is expected to be an important part of the
AI industry during the next few years. Its advantages lie not
only on the proximity with the processing data, but also on
the data protection and safety issues, which are debatable
on the Cloud computing paradigm. This paper proposes a
novel concept for enabling real-time AI applications on an
Edge network. Our proposal is based on the V FCs which
are used to distribute an AI application across the edge
network on an scalable fashion. After providing a mathe-
matical model for our system, we report the results of a
real-case scenario, where the system has been implemented
and tested in various conditions. A caching mechanism is
also described, which extents even further the capacity of
our system. The experiments have provided evidence that
such this approach can be used to undertake heavy-load AI
applications and handle them in real-time. Regarding the
next step of our work, we plan to extent our model in order
to be able to handle node failures, by adding a migration
mechanism to our architecture.

The proposed model has been applied on a video an-
alytic service, which belong in the family of streaming
applications, in terms of data generation. The nature of
the streaming applications matches the characteristics of
the proposed V FC model, which partially explains the
really good performance of the model against other dis-
tribution approaches. Thus, while we anticipate that our
model would be outperformed by generalized distribution
schemes (i.e. Apache Spark ©) on non-streaming appli-
cations, streaming applications from other domains, like
sentiment analysis on data coming from social media are
expected to have similar performance benefits as the tested
surveillance service. Deploying such applications on the
V FC model is part of our future plans.

REFERENCES

[1] Jain et al., “Performance characterization of dnn training using
tensorflow and pytorch on modern clusters,” in Proc. of the 2019
CLUSTER. 2019, IEEE.

[2] He, D. et al., “A Survey to Predict the Trend of AI-able Server
Evolution in the Cloud,” Special Section on Emerging Trends, Issues
and Challenges in energy - efficient Cloud Computing, vol. 6, Feb. 2018.

[3] Sun et al., “Vu: Edge computing-enabled video usefulness detec-
tion and its application in large-scale video surveillance systems,”
IEEE Internet of Things Journal, 2019.

[4] Alnoman A. et al., “Emerging edge computing technologies for
distributed iot systems,” IEEE Network, vol. 16, no. 6, pp. 140–147,
2019.

[5] Carvalho G. et al., “Edge computing: current trends, research
challenges and future directions,” Computing, 2021.

[6] D Aishwarya and RI Minu, “Edge computing based surveillance
framework for real time activity recognition,” ICT Express, vol. 7,
no. 2, pp. 182–186, 2021.

[7] Vassilis Tsakanikas and Tasos Dagiuklas, “Enabling real-time ai
edge video analytics,” in ICC 2021-IEEE International Conference on
Communications. IEEE, 2021, pp. 1–6.

[8] Rachad Atat, Lingjia Liu, Jinsong Wu, Guangyu Li, Chunxuan Ye,
and Yi Yang, “Big data meet cyber-physical systems: A panoramic
survey,” IEEE Access, vol. 6, pp. 73603–73636, 2018.

[9] Rob Kitchin, “The real-time city? Big data and smart urbanism.,”
GeoJournal, vol. 79, no. 1, pp. 1–14, Feb. 2014.

[10] W. Zhou et al., “A System Architecture to Aggregate Video
Surveillance Data in Smart Cities,” in 2015 IEEE Global Commu-
nications Conference (GLOBECOM), 2015, pp. 1–7.

[11] Li, Jianhua et al., “Virtual Fog: A Virtualization Enabled Fog
Computing Framework for Internet of Things,” IEEE Internet of
Things Journal, vol. 5, no. 1, Feb. 2018.

[12] Chen et al., “Dynamic Urban Surveillance Video Stream Process-
ing Using Fog Computing,” in 2016 IEEE Second International
Conference on Multimedia Big Data (BigMM), 2016, pp. 105–112.

[13] Dautov et al., “Metropolitan intelligent surveillance systems for
urban areas by harnessing IoT and edge computing paradigms,”
Softw Pract Expe., vol. 48, no. 1, pp. 1475–1492, 2018.

[14] Sun Mao, Shunfan He, and Jinsong Wu, “Joint uav position opti-
mization and resource scheduling in space-air-ground integrated
networks with mixed cloud-edge computing,” IEEE Systems
Journal, vol. 15, no. 3, pp. 3992–4002, 2020.

[15] Songlin Chen, Hong Wen, Jinsong Wu, Wenxin Lei, Wenjing Hou,
Wenjie Liu, Aidong Xu, and Yixin Jiang, “Internet of things based
smart grids supported by intelligent edge computing,” IEEE
access, vol. 7, pp. 74089–74102, 2019.

[16] M. Satyanarayanan, “The Emergence of Edge Computing,” Com-
puter, vol. 50, no. 1, pp. 30–39, Jan. 2019.

[17] Ning Chen and Yu Chen, “Smart City Surveillance at the Network
Edge in the Era of IoT: Opportunities and Challenges,” in Smart
Cities, pp. 153–176. Apr. 2018.

[18] Hwejoo et al., “A data streaming performance evaluation using
resource constrained edge device,” in 2017 ICTC, Jeju, South
Korea, 2017, IEEE.

[19] S. Khan, “A review on the application of deep learning in system
health management,” Mechanical Systems and Signal Processing, vol.
107, pp. 241–265, 2018.

[20] M. Ranzato, “Video (language) modeling: A baseline for genera-
tive models of natural videos,” arXiv:1412.6604, 2014.

[21] W. Rawat, “Deep convolutional neural networks for image clas-
sification: A comprehensive review,” Neural Computation, vol. 29,
no. 9, pp. 1–10, 2017.

[22] Sharma P. et al., “Era of deep neural networks: A review,”
in 8th International Conference on Computing, Communication and
Networking Technologies, 2017, pp. 1–5.

[23] Gallagher J. et al., “A reconfigurable continuous time recurrent
neural network for evolvable hardware applications,” in 2005
IEEE Congress on Evolutionary Computation, 2005.

[24] Neil D. et al., “Phased lstm: Accelerating recurrent network
training for long or event-based sequences,” Advances in neural
information processing systems, vol. 16, pp. 3882–3890, 2016.

[25] J. Halpern and C. Pignataro, “RFC 7665 - Service Function
Chaining (SFC) Architecture,” Oct. 2015.

[26] C. Besse and B. Chaib-draa, “An Efficient Model for Dynamic and
Constrained Resource Allocation Problems,” in 2nd COPLAS ’07,
2007.

PEER REVIEW 18

[27] Ahuja, Ravindra et al., Network Flows: Theory, Algorithms, and
Applications, Prentice-Hall, 1993.

[28] Laborie, P. et al., “IBM ILOG CP optimizer for scheduling,”
Constraints, vol. 23, no. 2, pp. 210–250, 2018.

[29] Aderaldo et al., “Kubow: an architecture-based self-adaptation
service for cloud native applications,” in Proc. of the 13th ECSA,
Paris, France, 2019, vol. 2, pp. 42–45, ACM.

[30] Hedengren et al., “Apopt: Minlp solver for differential and alge-
braic systems with benchmark testing,” in Proceedings of INFORMS
National Meeting, 2012.

[31] Amir HajiRassouliha, Andrew J. Taberner, Martyn P. Nash, and
Poul M.F. Nielsen, “Suitability of recent hardware accelerators
(dsps, fpgas, and gpus) for computer vision and image processing
algorithms,” Signal Processing: Image Communication, vol. 68, pp.
101–119, 2018.

[32] Yuexian Zou, Guangyi Shi, Yufeng Jin, and Yali Zheng, “Extraoc-
ular image processing for retinal prosthesis based on dsp,” in
2009 4th IEEE International Conference on Nano/Micro Engineered and
Molecular Systems, 2009, pp. 563–566.

[33] Beal et al., “Gekko optimization suite,” Processes, vol. 6, no. 8,
2018.

[34] Cho, K. et al., “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, , no. 1, 2014.

[35] M. Shamim Hossain, “Qos-aware service composition for video
surveillance,” in 2011 IEEE International Conference on Multimedia
and Expo, 2011, pp. 1–5.

[36] Biao Song, Yuan Tian, and Bingyin Zhou, “Design and evalua-
tion of remote video surveillance system on private cloud,” in
2014 International Symposium on Biometrics and Security Technologies
(ISBAST), 2014, pp. 256–262.

[37] C. P. Nwokolo and H. C. Inyiama, “Quality of service evaluation
in on-demand cloud-based video surveillance,” in 2017 IEEE 3rd
International Conference on Electro-Technology for National Develop-
ment (NIGERCON), 2017, pp. 532–537.

[38] Sangmin et al., “A Large-scale Benchmark Dataset for Event
Recognition in Surveillance Video,” in Proceedings of IEEE
Comptuer Vision and Pattern Recognition (CVPR), 2011. 2011, IEEE.

[39] Google AI Blog, “MobileNetV2: The Next Generation of On-
Device Computer Vision Networks,” 2018.

[40] M. Piccardi, “Background subtraction techniques: a review,” in
2004 IEEE International Conference on Systems, Man and Cybernetics
(IEEE Cat. No. 04CH37583), 2004, pp. 3099–3104.

[41] Khochare et al., “Distributed video analytics across edge and
cloud using echo,” in International Conference on Service-Oriented
Computing (ICSOC) Demo, 2017.

[42] Nasir et al., “Fog computing enabled cost-effective distributed
summarization of surveillance videos for smart cities,” Journal of
Parallel and Distributed Computing, vol. 126, pp. 161–170, 2019.

[43] Ichinose P. et al., “A study of a video analysis framework using
kafka and spark streaming,” in 2017 IEEE International Conference
on Big Data (Big Data), 2017, pp. 2396–2401.

[44] Brendan Burns, Joe Beda, Kelsey Hightower, and Lachlan Even-
son, Kubernetes: up and running, ” O’Reilly Media, Inc.”, 2022.

[45] Paridhika Kayal, “Kubernetes: Towards deployment of distributed
iot applications in fog computing,” in Companion of the ACM/SPEC
International Conference on Performance Engineering, 2020, pp. 32–33.

Vassilios Tsakanikas received his Diploma De-
gree in Electrical and Computer Engineering
from the National Technical University of Athens
in 2005 and his M.Sc. in Computer Science from
Athens University of Economics and Business in
2007. His research interests are signal process-
ing, computer vision, artificial intelligence and
edge computing. Vassilios is a Ph.D. student at
the London South Bank University and member
of the SuITE research group, a member of the
Technical Chamber of Greece and a Student

IEEE member.

Tasos Dagiuklas received the Engineering De-
gree from the University of Patras-Greece in
1989, the M.Sc. from the University of Manch-
ester, U.K., in 1991, and the Ph.D. degree from
the University of Essex-U.K. in 1995, all in Elec-
trical Engineering. He is a leading researcher
and expert in the fields of Internet and mul-
timedia technologies for smart cities, ambient
assisted living, healthcare, and smart agricul-
ture. He has been a principle investigator, a co-
investigator, a project and technical manager, a

coordinator, and a focal person of over 20 internationally R&D and
capacity training projects with total funding of approximately £.5.0m from
different international organizations. He is currently the Leader of the
SuITE Research Group, London South Bank University, where he also
acts as the Head of the Division in Computer Science. His research
interests include smart internet technologies, media optimization across
heterogeneous networks, QoE, virtual reality, augmented reality, and
cloud infrastructures and services.

