
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1



Abstract—The time to process each of W/B processing blocks

of a median calculation method on a set of N W-bit integers is

improved here by a factor of three compared to the literature.

Parallelism uncovered in blocks containing B-bit slices are

exploited by independent accumulative parallel counters so that

the median is calculated faster than any known previous method

for any N, W values. The improvements to the method are

discussed in the context of calculating the median for a moving

set of N integers for which a pipelined architecture is developed.

An extra benefit of smaller area for the architecture is also

reported.

Index Terms—Median Filter, Pipelined Processing, Image

Processing.

I. INTRODUCTION

HE selection, and in particular the calculation of the

median arises in many applications in computer science

and statistics that extends to a variety of fields [1, 2]. The

median, M, of a set of integers is such that half the integers in

the set are less or equal to M, and half are greater or equal to

M. For N sorted integers, the median is the integer at position

P = ⌈N/2⌉ or the middle position. The median filter is

essentially the computation of the median for a moving set of

N values within a window.

The median can be calculated by sequential or parallel

methods, without performing a full sort (that would take

O(nlogn) time), with a complexity of O(n) [1], although these

methods are not hardware amenable. Non-sorting based

methods, especially those designed for hardware architectures

achieve the calculation in a number of steps related to the bit

length of unsigned integers, W, rather than N. Of these,

probably the best method compared to previous sorting and

non-sorting methods takes W processing steps to find the

median [3]. Lately, two architectures have been proposed

using the sorting method [4, 5]; in these the number of

processing blocks are related to N which intuitively seem area-

costly for the common case of N > W. This paper improves our

previous method to calculate the median on a set of N W-bit

integers in W/B processing blocks, where B is a parameter of

how many bits are blocked for processing [6]. Each block

contributes B-bit towards finding the median. A designer has

J. O. Cadenas and R. S. Sherratt are with the School of Systems

Engineering, The University of Reading, Reading RG6 6AX, UK (e-mail:

o.cadenas@reading.ac.uk, sherratt@ieee.org).

G. M. Megson is with University of Westminster, London W1T 3UW, UK
(e-mail: g.megson@westminster.ac.uk).

to analyze the tradeoffs of parameters N, B and W in order to

produce a winning architecture. For instance, our previous

architecture [6] is made faster than the work in [3] only for N

> 7 when working on slices of B = 2, 3 or 4 bits. The

improvement here makes the method faster than previous

work [6] for any N while maintaining blocks of 2-bit or 3-bit

for practical hardware implementations. In fact, an analysis

indicates the architecture presented here is faster than

previously found even in the case of 1-bit slices (B = 1). As

each block contributes B-bit to the median, the key idea in this

paper is to maintain a parallel accumulation to select these B

bits within each block, whereas previously, this accumulation

was computed serially within a block. The novel approach that

led to the improvement in this work relies on the concept of

Accumulative Parallel Counters (APC) [7]. This paper starts

by applying the APC concept to a set of N non-negative

integers (or single window) using a small value of N as an

example. APC is then applied to the case of maintaining the

accumulation on a sliding window of size N, from where an

architecture for calculating the median follows.

II. ACCUMULATIVE PARALLEL COUNTERS

APC is defined as an l-bit register that is updated by the

sum of the previous contents and its r 1-bit inputs [7]. For

instance, for a 3-bit register with a current value of 3 and four

1-bit input vector values of [0,1,1,0], the register value is

incremented by 2 and thus updated to 5. This can be

considered as if the number of ones in the 1-bit input were

accumulated. An APC circuit with r 1-bit inputs is arranged in

such a way that the delay to perform its operation in terms of

full/half adders using a l-bit ripple carry adder is given by

⌊log2r⌋+l; details in [7]. The impact that this result has for the

median architecture in this paper will be discussed later in the

timing analysis of Section V.

Our median calculation method slices each W-bit data item

by B-bit to arrange for W/B processing blocks. Within each

block, accumulation of slices of bits are kept using an array of

APC registers. Consequently, within a block, a number of 2
B

APC registers are maintained; the first one being of r = 1 1-bit

input, the second of r = 2 1-bit inputs, and the last one being

of r = 2
B
 1-bit inputs. In general, given qi of r = 2

B
 1-bit input

then an array of 2
B
 APCs, 1

i i0
r
iA q
  is arranged for

processing per block. For N data items within a window, each

APC register Ai is of l = log2N bits. Before an example is

presented, it is worth recalling how to generate a 1-bit input

vector of length r = 2
B
 taken B-bit slices from data items.

Median Filter Architecture by Accumulative

Parallel Counters

J. O. Cadenas, G. M. Megson, and R. S. Sherratt, Fellow, IEEE

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

A. Generation of bit vectors

An item data bit is interpreted as having disjoint amplitudes

a0 and a1 for bit values 0 and 1 respectively. The item data bit

is manipulated to be expressed in the form d = a0Q[0] + a1Q[1]

defining Q[0] = [0 1] and Q[1] = [1 0] so that when a data bit

value is 0 it is represented as Q[0] or as Q[1] otherwise. This

expression is based on quantum representations of bits [8], so

let’s call Q[d] a qubit. Operations on qubits such as a tensor

between two or multiple qubits can now be defined. For

instance, the tensor between two qubits is defined as:

[] [] 1 0 1 0 1 1 1 0 0 1 0 0
× = []×[] = []g hQ Q g g h h g h g h g h g h

Thus, for two bits x0x1 = 102, the qubit tensor is

1 0[] = [1 0]×[0 1] = [0 1 0 0]x xQ . The tensor between

two qubits is already familiar to us; it is equivalent to a binary

decoding on two bits; a 2-to-4 binary decoder. The method

here manipulates bit slices of data input as qubits and build its

tensor; on a B-bit slice this is equivalent to performing a

binary decoding operation of B bits to generate a 2
B
 bit vector;

a B-to-2
B
 binary decoder [9]. This bit vector is the one

previously referred to as vector q with size r = 2
B
. For the

specific case of B = 2, q = [q3 q2 q1 q0] and r = 4. APC register

A0 takes as input q0, A1 takes as input q1q0, A2 takes as input

q2q1q0 and A3 takes as input q3q2q1q0. A median calculation

procedure using APC registers proceeds as in the following

example.

B. Small Example

Consider a data set of N = 9 integers, xj = {3, 1, 29, 21, 16,

9, 11, 19, 17}, each of W = 5 bits (labelled as [4:0]). Note P =

⌈N/2⌉ = 5. Using all the five bits representation of each integer

(and applying a qubit tensor) requires a full 5-to-32 binary

decoder generating a bit vector of length r = 2
5
 = 32 bits.

Performing a 5-to-32 binary decoding for each integer in the

set (and OR-ing into a bit vector of size 32, with all 32-bit

positions initially in zero), generate the bit mapping presented

in Table I. The binary decoding produces an indirect ordering

of the integers in the set and then the median can be taken

directly as 1610 since it is the middle position of the nine ones

in the 32-bit vector q (or the P = 5 position of the nine ones in

the vector). However, as the input size W grows in bits and

other nuisances (such as repeated integers in the set) make this

full binary decoding approach impractical to be used as a

direct method for computing the median at least for sizes W >

8 [10]. Nevertheless the approach can be used as the principle

of operation when processing slices of bits taken from the

input integers instead of taking all bits at once.

 For illustration, let us partition each xj[4:0] into two blocks

of bits as {xj[4:2], xj[1:0]}; that is a first block with B = 3 bits

(Block 1) and a second block with B = 2 bits (Block 2). For

Block 1, eight (2
B
 = 2

3
 = 8) APC registers Ai are maintained, i

= 0, …, 7 (and each wide enough to accumulate a count of up

to N = 9). The three-bit slices on all xj[4:2] are processed first

by Block 1 and then xj[1:0] by Block 2 as shown in Table II

(note the dot in (xj)2). Integers are processed one at a time, and

a binary decoding of the integer slice is performed on the fly

into a 2
B
 bit q vector (for example slice “000” of integer 3 in

Block 1 is decoded as vector q = [0,0,0,0,0,0,0,1]). From this

decoded bit vector the input to a given APC is selected as

previously stated. For instance, register A2 has as input three

1-bit taken from the decoding vector the bits q2q1q0 = “001”,

thus A2 register will update to a count of 1. Therefore, in

general, APC register Ai operates on i+1 1-bit inputs taken

from the decoding vector q all bits with indices 0, …, i. All

APC registers are updated in parallel for each integer slice as

shown in Table II. The running count is shown on each APC

after the slice for each input integer is processed. After all nine

integers are processed by Block 1 A7, A6, … A1, A0 have

counts 9, 8, 8, 7, 4, 4, 2, 2 respectively. This is the count after

the slice for integer 1710 (last in input window) is processed.

TABLE II

MEDIAN CALCULATION PROCEDURE FOR NINE INTEGERS OF 5 BITS EACH.
BLOCK 1 PROCESSES THREE BITS AND BLOCK 2 TWO BITS

Window Set Block 1 (3 bits) Block 2

(xj)10 (xj)2 A7 A6 A5 A4 A3 A2 A1 A0 A3 A2 A1 A0

3 000.11 1 1 1 1 1 1 1 1 0 0 0 0

1 000.01 2 2 2 2 2 2 2 2 0 0 0 0

29 111.01 3 2 2 2 2 2 2 2 0 0 0 0

21 101.01 4 3 3 2 2 2 2 2 0 0 0 0

16 100.00 5 4 4 3 2 2 2 2 1 1 1 1

9 010.01 6 5 5 4 3 3 2 2 1 1 1 1

11 010.11 7 6 6 5 4 4 2 2 1 1 1 1

19 100.11 8 7 7 6 4 4 2 2 2 1 1 1

17 100.01 9 8 8 7 4 4 2 2 3 2 2 1

 1 1 1 1 0 0 0 0 1 1 1 1

 P = 5; Ai ≥ P P = 1; Ai ≥ P

C. Finishing the example: calculating the median

Calculating the median proceeds in a similar way to the

procedure shown in our previous work [6]. A given block

finds B-bit of the median as the first occurrence of the index i

(right to left in Table II) for when Ai ≥ P; this comparison is

parallel. For Block 1 this comparison resolves to the bit vector

“11110000” using P = 5 (shown at the bottom of Table II).

Applying a priority encoding [9] to this vector (with priority

right to left) gives the index i = 4 which corresponds to the

column under APC A4. This index corresponds to slices of

three bits with values “100”. Thus, the three MSBs of the

median, are found as M[4:2] = “100”. From the nine input

integers in the window, only integers 16, 19 and 17 had their

processed bit slices with values “100” indicating that only the

integers 16, 19 and 17 are still median candidates (highlighted

in gray in Table II). Integers 3, 1, 29, 21, 9 and 11 need to get

nullified so they cannot update any Ai for Block 2.

Next, Block 2 is processed. First, position for median P is

recalculated as P = 5 - 4 = 1 (4 being the A value to the right

under A4 column, underlined in Table II for Block 1).

Computing Ai proceeds as before, on the remaining 2-bit slice

TABLE I
BIT MAPPING FOR THE PRESENTED EXAMPLE

q31 q30 q29 q28 q27 q26 q25 q24 q23 q22 q21 q20 q19 q18 q17 q16 q15 q14 q13 q12 q11 q10 q9 q8 q7 q6 q5 q4 q3 q2 q1 q0
0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

for all xj. The condition A ≥ P is first satisfied for A under i =

0. The remaining two bits for the median are thus M[1:0] =

“00”. Concatenating the results from blocks 1 and 2 give the

median as M = 100002 = 1610.

D. Key Observations for Improvements

From the above example, the following key observations

are made as regard to the improvements to the method

presented here. Firstly, reformulating the accumulation of bits

in terms of APCs makes Ai to be computed in parallel and as

decisions for finding the median are made on parallel logic

decisions on accumulations, Ai, the method should be faster

than the method as it stands [6]. The previous method was

equivalent to calculating the histogram on slice values (in

parallel) and then accumulating the histogram right to left (a

serial process); this is one key difference. Secondly, the

nullification of integers, that are not candidates for the median,

is easier to handle when postponed until the next block. This

leads to the third observation; further optimizations can be

made to each APC arrangement for the case of a sliding

window of N integers accepting a single integer. This

observation is valid for the front-end processing block (the one

that processes slices of the MSB bits). In this case a single

integer leaves the window while a new integer arrives into the

window. The front-end block sees and discards at most one

integer within a window which can be conveniently exploited

into improvements as presented next.

III. APCS ON A SLIDING WINDOW

Consider a continuous streaming of input integers arriving

one at a time for processing; a median filter is interested in

finding the median on the most recent N integers, and so we

have a running window of size N. Once a pipeline with N

integers gets full, a single old integer leaves the window while

a single new integer arrives into the window. For the method

here, a processing mechanism requires a coherent update on

accumulations Ai for a correct fully streaming pipelined

operation. Such an update can be thought of as a parallel

subtraction of the contribution of the oldest integer slice and

likewise an addition of the newest integer slice contribution.

Consider a stream of integers as xj = {3, 1, 29, 21, 16, 9, 11,

19, 17, 14, …,}. The first window of nine integers is the one

presented in Table II. The second window is now composed of

integers {1, 29, 21, 16, 9, 11, 19, 17, 14}; the oldest integer in

the window was of value 3 and a new integer of value 14

enters the window. With the new window, repeating the whole

computation of Ai for Block 1 in Table II gives counts of [9, 8,

8, 7, 4, 3, 1, 1]. The question is, given that the previous

window had a count of A
t-1

 and knowing the new value x
t
j

(value 14) and the old value x
t-N

j (value 3), can count A
t
 be

computed? The slice for old integer value 3 (“00011”, iold = 0)

is first decoded as q = [0,0,0,0,0,0,0,1] and to keep Ai coherent

requires subtracting [1,1,1,1,1,1,1,1] to the running

accumulation of [9,8,8,7,4,4,2,2] of the previous window

(bottom of Table II, Block 1). The slice for integer value 14

(“01110”, inew = 3) is decoded as q = [0,0,0,0,1,0,0,0] and to

keep Ai coherent requires adding [1,1,1,1,1,0,0,0] to the

running accumulation. The net effect is subtracting (in

parallel) the vector value [0,0,0,0,0,1,1,1] ([1,1,1,1,1,1,1,1]

XOR [1,1,1,1,1,0,0,0] = [0,0,0,0,0,1,1,1]) from the running

accumulation; that is [9,8,8,7,4,4,2,2]]-[0,0,0,0,0,1,1,1] = [9,

8, 8, 7, 4, 3, 1, 1]. Thus, Ai is updated from [9,8,8,7,4,4,2,2]

(for window {3, 1, 29, 21, 16, 9, 11, 19, 17}) to [9, 8, 8, 7, 4,

3, 1, 1] (for window {1, 29, 21, 16, 9, 11, 19, 17, 14}).

A. Update Logic on APCs

Note the following from the discussion above: Firstly, the

slice decoding process sets a bit i in the decoded vector q and

then all the bits i+1, i = 0, …, 2
B
-1, are also set before being

added or subtracted. This is in effect a sign-bit extension for a

vector of length 2
B
. Let’s denote the sign extension on the

decoded vector by sign(qi); with bit vectors size of 2
B
 bits.

Secondly, the sign-extended decoded values of old and new

slices are XOR-ed. A full analysis of what has to be performed

to maintain a coherent accumulation Ai is given by:

v = sign(qi_old) XOR sign(qi_new)

if (i_old < i_new) then Ai = Ai – v

else Ai = Ai + v

Fig. 1 shows the internal architecture of a front-end median

processing block similar to Block 1 of Table II for B = 2. The

block accepts integer inputs xj and median position for this

block Pin; it is most convenient to accept input Min holding the

median slice value found by a previous block. The median

slice found by this block is generated at the bottom as Mout as

well as the median position to be used by a next block Pout.

Fig. 1 processes 2-bit slices of a window of N = 5 integers xj

of W-bit each and thus an array of four accumulative parallel

counter registers of up to four 1-bit inputs with each register of

size 3 bits is arranged. The sign extension performed on the

decoder outputs can be maintained in parallel using gates with

a fan-in of at most 2
B
 inputs. Alternatively, a binary-to-

thermometer encoding can replace the decoding and sign-

extension for a direct look-up table implementation [11].

Also, notice the decoders can be inhibited by a single enable

bit to account for nullification of integers within a running

window; they are fully enabled for the front-end block by

simply making Min[B-1:0] = xj[W-1:W-B]. This is the reason to

have Min as input, to contain nullification signals within a

block rather than passing these from one block to the next

(that would require N bits). A full circuit arrangement for the

APC [7] is not necessary due to the fact that at most a single

integer arrives or leaves the window; this is a key further

optimization to a front-end block as of Fig. 1. After the

comparison Ai ≥ P is performed (comparator block in Fig. 1) a

priority encoder produces the median slice for this block. A

simple arrangement of a (priority) multiplexer acting on the

comparison output to select the value to be subtracted from

input Pin to generate output Pout completes the operation of the

block (Multiplexer/Adder block in Fig. 1).

Note the pipeline arrangement is clear from Fig. 1; a delay

of N clock cycles is required to see all integers from a window

(left to right registers in Fig. 1) plus the extra delay top to

bottom in the architecture of Fig. 1; this delay is denoted by L.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

The gray boxes in Fig. 1 are to indicate places where extra

registers might be necessary for faster pipelined operation.

The overall latency for a front-end block is of N+L clock

cycles, after this latency a median slice is produced every

clock cycle.

IV. MEDIAN ARCHITECTURE FOR A SLIDING WINDOW

In general, for W-bit integers, physical blocks of B-bits each

arrange for ⌈W/B⌉ processing blocks; however it is possible to

make each processing block to operate with its own B value

(of bits) as shown from Table II. Fig. 2 shows the block

diagram for computing the median for the example in Table II.

Front-end block (Block 1) computes the 3-bit median, M[4:2],

and a second processing block (Block 2) computes the

remaining 2-bit median M[1:0] as detailed in Table II. M[4:2]

is available after N+L clock cycles; thus the next processing

block needs to get aligned in time by delaying input xj by L

clock cycles so the current input window is already loaded

into the next processing block. Note for the next processing

block, the assumption made earlier of having a single old

integer leaving the window while a single new integer arrives

into the window, is no longer valid. Consequently the

simplifications seen in Fig. 1 cannot be used directly.

Fortunately, the processing block previously presented in [6]

can be used instead except with two key modifications. The

first one is that integer nullification is replaced by exactly the

scheme of Fig. 1 here. So, M[4:2] computed by the front-end

block gets compared to xj[4:2] seen by the processing block.

The second modification is that full APC circuit arrangements

as detailed in [7] can be incorporated into the block for a

parallel accumulation. This is so since more than one integer

can enter or leave within a window for Block 2 as it is clearly

shown in Table II. Each APC accumulator (there are 2
B
) has

an N-bit input vector with a register output of length log2N.

Results from a processing block are pipelined vertically where

the calculation continues to the next block concatenating the

generated median bit slices as shown in Fig. 2; the median

emerges every clock cycle after an initial latency of N+2L

clock cycles in Fig. 2. This result is consistent with latest

methods of O(1) time for calculating running medians [12]. In

a generic case of K processing blocks (K = ⌈W/B⌉ if B-bit are

processed by each block), the median M is found every clock

cycle with a latency of N+KL clock cycles; L is a tuning

design parameter for speed of operation.

V. TIMING ANALYSIS AND IMPLEMENTATION

A. Timing Analysis

The critical path delay T of Fig. 2 is essentially due to the

APC accumulators of l = log2N bits each (of Fig. 1), and as the

rightmost APC has r = 2
B
 1-bit inputs, then T = ⌊log22

B⌋+log2N

thus T = B + log2N. A processing block in our previous

method [6] had a critical path complexity of 3log2N + 6 for B

= 2, so the processing block of Fig. 1 is three times faster than

our previous method [6] for any B < 6. The critical path of the

work in [3], T[3], is the delay cost of the Carry-Save Adder tree

(CSA) and is at least of log1.5(N/2) + log2N to account for the

final adder [13]. It follows that for B ≤ log1.5N/2 a pipeline

path here would be faster than a pipeline of the work in [3].

This is satisfied even for small values of N such as N = 3 and

B = 1, which implies that the circuit here is faster for all

practical cases values of N with a suitable choice of B.

Interestingly, for B = 1, the work here is expected to be faster

than the work in [3] for any N which suggests that the

architecture in [3] may adopt the concept of APCs for a hybrid

architecture. For B > 1 this work computes the median in W/B

processing blocks while the work in [3] needs W processing

blocks. It seems convenient to maintain B as small as 2, 3 or 4.

This favors the parallel decoding and sign extension as shown

in Fig. 1. Remarkably, the final accumulator in this work is

still a ripple-carry adder. For the recent hardware sorting-

based method in [4] the critical path goes through a chain of

N-1 logic OR gates and therefore longer than the critical path

of Figs. 1, 2. These latest sorting methods have been proposed

for area-efficiency [4] or power [5].

B. Hardware Implementation

In order to verify the architecture presented here designs

were expressed in RTL Verilog HDL and functionally verified

by simulation. From the RTL design of the processing blocks

using APC registers (similar to Fig. 1), circuit area and

frequency of operation synthesis results is reported in Table III

Fig. 1. A front-end block processing 2-bit slices on 5 integers. This block

generates 2-bit of the median Mout and the P value (Pout) for the next block.

Sign-Extend, XOR

0 1

2

3
 Decoder <

new slice

old<new: -

ej

xnew

x
j

=

x
old

e
j-4

 Min

0

1

2

3
 Decoder

 &

A0 A
1
 A

2
 A

3

+ + + +

Comparator

old≥new: +

old slice

Priority

Encoder

Multiplexer

Adder

 Mout Pout

P
in

 xj[4:2] P

x
j
[4:0]

Front-End Block

Pin M
in

P
out

 M
out

Processing Block

P
in
 M

in

P
out

 M
out

M[4:2]

M[1:0]

L

L

Median

Fig. 2. Architecture to compute the median bits as in Table 1 using a front-end

block of B = 3 bits followed by a processing block with B = 2 bits.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

using ASIC TSMC 0.25μm technology. For a quick

comparison the results of the previous work in [6] are also

included. Clearly, using APC registers improves the frequency

of operation as expected from the timing analysis. The front-

end block offers an extra advantage in area especially when

input integers are of W ≤ 12 bits.

From Table IV it is seen that area scales well with

parameter value N. A front-end block makes it easier to

produce designs for any parameter value B; however the table

suggests it is preferable to keep parameter B to 2, 3 bits (or

make parameter L > 2 to increase frequency). Getting a circuit

for Fig. 2 is subjected to implementation details at the RTL

level. We explored maintaining the accumulation Ai coherent

by fusing the decoder and sign extension of Fig. 1 into an ad-

hoc decoder (a look up table) such that the critical path in the

accumulation process is kept bounded by log2N. In this case,

the critical path could move into the logic towards the bottom

of Fig. 1. This is the purpose of introducing the delay elements

down the pipeline in Fig. 1. Table IV uses L = 2; this sort of

tuning is best to be evaluated under the specific technology

used to target the architecture and so it is not discussed in full

detail in this paper. Observe the latency N+KL paid by the

architecture here is related to the number of blocks K (K =

W/B when each block is of B-bit slices); K remains small even

in common practical cases (W ≤ 16). The work in [3] has a

latency of W but requires all samples in parallel and so needs

WN input wires while this work needs only W input wires for

streaming pipelined operation. The work in [4, 5] needs N

processing blocks and so there is the tradeoff of evaluating

overall area, frequency of operation, and latency for a specific

application. Note, Tables III and IV do not report results for a

complete median architecture.

C. Extensions

The extensions to handle signed integers and the case of

rank filtering as discussed in [6] remain valid. For keeping the

paper self-contained we briefly mentioned them here. In order

to handle signed integers, count the number of negative and

positive integers within a window as C0 and C1 respectively so

that N = 2k+1 = C0 + C1. Set the median position P to the first

block of the computation to P = k + 1 – C1 if C0 > C1 or to P =

k + 1 – C0 otherwise. The method remains unmodified if

applied to the remaining W-1 bits of the input data set within

the window. An order R filter for a set of N data elements has

R data elements less or equal to the output [2]. The median is a

rank filter with R = k, so this method to calculate the median

behaves as a rank filter by setting initial median position to the

first block of computation to P = R + 1 when accumulations Ai

proceed right to left as performed here.

VI. CONCLUSION

Fundamental in median filtering methods for noise

reduction in high quality imaging, the method for calculating

the median given here makes faster decisions than previous

hardware algorithms in the literature. The computation within

each processing block is executed faster than before for any

size of blocking bits (design parameter B). The median on a

set of N integers completes after K (typically W/B) processing

blocks for a serial pipelined stream of W-bit integers with a

latency of N+KL, with L a tuning pipeline parameter for speed.

It is also shown that this result holds irrespective of the actual

values of parameter N or any combination of B and N. The use

of full accumulative parallel counters circuitry is required for

extending calculating the median in a parallel approach of

accepting more than one integer at a time in streaming

operation. The method is generic following a systematic

number of steps from where different architectures and

implementations can be derived. The method is also easily

extended to be implemented as a fast programmed solution.

REFERENCES

[1] S. G. Akl, The Design and Analysis of Parallel Algorithms.
Englewood Cliffs, NJ: Prentice-Hall, 1989, pp. 39–58.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to

Algorithms. Cambridge, Mass., MIT Press, 2003.
[3] D. Prokin and M. Prokin, “Low hardware complexity pipelined rank

filter,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 6, pp. 446–

450, June 2010.
[4] R. D. Chen, P. Y. Chen, and C. H. Yeh, “Design of an area-efficient

one-dimensional median filter,” IEEE Trans. Circuits Syst. II, Exp.

Briefs, vol. 60, no. 10, pp. 662–666, Oct. 2013.
[5] R. D. Chen, P. Y. Chen, and C. H. Yeh, “A low-power architecture for

the design of a one-dimensional median filter,” IEEE Trans. Circuits

Syst. II, Exp. Briefs, to appear, 2015.

[6] J. Cadenas, G. M. Megson, R. S. Sherratt, and P. Huerta, “Fast median

calculation method,” Electron. Lett., vol. 48, no. 10, pp. 558-560, May

2012.
[7] B. Parhami and C. H. Yeh, “Accumulative parallel counters,” in Proc.

23rd Asilomar Conf. on Signals, Systems, and Computers, Seattle, USA,

1995, pp. 513–516.
[8] M. A. Neilsen and I. L. Chuang, Quantum Computation and Quantum

Information, Cambridge University Press, 2000.

[9] J. F. Wakerly, Digital Design: Principles and Practices. 4th Ed., Upper
Saddle River, NJ: Prentice-Hall, 2006, Ch. 6.

[10] Q. Gan, J. M. P. Langlois, and Y. Savaria, “Parallel array histogram

architecture for embedded implementations,” Electron. Lett., vol. 49, no.
2, pp. 99-101, Jan. 2013.

[11] B. V. Hieu, S. Beak, S. Choi, J. Seon and T. T. Jeong, “Thermometer-to-
binary encoder with bubble error correction (BEC) for flash analog-to-

digital converters (FADC)”, in Proc. 3rd Int. Conf. on Communications

and Electronics, Nha Trang, Vietnam, 2010, pp. 102-106.
[12] S. Perreault and P. Hebert, “Median filtering in constant time,” IEEE

Trans. Image Process., vol. 16, no. 9, pp. 2389-2394, Sept. 2007.

[13] B. Parhami, Computer Arithmetic, Algorithms and Hardware Designs.
New York, NY: Oxford University Press, 2000, pp. 125-140.

TABLE III

AREA AND FREQUENCY FOR MEDIAN ARCHITECTURE BLOCKS

W Front-End Block Processing Block Old Block [6]
 Gates MHz Gates MHz Gates MHz

6 642 387 944 353 1169 166

8 801 355 991 353 1368 166

12 1010 324 1082 353 1768 166

16 1255 318 1173 353 2168 166

Front-End Block (Fig. 1, B = 2, L = 2), the previous block in [6] redesigned
with APC accumulators (Processing Block, B = 2, L = 2), and the block of

previous work in [6] (B = 2) for N = 9 and W = 6, 8, 12, and 16 bits.

TABLE IV

AREA AND FREQUENCY FOR A MEDIAN PARAMETERIZED BLOCK

 W, N 8, 9 8, 25 8, 49 16, 9 16, 25 16, 49

B A/fMHz A/fMHz A/fMHz A/fMHz A/fMHz A/fMHz

2 801/355 1556/353 2761/337 1255/318 2584/268 4804/261

3 1172/330 2178/315 3314/319 1588/279 3083/258 5677/257

4 2065/309 3242/273 4703/266 2500/267 4319/248 7526/246

Front-end block Area (A) in gates, and frequency (fMHz) in MHz. L = 2.

