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Abstract—The time to process each of W/B processing blocks 

of a median calculation method on a set of N W-bit integers is 

improved here by a factor of three compared to the literature. 

Parallelism uncovered in blocks containing B-bit slices are 

exploited by independent accumulative parallel counters so that 

the median is calculated faster than any known previous method 

for any N, W values. The improvements to the method are 

discussed in the context of calculating the median for a moving 

set of N integers for which a pipelined architecture is developed. 

An extra benefit of smaller area for the architecture is also 

reported. 

 
Index Terms—Median Filter, Pipelined Processing, Image 

Processing.  

I. INTRODUCTION 

HE selection, and in particular the calculation of the 

median arises in many applications in computer science 

and statistics that extends to a variety of fields [1, 2]. The 

median, M, of a set of integers is such that half the integers in 

the set are less or equal to M, and half are greater or equal to 

M. For N sorted integers, the median is the integer at position 

P = ⌈N/2⌉ or the middle position. The median filter is 

essentially the computation of the median for a moving set of 

N values within a window.  

The median can be calculated by sequential or parallel 

methods, without performing a full sort (that would take 

O(nlogn) time), with a complexity of O(n) [1], although these 

methods are not hardware amenable. Non-sorting based 

methods, especially those designed for hardware architectures 

achieve the calculation in a number of steps related to the bit 

length of unsigned integers, W, rather than N. Of these, 

probably the best method compared to previous sorting and 

non-sorting methods takes W processing steps to find the 

median [3]. Lately, two architectures have been proposed 

using the sorting method [4, 5]; in these the number of 

processing blocks are related to N which intuitively seem area-

costly for the common case of N > W. This paper improves our 

previous method to calculate the median on a set of N W-bit 

integers in W/B processing blocks, where B is a parameter of 

how many bits are blocked for processing [6]. Each block 

contributes B-bit towards finding the median. A designer has 
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to analyze the tradeoffs of parameters N, B and W in order to 

produce a winning architecture. For instance, our previous 

architecture [6] is made faster than the work in [3] only for N 

> 7 when working on slices of B = 2, 3 or 4 bits. The 

improvement here makes the method faster than previous 

work [6] for any N while maintaining blocks of 2-bit or 3-bit 

for practical hardware implementations. In fact, an analysis 

indicates the architecture presented here is faster than 

previously found even in the case of 1-bit slices (B = 1). As 

each block contributes B-bit to the median, the key idea in this 

paper is to maintain a parallel accumulation to select these B 

bits within each block, whereas previously, this accumulation 

was computed serially within a block. The novel approach that 

led to the improvement in this work relies on the concept of 

Accumulative Parallel Counters (APC) [7]. This paper starts 

by applying the APC concept to a set of N non-negative 

integers (or single window) using a small value of N as an 

example. APC is then applied to the case of maintaining the 

accumulation on a sliding window of size N, from where an 

architecture for calculating the median follows.   

II. ACCUMULATIVE PARALLEL COUNTERS 

APC is defined as an l-bit register that is updated by the 

sum of the previous contents and its r 1-bit inputs [7]. For 

instance, for a 3-bit register with a current value of 3 and four 

1-bit input vector values of [0,1,1,0], the register value is 

incremented by 2 and thus updated to 5. This can be 

considered as if the number of ones in the 1-bit input were 

accumulated. An APC circuit with r 1-bit inputs is arranged in 

such a way that the delay to perform its operation in terms of 

full/half adders using a l-bit ripple carry adder is given by 

⌊log2r⌋+l; details in [7]. The impact that this result has for the 

median architecture in this paper will be discussed later in the 

timing analysis of Section V.  

Our median calculation method slices each W-bit data item 

by B-bit to arrange for W/B processing blocks. Within each 

block, accumulation of slices of bits are kept using an array of 

APC registers. Consequently, within a block, a number of 2
B
 

APC registers are maintained; the first one being of r = 1 1-bit 

input, the second of r = 2 1-bit inputs, and the last one being 

of r = 2
B
 1-bit inputs.  In general, given qi of r = 2

B
 1-bit input 

then an array of 2
B
 APCs, 1

i i0
r
iA q
   is arranged for 

processing per block. For N data items within a window, each 

APC register Ai is of l = log2N bits. Before an example is 

presented, it is worth recalling how to generate a 1-bit input 

vector of length r = 2
B
 taken B-bit slices from data items.  
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A. Generation of bit vectors 

An item data bit is interpreted as having disjoint amplitudes 

a0 and a1 for bit values 0 and 1 respectively. The item data bit 

is manipulated to be expressed in the form d = a0Q[0] + a1Q[1] 

defining Q[0] = [0 1] and Q[1] = [1 0] so that when a data bit 

value is 0 it is represented as Q[0] or as Q[1] otherwise. This 

expression is based on quantum representations of bits [8], so 

let’s call Q[d] a qubit. Operations on qubits such as a tensor 

between two or multiple qubits can now be defined. For 

instance, the tensor between two qubits is defined as: 

[ ] [ ] 1 0 1 0 1 1 1 0 0 1 0 0
× = [ ]×[ ] = [ ]g hQ Q g g h h g h g h g h g h  

Thus, for two bits x0x1 = 102, the qubit tensor is 

1 0[ ] = [1 0]×[0 1] = [0 1 0 0]x xQ . The tensor between 

two qubits is already familiar to us; it is equivalent to a binary 

decoding on two bits; a 2-to-4 binary decoder. The method 

here manipulates bit slices of data input as qubits and build its 

tensor; on a B-bit slice this is equivalent to performing a 

binary decoding operation of B bits to generate a 2
B
 bit vector; 

a B-to-2
B
 binary decoder [9]. This bit vector is the one 

previously referred to as vector q with size r = 2
B
. For the 

specific case of B = 2, q = [q3 q2 q1 q0] and r = 4. APC register 

A0 takes as input q0, A1 takes as input q1q0, A2 takes as input 

q2q1q0 and A3 takes as input q3q2q1q0. A median calculation 

procedure using APC registers proceeds as in the following 

example. 

B. Small Example 

Consider a data set of N = 9 integers, xj = {3, 1, 29, 21, 16, 

9, 11, 19, 17}, each of W = 5 bits (labelled as [4:0]). Note P = 

⌈N/2⌉ = 5. Using all the five bits representation of each integer 

(and applying a qubit tensor) requires a full 5-to-32 binary 

decoder generating a bit vector of length r = 2
5
 = 32 bits. 

Performing a 5-to-32 binary decoding for each integer in the 

set (and OR-ing into a bit vector of size 32, with all 32-bit 

positions initially in zero), generate the bit mapping presented 

in Table I. The binary decoding produces an indirect ordering 

of the integers in the set and then the median can be taken 

directly as 1610 since it is the middle position of the nine ones 

in the 32-bit vector q (or the P = 5 position of the nine ones in 

the vector). However, as the input size W grows in bits and 

other nuisances (such as repeated integers in the set) make this 

full binary decoding approach impractical to be used as a 

direct method for computing the median at least for sizes W > 

8 [10]. Nevertheless the approach can be used as the principle 

of operation when processing slices of bits taken from the 

input integers instead of taking all bits at once. 

 For illustration, let us partition each xj[4:0] into two blocks 

of bits as {xj[4:2], xj[1:0]}; that is a first block with B = 3 bits 

(Block 1) and a second block with B = 2 bits (Block 2). For 

Block 1, eight (2
B
 = 2

3
 = 8) APC registers Ai are maintained, i 

= 0, …, 7 (and each wide enough to accumulate a count of up 

to N = 9).  The three-bit slices on all xj[4:2] are processed first 

by Block 1 and then xj[1:0] by Block 2 as shown in Table II 

(note the dot in (xj)2). Integers are processed one at a time, and 

a binary decoding of the integer slice is performed on the fly 

into a 2
B
 bit q vector (for example slice “000” of integer 3 in 

Block 1 is decoded as vector q = [0,0,0,0,0,0,0,1]). From this 

decoded bit vector the input to a given APC is selected as 

previously stated. For instance, register A2 has as input three 

1-bit taken from the decoding vector the bits q2q1q0 = “001”, 

thus A2 register will update to a count of 1. Therefore, in 

general, APC register Ai operates on i+1 1-bit inputs taken 

from the decoding vector q all bits with indices 0, …, i.  All 

APC registers are updated in parallel for each integer slice as 

shown in Table II. The running count is shown on each APC 

after the slice for each input integer is processed. After all nine 

integers are processed by Block 1 A7, A6, … A1, A0 have 

counts 9, 8, 8, 7, 4, 4, 2, 2 respectively. This is the count after 

the slice for integer 1710 (last in input window) is processed. 

 
TABLE II 

MEDIAN CALCULATION PROCEDURE FOR NINE INTEGERS OF 5 BITS EACH. 
BLOCK 1 PROCESSES THREE BITS AND BLOCK 2 TWO BITS  

Window Set  Block 1 (3 bits)  Block 2 

(xj)10 (xj)2  A7 A6 A5 A4 A3 A2 A1 A0  A3 A2 A1 A0 

3 000.11  1 1 1 1 1 1 1 1  0 0 0 0 

1 000.01  2 2 2 2 2 2 2 2  0 0 0 0 

29 111.01  3 2 2 2 2 2 2 2  0 0 0 0 

21 101.01  4 3 3 2 2 2 2 2  0 0 0 0 

16 100.00  5 4 4 3 2 2 2 2  1 1 1 1 

9 010.01  6 5 5 4 3 3 2 2  1 1 1 1 

11 010.11  7 6 6 5 4 4 2 2  1 1 1 1 

19 100.11  8 7 7 6 4 4 2 2  2 1 1 1 

17 100.01  9 8 8 7 4 4 2 2  3 2 2 1 

   1 1 1 1 0 0 0 0  1 1 1 1 

   P = 5; Ai ≥ P  P = 1; Ai ≥ P 

C. Finishing the example: calculating the median 

Calculating the median proceeds in a similar way to the 

procedure shown in our previous work [6].  A given block 

finds B-bit of the median as the first occurrence of the index i 

(right to left in Table II) for when Ai ≥ P; this comparison is 

parallel. For Block 1 this comparison resolves to the bit vector 

“11110000” using P = 5 (shown at the bottom of Table II). 

Applying a priority encoding [9] to this vector (with priority 

right to left) gives the index i = 4 which corresponds to the 

column under APC A4. This index corresponds to slices of 

three bits with values “100”. Thus, the three MSBs of the 

median, are found as M[4:2] = “100”. From the nine input 

integers in the window, only integers 16, 19 and 17 had their 

processed bit slices with values “100” indicating that only the 

integers 16, 19 and 17 are still median candidates (highlighted 

in gray in Table II). Integers 3, 1, 29, 21, 9 and 11 need to get 

nullified so they cannot update any Ai for Block 2.  

Next, Block 2 is processed. First, position for median P is 

recalculated as P = 5 - 4 = 1 (4 being the A value to the right 

under A4 column, underlined in Table II for Block 1). 

Computing Ai proceeds as before, on the remaining 2-bit slice 

TABLE I 
BIT MAPPING FOR THE PRESENTED EXAMPLE  

q31 q30 q29 q28 q27 q26 q25 q24 q23 q22 q21 q20 q19 q18 q17 q16 q15 q14 q13 q12 q11 q10 q9 q8 q7 q6 q5 q4 q3 q2 q1 q0 
0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 
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for all xj. The condition A ≥ P is first satisfied for A under i = 

0. The remaining two bits for the median are thus M[1:0] = 

“00”. Concatenating the results from blocks 1 and 2 give the 

median as M = 100002 = 1610. 

D. Key Observations for Improvements  

From the above example, the following key observations 

are made as regard to the improvements to the method 

presented here. Firstly, reformulating the accumulation of bits 

in terms of APCs makes Ai to be computed in parallel and as 

decisions for finding the median are made on parallel logic 

decisions on accumulations, Ai, the method should be faster 

than the method as it stands [6]. The previous method was 

equivalent to calculating the histogram on slice values (in 

parallel) and then accumulating the histogram right to left (a 

serial process); this is one key difference. Secondly, the 

nullification of integers, that are not candidates for the median, 

is easier to handle when postponed until the next block. This 

leads to the third observation; further optimizations can be 

made to each APC arrangement for the case of a sliding 

window of N integers accepting a single integer. This 

observation is valid for the front-end processing block (the one 

that processes slices of the MSB bits). In this case a single 

integer leaves the window while a new integer arrives into the 

window. The front-end block sees and discards at most one 

integer within a window which can be conveniently exploited 

into improvements as presented next. 

III. APCS ON A SLIDING WINDOW 

Consider a continuous streaming of input integers arriving 

one at a time for processing; a median filter is interested in 

finding the median on the most recent N integers, and so we 

have a running window of size N. Once a pipeline with N 

integers gets full, a single old integer leaves the window while 

a single new integer arrives into the window. For the method 

here, a processing mechanism requires a coherent update on 

accumulations Ai for a correct fully streaming pipelined 

operation. Such an update can be thought of as a parallel 

subtraction of the contribution of the oldest integer slice and 

likewise an addition of the newest integer slice contribution. 

Consider a stream of integers as xj = {3, 1, 29, 21, 16, 9, 11, 

19, 17, 14, …,}. The first window of nine integers is the one 

presented in Table II. The second window is now composed of 

integers {1, 29, 21, 16, 9, 11, 19, 17, 14}; the oldest integer in 

the window was of value 3 and a new integer of value 14 

enters the window. With the new window, repeating the whole 

computation of Ai for Block 1 in Table II gives counts of [9, 8, 

8, 7, 4, 3, 1, 1]. The question is, given that the previous 

window had a count of A
t-1

 and knowing the new value x
t
j 

(value 14) and the old value x
t-N

j (value 3), can count A
t
  be 

computed? The slice for old integer value 3 (“00011”, iold = 0) 

is first decoded as q = [0,0,0,0,0,0,0,1] and to keep Ai coherent 

requires subtracting [1,1,1,1,1,1,1,1] to the running 

accumulation of [9,8,8,7,4,4,2,2] of the previous window 

(bottom of Table II, Block 1). The slice for integer value 14 

(“01110”, inew = 3) is decoded as q = [0,0,0,0,1,0,0,0] and to 

keep Ai coherent requires adding [1,1,1,1,1,0,0,0] to the 

running accumulation. The net effect is subtracting (in 

parallel) the vector value [0,0,0,0,0,1,1,1] ([1,1,1,1,1,1,1,1] 

XOR [1,1,1,1,1,0,0,0] = [0,0,0,0,0,1,1,1]) from the running 

accumulation; that is [9,8,8,7,4,4,2,2] ]-[0,0,0,0,0,1,1,1] = [9, 

8, 8, 7, 4, 3, 1, 1]. Thus, Ai is updated from [9,8,8,7,4,4,2,2] 

(for window {3, 1, 29, 21, 16, 9, 11, 19, 17}) to [9, 8, 8, 7, 4, 

3, 1, 1] (for window {1, 29, 21, 16, 9, 11, 19, 17, 14}). 

A. Update Logic on APCs 

Note the following from the discussion above: Firstly, the 

slice decoding process sets a bit i in the decoded vector q and 

then all the bits i+1, i = 0, …, 2
B
-1, are also set before being 

added or subtracted. This is in effect a sign-bit extension for a 

vector of length 2
B
. Let’s denote the sign extension on the 

decoded vector by sign(qi); with bit vectors size of 2
B
 bits.  

Secondly, the sign-extended decoded values of old and new 

slices are XOR-ed. A full analysis of what has to be performed 

to maintain a coherent accumulation Ai is given by: 

v = sign(qi_old) XOR sign(qi_new) 

if (i_old < i_new) then Ai = Ai – v 

else                         Ai = Ai + v 

 

Fig. 1 shows the internal architecture of a front-end median 

processing block similar to Block 1 of Table II for B = 2. The 

block accepts integer inputs xj and median position for this 

block Pin; it is most convenient to accept input Min holding the 

median slice value found by a previous block. The median 

slice found by this block is generated at the bottom as Mout as 

well as the median position to be used by a next block Pout. 

Fig. 1 processes 2-bit slices of a window of N = 5 integers xj 

of W-bit each and thus an array of four accumulative parallel 

counter registers of up to four 1-bit inputs with each register of 

size 3 bits is arranged. The sign extension performed on the 

decoder outputs can be maintained in parallel using gates with 

a fan-in of at most 2
B
 inputs. Alternatively, a binary-to- 

thermometer encoding can replace the decoding and sign-

extension for a direct look-up table implementation [11].  

Also, notice the decoders can be inhibited by a single enable 

bit to account for nullification of integers within a running 

window; they are fully enabled for the front-end block by 

simply making Min[B-1:0] = xj[W-1:W-B]. This is the reason to 

have Min as input, to contain nullification signals within a 

block rather than passing these from one block to the next 

(that would require N bits). A full circuit arrangement for the 

APC [7] is not necessary due to the fact that at most a single 

integer arrives or leaves the window; this is a key further 

optimization to a front-end block as of Fig. 1. After the 

comparison Ai ≥ P is performed (comparator block in Fig. 1) a 

priority encoder produces the median slice for this block. A 

simple arrangement of a (priority) multiplexer acting on the 

comparison output to select the value to be subtracted from 

input Pin to generate output Pout completes the operation of the 

block (Multiplexer/Adder block in Fig. 1). 

Note the pipeline arrangement is clear from Fig. 1; a delay 

of N clock cycles is required to see all integers from a window 

(left to right registers in Fig. 1) plus the extra delay top to 

bottom in the architecture of Fig. 1; this delay is denoted by L. 
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The gray boxes in Fig. 1 are to indicate places where extra 

registers might be necessary for faster pipelined operation. 

The overall latency for a front-end block is of N+L clock 

cycles, after this latency a median slice is produced every 

clock cycle. 

IV. MEDIAN ARCHITECTURE FOR A SLIDING WINDOW  

In general, for W-bit integers, physical blocks of B-bits each 

arrange for ⌈W/B⌉ processing blocks; however it is possible to 

make each processing block to operate with its own B value 

(of bits) as shown from Table II. Fig. 2 shows the block 

diagram for computing the median for the example in Table II.  

Front-end block (Block 1) computes the 3-bit median, M[4:2], 

and a second processing block (Block 2) computes the 

remaining 2-bit median M[1:0] as detailed in Table II. M[4:2] 

is available after N+L clock cycles; thus the next processing 

block needs to get aligned in time by delaying input xj by L 

clock cycles so the current input window is already loaded 

into the next processing block. Note for the next processing 

block, the assumption made earlier of having a single old 

integer leaving the window while a single new integer arrives 

into the window, is no longer valid. Consequently the 

simplifications seen in Fig. 1 cannot be used directly. 

Fortunately, the processing block previously presented in [6] 

can be used instead except with two key modifications. The 

first one is that integer nullification is replaced by exactly the 

scheme of Fig. 1 here. So, M[4:2] computed by the front-end 

block gets compared to xj[4:2] seen by the processing block. 

The second modification is that full APC circuit arrangements 

as detailed in [7] can be incorporated into the block for a 

parallel accumulation. This is so since more than one integer 

can enter or leave within a window for Block 2 as it is clearly 

shown in Table II. Each APC accumulator (there are 2
B
) has 

an N-bit input vector with a register output of length log2N. 

Results from a processing block are pipelined vertically where 

the calculation continues to the next block concatenating the 

generated median bit slices as shown in Fig. 2; the median 

emerges every clock cycle after an initial latency of N+2L 

clock cycles in Fig. 2. This result is consistent with latest 

methods of O(1) time for calculating running medians [12]. In 

a generic case of K processing blocks (K = ⌈W/B⌉ if B-bit are 

processed by each block), the median M is found every clock 

cycle with a latency of N+KL clock cycles; L is a tuning 

design parameter for speed of operation.   

V. TIMING ANALYSIS AND IMPLEMENTATION 

A. Timing Analysis 

The critical path delay T of Fig. 2 is essentially due to the 

APC accumulators of l = log2N bits each (of Fig. 1), and as the 

rightmost APC has r = 2
B
 1-bit inputs, then T = ⌊log22

B⌋+log2N 

thus T = B + log2N. A processing block in our previous 

method [6] had a critical path complexity of 3log2N + 6 for B 

= 2, so the processing block of Fig. 1 is three times faster than 

our previous method [6] for any B < 6. The critical path of the 

work in [3], T[3], is the delay cost of the Carry-Save Adder tree 

(CSA) and is at least of log1.5(N/2) + log2N to account for the 

final adder [13]. It follows that for B ≤ log1.5N/2 a pipeline 

path here would be faster than a pipeline of the work in [3]. 

This is satisfied even for small values of N such as N = 3 and 

B = 1, which implies that the circuit here is faster for all 

practical cases values of N with a suitable choice of B. 

Interestingly, for B = 1, the work here is expected to be faster 

than the work in [3] for any N which suggests that the 

architecture in [3] may adopt the concept of APCs for a hybrid 

architecture. For B > 1 this work computes the median in W/B 

processing blocks while the work in [3] needs W processing 

blocks. It seems convenient to maintain B as small as 2, 3 or 4. 

This favors the parallel decoding and sign extension as shown 

in Fig. 1. Remarkably, the final accumulator in this work is 

still a ripple-carry adder.  For the recent hardware sorting-

based method in [4] the critical path goes through a chain of 

N-1 logic OR gates and therefore longer than the critical path 

of Figs. 1, 2. These latest sorting methods have been proposed 

for area-efficiency [4] or power [5].  

B. Hardware Implementation 

In order to verify the architecture presented here designs 

were expressed in RTL Verilog HDL and functionally verified 

by simulation. From the RTL design of the processing blocks 

using APC registers (similar to Fig. 1), circuit area and 

frequency of operation synthesis results is reported in Table III 

 
Fig. 1. A front-end block processing 2-bit slices on 5 integers. This block 

generates 2-bit of the median Mout and the P value (Pout) for the next block. 
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Fig. 2. Architecture to compute the median bits as in Table 1 using a front-end 

block of B = 3 bits followed by a processing block with B = 2 bits. 
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using ASIC TSMC 0.25μm technology. For a quick 

comparison the results of the previous work in [6] are also 

included. Clearly, using APC registers improves the frequency 

of operation as expected from the timing analysis. The front-

end block offers an extra advantage in area especially when 

input integers are of W ≤ 12 bits. 

From Table IV it is seen that area scales well with 

parameter value N. A front-end block makes it easier to 

produce designs for any parameter value B; however the table 

suggests it is preferable to keep parameter B to 2, 3 bits (or 

make parameter L > 2 to increase frequency). Getting a circuit 

for Fig. 2 is subjected to implementation details at the RTL 

level. We explored maintaining the accumulation Ai coherent 

by fusing the decoder and sign extension of Fig. 1 into an ad-

hoc decoder (a look up table) such that the critical path in the 

accumulation process is kept bounded by log2N. In this case, 

the critical path could move into the logic towards the bottom 

of Fig. 1. This is the purpose of introducing the delay elements 

down the pipeline in Fig. 1. Table IV uses L = 2; this sort of 

tuning is best to be evaluated under the specific technology 

used to target the architecture and so it is not discussed in full 

detail in this paper. Observe the latency N+KL paid by the 

architecture here is related to the number of blocks K (K = 

W/B when each block is of B-bit slices); K remains small even 

in common practical cases (W ≤ 16). The work in [3] has a 

latency of W but requires all samples in parallel and so needs 

WN input wires while this work needs only W input wires for 

streaming pipelined operation. The work in [4, 5] needs N 

processing blocks and so there is the tradeoff of evaluating 

overall area, frequency of operation, and latency for a specific 

application. Note, Tables III and IV do not report results for a 

complete median architecture.  

C. Extensions 

The extensions to handle signed integers and the case of 

rank filtering as discussed in [6] remain valid. For keeping the 

paper self-contained we briefly mentioned them here. In order 

to handle signed integers, count the number of negative and 

positive integers within a window as C0 and C1 respectively so 

that N = 2k+1 = C0 + C1. Set the median position P to the first 

block of the computation to P = k + 1 – C1 if C0 > C1 or to P = 

k + 1 – C0 otherwise. The method remains unmodified if 

applied to the remaining W-1 bits of the input data set within 

the window. An order R filter for a set of N data elements has 

R data elements less or equal to the output [2]. The median is a 

rank filter with R = k, so this method to calculate the median 

behaves as a rank filter by setting initial median position to the 

first block of computation to P = R + 1 when accumulations Ai 

proceed right to left as performed here. 

VI. CONCLUSION 

Fundamental in median filtering methods for noise 

reduction in high quality imaging, the method for calculating 

the median given here makes faster decisions than previous 

hardware algorithms in the literature. The computation within 

each processing block is executed faster than before for any 

size of blocking bits (design parameter B). The median on a 

set of N integers completes after K (typically W/B) processing 

blocks for a serial pipelined stream of W-bit integers with a 

latency of N+KL, with L a tuning pipeline parameter for speed. 

It is also shown that this result holds irrespective of the actual 

values of parameter N or any combination of B and N. The use 

of full accumulative parallel counters circuitry is required for 

extending calculating the median in a parallel approach of 

accepting more than one integer at a time in streaming 

operation. The method is generic following a systematic 

number of steps from where different architectures and 

implementations can be derived. The method is also easily 

extended to be implemented as a fast programmed solution. 
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TABLE III 

AREA AND FREQUENCY FOR MEDIAN ARCHITECTURE BLOCKS 

W Front-End Block   Processing Block Old Block [6] 
 Gates MHz Gates MHz Gates MHz 

6 642 387 944 353 1169 166 

8 801 355 991 353 1368 166 

12 1010 324 1082 353 1768 166 

16 1255 318 1173 353 2168 166 

Front-End Block (Fig. 1, B = 2, L = 2), the previous block in [6] redesigned 
with APC accumulators (Processing Block, B = 2, L = 2), and the block of 

previous work in [6] (B = 2) for N = 9 and W = 6, 8, 12, and 16 bits.  

 
TABLE IV 

AREA AND FREQUENCY FOR A MEDIAN PARAMETERIZED BLOCK 

  W, N 8, 9  8, 25 8, 49 16, 9 16, 25 16, 49 

B A/fMHz A/fMHz A/fMHz A/fMHz A/fMHz A/fMHz 

2 801/355 1556/353 2761/337 1255/318 2584/268 4804/261 

3 1172/330 2178/315 3314/319 1588/279 3083/258 5677/257 

4 2065/309 3242/273 4703/266 2500/267 4319/248 7526/246 

Front-end block Area (A) in gates, and frequency (fMHz) in MHz. L = 2. 

 

 


