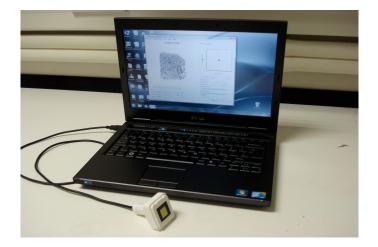
1	In-Vivo Skin Capacitive imaging Analysis by using Grey Level Co-occurrence
2	Matrix (GLCM)
3	
4	Xiang Ou, Wei Pan and Perry Xiao *
5	
6	Photophysics Research Centre, London South Bank University, 103 Borough Road,
7	London SE1 0AA, UK.
8	
9	* Corresponding Author, Tel: 00 44 20 7815 7569 Fax: 00 44 20 7815 7561
10	email: xiaop@lsbu.ac.uk
11	
12	Abstract
13	We present our latest work on in-vivo skin capacitive imaging analysis by using grey
14	level co-occurrence matrix (GLCM). The in-vivo skin capacitive images were taken
15	by a capacitance based fingerprint sensor, the skin capacitive images were then
16	analyzed by GLCM. Four different GLCM feature vectors, angular second moment
17	(ASM), entropy (ENT), contrast (CON) and correlation (COR), are selected to
18	describe the skin texture. The results show that angular second moment increases
19	as age increases, and entropy decreases as age increases. The results also

20	suggest that the angular second moment values and the entropy values reflect
21	more about the skin texture, whilst the contrast values and the correlation values
22	reflect more about the topically applied solvents. The overall results shows that the
23	GLCM is an effective way to extract and analyze the skin texture information, which
24	can potentially be a valuable reference for evaluating effects of medical and
25	cosmetic treatments.
26	
27	Keywords
28	Capacitive imaging, Grey Level Co-occurrence Matrix, skin texture, feature vectors,
29	solvent penetration, trans-dermal drug delivery.
30	
31	1. Introduction
32	Skin capacitive imaging using capacitance based fingerprint sensors has shown
33	potentials in skin hydration imaging, skin texture analysis, skin 3D surface profiles,
34	and skin micro relief measurements (Leveque et al., 2003; Batisse et al., 2006; Xiao
35	et al., 2007; Bevilacqua et al., 2008; Singh et al., 2008). It is based on capacitance
36	measurement principles, and the measurement results depend on the sample's
37	dielectric constants. Our latest studies showed that apart from water, capacitance
38	based fingerprint sensors are also sensitive to many solvents, due to their high

39	dielectric constants. This makes the technique very useful for in-vivo trans-dermal
40	drug delivery studies (Xiao et al., 2012a; Xiao et al., 2012b).

41

42 Grey level co-occurrence matrix (GLCM), proposed by Haralick in the 1970s (Haralick, 1973a; Haralick, 1973b; Haralick, 1979), is an image processing 43 44 technique that has been widely used for measuring of texture in images. It first 45 generates a grey level co-occurrence matrix that is defined as the distribution of 46 co-occurring values at a given offset over a given image, then calculate a set of textual features (usually called Haralick features) from the matrix that can reflect the 47 image texture. There are 14 different textual features, but only 4 are independent 48 49 (Ulaby et al, 1986), namely angular second moment (ASM), entropy (ENT), contrast (CON) and correlation (COR). In this paper, we have, for the first time, applied the 50 51 grey level co-occurrence matrix (GLCM) technique for analyzing skin capacitive 52 images. We will first describe the measurement apparatus and the theoretical background from GLCM, then show the GLCM results of skin capacitive images. 53


- 54
- 55 **2. Materials and Methods**

56 <u>2.1 Capacitance-based Fingerprint Sensor</u>

57 Capacitance-based fingerprint sensor (Xiao et al., 2012b), shown in Fig. 1, has a matrix of 256 × 300 pixels, with 50 µm spatial resolution per pixel. The total 58 59 measurement area is $12.8 \times 15 mm^2$. Each pixel is essentially a capacitor sensor. The fingerprint sensor basically generates a capacitance image of the skin surface. 60 In each image, each pixel is represented by an 8 bit grayscale value, 0~255, higher 61 62 grayscale values mean higher capacitances, i.e., higher water/solvent concentration, and lower grayscale values mean lower capacitances, i.e., lower 63 water/solvent concentration. The sensor is spring-loaded to provide constant 64 contact pressure during the measurements. The contact time is also limited to 5 65 seconds for all measurements. 66

67

68

69

70

Fig. 1. Capacitance-based fingerprint sensor

72 2.2 Grey Level Co-occurrence Matrix (GLCM)

Grey Level Co-occurrence Matrix (GLCM) (Haralick, 1979; Siew, 1988; Parekh, 2012, Zhu, 2010) provides a mature and effective statistical method for analyzing texture. It reflects the comprehensive information of the direction, adjacent interval and amplitude variations for image grey-level. For a given image I, the corresponding GLCM can be calculated by:

78

79
$$P(i, j, d, \theta) = \sum_{x=0}^{n} \sum_{y=0}^{m} \begin{cases} 1, \text{ if } I(x, y) = i \text{ and } I(x + d\cos\theta, y + d\sin\theta) = j \\ 0, \text{ otherwise} \end{cases}$$
(1)

80

where P(i, j, d, θ) in GLCM describes the relative frequencies with which two pixels
separated by a particular displacement distance d and a specified angle θ occur on
the image, one with grey-level i and the other with grey-level j. Four different GLCM
feature vectors, i.e. angular second moment (ASM), entropy (ENT), contrast (CON)
and correlation (COR) are selected to describe the skin texture, see Eq.(2) to Eq.(5)
for their definitions.

87

88
$$ASM = \sum_{i=0}^{G-1} \sum_{j=0}^{G-1} \{ \hat{P}(i, j, d, \theta) \}^2$$
(2)

89 Where $\hat{P}(i, j, d, \theta)$ represents normalized $P(i, j, d, \theta)$, and G is the total number of 90 grey-levels.

13/12/2013

91

92
$$ENT = -\sum_{i=0}^{G-1} \sum_{j=0}^{G-1} \hat{P}(i, j, d, \theta) \times \log(\hat{P}(i, j, d, \theta))$$
(3)

93

94
$$CON = \sum_{i=0}^{G-1} \sum_{j=0}^{G-1} (i-j)^2 \cdot \hat{P}(i,j,d,\theta)$$
(4)

95

$$\operatorname{COR} = \frac{\sum_{i=0}^{G-1} \sum_{j=0}^{G-1} ij \hat{P}(i, j, d, \theta) - \mu_1 \mu_2}{\sigma_1^2 \sigma_2^2}$$
(5)

97

96

98 Where
$$\mu_1 = \sum_{i=0}^{G-1} i \sum_{j=0}^{G-1} \hat{P}(i, j, d, \theta)$$

99 $\mu_2 = \sum_{i=0}^{G-1} j \sum_{j=0}^{G-1} \hat{P}(i, j, d, \theta)$

100
$$\sigma_1^2 = \sum_{i=0}^{G-1} (i - \mu_1)^2 \sum_{j=0}^{G-1} \hat{P}(i, j, d, \theta)$$

101
$$\sigma_2^2 = \sum_{i=0}^{G-1} (i - \mu_2)^2 \sum_{j=0}^{G-1} \hat{P}(i, j, d, \theta)$$

102

The angular second moment (ASM) (Rafael et al, 2007; Haralick, 1973a) is the squared sum of all the elements of GLCM, also called energy. ASM measures the texture uniformity, it can also reflect the thickness of skin micro relief lines, i.e. the thicker the micro relief lines, the higher ASM value, and the thinner the micro relief lines, the lower the ASM value (Gao et al, 2010).

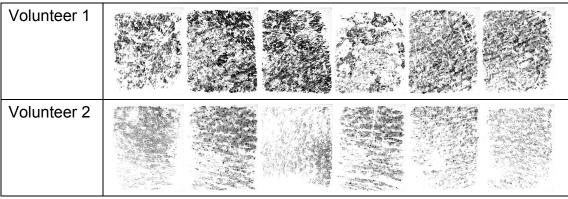
109	The term entropy has originated in thermodynamics. In image processing, the
110	entropy (ENT) (Haralick, 1973a; Haralick, 1973b; Baraldi, 1995) is a statistical
111	measure of the disorder of an image, reflects the randomness of grayscale
112	distribution. Its value achieves the largest when all elements in GLCM are as equal
113	as possible and the smallest when some values are high and others low. The more
114	dense texture is, the more scattered the grayscale distribution, and the more small
115	elements GLCM has. Hence the entropy value is higher.
116	
117	The contrast (CON) (Kekre et al, 2010; Conners, 1980; Tahir, 2003) is a measure of
118	the amount of the local grey level variations in an image, which is the moment of
119	inertia of the matrix around its main diagonal. Values on the GLCM main diagonal
120	imply no contrast, and contrast value increases away from the main diagonal. The
121	larger amount of the local grey level variations image has, the higher value for the
122	GLCM elements which are further away from the main diagonal, so, create a weight
123	that increases as distance from the diagonal increases. Therefore, the contrast
124	value is higher.
125	

The correlation (COR) (Kekre et al, 2010; Conners, 1980; Tahir, 2003) is a measure
of grey level linear-dependencies in an image. This also reflects the degree of the

128	rows (or columns) of the GLCM relative to each other. For example, when the
129	number of the textures in the horizontal direction is more than other directions, the
130	value of the correlation feature is higher along this direction compared to the values
131	for others.
132	
133	2.3 Experimental Procedures
134	In this paper, two sets of experiments are performed. The first experiment involves
135	two healthy male volunteers whose age range are 20-30 years old and 40-50 years
136	old respectively. The capacitive images are taken from their foreheads, eyes and
137	cheeks, and each site is repeated 6 times.
138	
139	The second experiment is solvent penetration through in-vivo skin combined with
140	tape stripping. In this experiment, two solvents are used: undiluted dimethyl
141	sulfoxide (DMSO) and undiluted ethylene glycol (EG), due to their relatively high
142	dielectric constants compared with dry skin, as shown in Table 1. DMSO and EG
143	are also chosen because they are commonly used in many cosmetic products. In
144	future, we could also study other solvents that has relative high dielectric constant
145	and are also commonly used in cosmetic products, such as propylene glycol,
146	propanol, glycerol, and alcohol etc. In theory, we could also study the solvents that

147	have very low dielectric constant, such as butanol, decanol and heptanol etc,
148	providing we are measuring them from a sample with high dielectric constant, such
149	as wet tissue or wet membrane. The key is the contrast of the dielectric constants of
150	the solvents and sample that they are penetrating through.
151	
152	Three different skin sites on the volar forearm of a healthy female volunteer (Asian,
153	aged 29 and a mass of 56 kg) are selected, with one skin site is for DMSO, one for
154	EG, and one is used as a control site. Before performing measurements, the
155	volunteer was acclimatized for 20min, and each skin site was wiped clean with
156	EtOH/water (95 %) solution. And then a small amount of solvent (\sim 0.1 mL) is
157	applied for 5min on each test skin site. After the test site is wiped dry, tape stripping
158	is performed. Fingerprint sensor measurements are performed both before and
159	after the solvent applications, and after each stripping. Tape stripping is repeated
160	for 12 times.

Table 1 Dielectric Constants of the solvents and skin

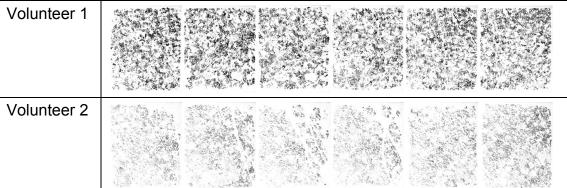

Materials	Skin	Water	DMSO	Ethylene Glycol
Dielectric Constant	7	80.4	47.2	37

165 **3 Results and Discussions**

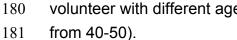
166 <u>3.1 Experiment 1 – Different Skin Sites</u>

- 167 Fig.2 shows the grey capacitive images on the skin sites of forehead, cheek and
- 168 eye, from two male volunteer with different ages. Fig. 3 shows the corresponding
- 169 feature vector values, changing with age on the skin sites of forehead, cheek and
- 170 eye.
- 171
- 172
- 173

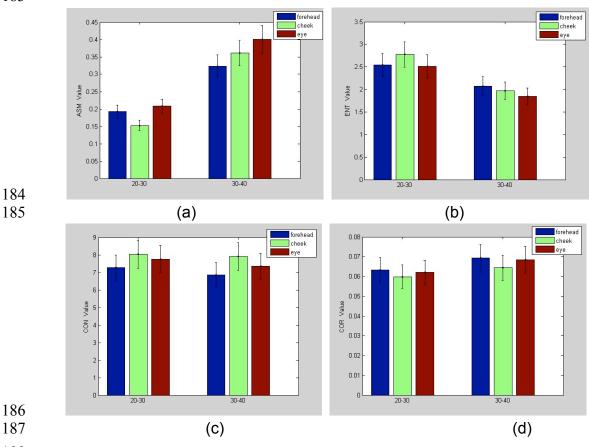
174 Forehead



175

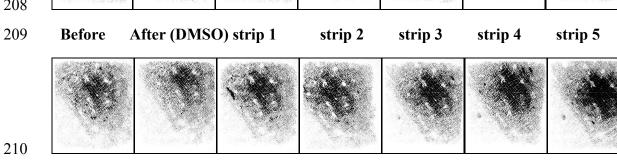

176 **Cheek**

Volunteer 1	
Volunteer 2	



179 Fig.2. The capacitive images on the forehead, cheek and eye from two male volunteer with different ages, volunteer 1 (age from 20-30) and volunteer 2 (age

- 182
- 183



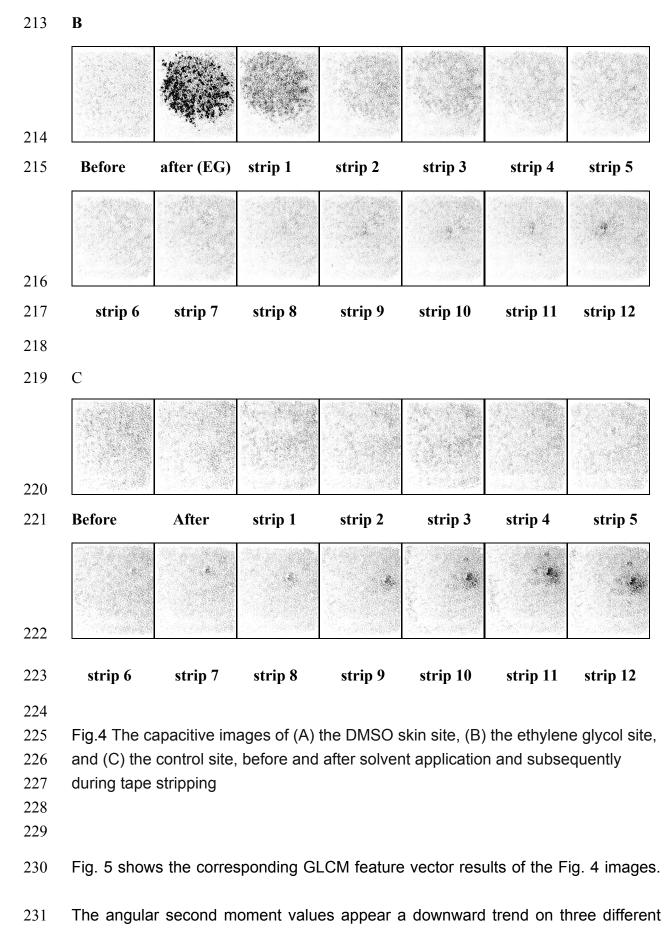

188

Fig. 3 The corresponding graph of the feature vectors of images of Fig.2, (a) The 189 190 graph of ASM; (b) The graph of ENT; (c) The graph of CON; (d) The graph of COR. 191 The error bars show the standard deviation of each site, which was repeated 6 192 times.

194	The results show that as age increases, the ASM value also increases, indicating
195	the skin textures become more and more coarse, i.e. microrelief lines are getting
196	thicker. The results also show that the entropy values decreases as age increases,
197	which indicates that the skin texture become more and more sparse. The contrast
198	and correlations values show little changes against the age.
199	
200	3.2 Experiment 2 – Solvent Penetration with Tape Stripping
201	Fig. 4 shows the capacitive images of three skin sites of on the volar forearm of a
202	healthy female volunteer during the solvent penetration measurements. The results
203	show that the capacitive images can clearly differentiate the solvents, e.g. DMSO
204	and EG, from the skin. The results also show that DMSO penetrates more and
205	deeper than EG.
206	
207	A

209

232	skin sites, this is likely because the texture on three different skin sites shown in Fig.
233	4 became thinner and thinner with the increasing number of tape stripping.
234	
235	The entropy values present upward trend on three different skin sites, this is likely
236	because the texture on three different skin sites shown in Fig. 4 become more and
237	more dense with the increasing number of tape stripping. It is interesting to point out
238	that neither the angular second moment values nor the entropy values are affected
239	by the solvents applied, as three skin sites follow exactly the same trend.
240	
241	It is quite different for the contrast results. The control site increased first then
242	gradually decreased. The EG site dropped significantly immediate after the EG
243	application, then gradually increased to the similar level as the control site. This
244	suggests that with the increasing number of the tape stripping, the amount of EG in
245	skin is decreasing, until it is almost exactly the same as the control site. For DMSO
246	site, it also decreased sharply after the DMSO application, indicates the presence of
247	DMSO in skin, but it did not recover back to the control site level, this indicates that
248	DMSO has penetrated much deeper and probably cost more damage than EG. A
249	similar reversely trend can also be observed in the correlation results.
250	

250

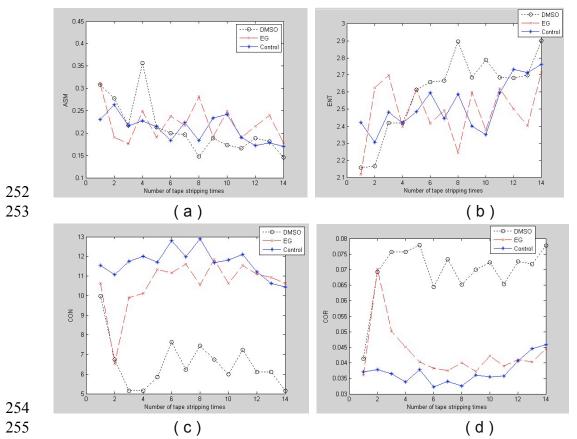


Fig. 5 The trend graph of feature vectors on three different skin sites (a) The trend graph of ASM on three different skin sites (b) The trend graph of ENT on three different skin sites (c) The trend graph of CON on three different skin sites (d) The trend graph of COR on three different skin sites

200

261

The results suggest that the angular second moment values and the entropy values reflect more about the skin texture, rather than topically applied solvents, whilst the contrast values and the correlation values reflect more about the topically applied solvents. The fluctuation of the results is likely due to the non-uniformity of each tape stripping. These results show that GLCM could be potentially a powerful tool for skin aging studies and skin solvent penetration studies, we could use GLCM to

268	quantify the skin texture and skin aging. Through proper calibrations, it is also
269	possible to use GLCM to quantify the solvent absorption within skin, and the solvent
270	penetration through skin.

271

272 **4 Conclusions**

We have developed a new approach to analyze the capacitive skin images by using Grey Level Co-occurrence Matrix (GLCM) technique. Four different GLCM feature vectors, which are angular second moment, entropy, contrast and correlation, are used in the study. The results show that GLCM could be an effective way for researching skin texture image. GLCM could also be a valuable reference for skin aging study and supply strong technical support to assess efficacy of skin solvent penetration.

280

282 Acknowledgement

283 We thank London South Bank University for the financial support.

284

285 **References**

- Baraldi, A. (1995, Mar.). An investigation of the textural characteristics associated
- with gray level cooccurrence matrix statistical parameters. Geoscience and
- 288 Remote Sensing, IEEE Transactions on. 33(2), pp. 293 304.
- 289 Batisse, D., Giron F. and Leveque J.L. Capacitance imaging of the skin surface.
- Skin Research and Technology 12, pp99-104, (2006).
- 291 Bevilacqua, A. Gherardi, A., Characterization of a capacitive imaging system for
- skin surface analysis, First International Workshops on Image Processing Theory,
- 293 Tools & Applications, 23-26 Nov, 2008.
- 294 Conners, Richard W. (1980, May). A Theoretical Comparison of Texture Algorithms.
- 295 Pattern Analysis and Machine Intelligence, IEEE Transactions on. PAMI-2(3), pp.

296 204 – 222.

- 297 Gao, ChengCheng and Hui, Xiaowei, (2010, Oct.) GLCM-based Texture Feature
- Extraction, Computer Systems & Applications, 2010, 19(6), pp 195-198.
- 299 Haralick, R.M. (1973, Nov.). Textural Features for Image Classification. Systems,
- 300 Man and Cybernetics, IEEE Transactions on. SMC-3(6), pp. 610 621.

301	Haralick, R.M. (1973, Oct.). Computer Classification of Reservoir Sandstones.
302	Geoscience Electronics, IEEE Transactions on. 11(4), pp. 171 – 177.
303	Haralick, R.M. (1979, May). Statistical and structural approaches to texture.
304	Proceedings of the IEEE. 67(5), pp. 786 – 804.
305	Kekre, H.B., Thepade, S.D., Sarode, T.K. and Suryawanshi, V., (2010, October).
306	Image Retrieval using Texture Features extracted from GLCM, LBG and KPE.
307	International Journal of Computer Theory and Engineering. 2(5), pp. 1793-8201.
308	Leveque, J.L. and Querleux, B. SkinChip, a new tool for investigating the skin
309	surface in vivo. Skin Research and Technology 9, 343-347, (2003).
310	Parekh, Ranjan. (2012, Feb.). Using Texture Analysis for Medical Diagnosis.
311	MultiMedia, IEEE. 19(2), pp. 28 – 37.
312	Rafael C. Gonzalez and Richard E. Woods. (2007, August 31). Digital Image
313	Processing Third Edition. Prepared by Pearson Education. pp. 142-161.
314	Siew, Lee Hok . (1988, Jan). Texture measures for carpet wear assessment.
315	Pattern Analysis and Machine Intelligence, IEEE Transactions on. 10(1), pp. 92 –
316	105.
317	Singh, H., Xiao, P., Berg, E.P., and Imhof, R.E., Skin Capacitance Imaging for
318	Surface Profiles and Dynamic Water Concentration Measurements, ISBS
319	Conference, Seoul, Korea, May 7-10, 2008.

320	Tahir, M. A. (2003, 14-17 Dec.). An FPGA based co-processor for GLCM texture
321	features measurement. Electronics, Circuits and Systems, 2003. ICECS 2003.
322	Proceedings of the 2003 10th IEEE International Conference on. 3, pp. 1006 -
323	1009.
324	Ulaby, F.T., Kouyate, F., Brisco, B., Williams, T.H.L., IEEE Transactions On
325	Geoscience And Remote Sensing, Vol. GE-24, NO. 2, March 1986, pp 235 -
326	245.
327	Xiao, P., Singh, H., Zheng, X., Berg E.P., and Imhof, R.E., In-vivo Skin Imaging For
328	Hydration and Micro Relief Measurements, Stratum Corneum V conference, July
329	11-13, 2007, Cardiff, UK.
330	Xiao, P., Lane, M.E., and Abdalghafor, H.M., Membrane Solvent Penetration
331	Measurements using Contact Imaging, Stratum Corneum VII Conference, Cardiff,
332	UK, Sep 10-12, 2012.
333	Xiao, P., Ou, P., Ciortea, L.I., Berg E.P., and Imhof, R.E., "In-vivo Skin Solvent
334	Penetration Measurements Using Opto-thermal Radiometry and Fingerprint
335	Sensor", International Journal of Thermophysics, 33:1787–1794, DOI
336	10.1007/s10765-012-1318-6, 2012.

- 337 Zhu, Le-qing. (2010, 10-12 Aug.). Auto-classification of insect images based on
- 338 color histogram and GLCM. Fuzzy Systems and Knowledge Discovery (FSKD),
- 339 2010 Seventh International Conference on. 6, pp. 589 2593.