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Abstract- Wastewater treatment systems are characterized by large temporal variability of inflow, variable concentrations of components in the incoming wastewater to the plant, and highly variable biological reactions within the process. The behavior of observed process variables within a wastewater treatment plant (WWTP at a certain time instant is the combined effect of various processes initiated at different moments in the past. This is called a time-delay effect in the system. Due to the nature of strong nonlinear mapping, neural networks provide advantages as a modeling and identification tool over a structure-based model. However, the determination of the architecture of the artificial neural networks (ANNs) and the selection of key input variables with a time delay is not easy. in our research, a genetic adapted time-delay neural network (GATDNN), which is a combination of time-delay neural network(TDNN) and genetic algorithms(GAs), was developed and applied to the full-scale Bardenpho advanced sewage treatment process. In a GATDNN, a three-step modelling procedure was performed: (1) selection of significant input variables to maximise the predictive accuracy for each specific output; (2) finding a suitable network topology for the ANN-based process estimator; (3) sensitivity analysis. The results demonstrate that the modelling technique presented using a GATDNN provides a valuable tool for predicting the outputs with high levels of accuracy and identifying key operating variables. This work will permit the development of a reliable control strategy thus reducing the burden of the process engineer.
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Introduction

Phosphorus removal from watewaters is required to protect receiving waters from eutrophication. A variety of biological nutrient removal (BNR) processes, have been developed to meet the increasingly stringent effluent discharge requirements. BNR systems offer the advantages of elimination of chemical addition and of reduction in the volume of sludge produced.
Activated sludge process has been modelled by several investigators to improve process performance and to reduce the operating costs. The IAWPRC activated sludge model number 1 (ASM1), which is based on a matrix system comprising the relevant component and process rates, is the best known model and has been applied to simulate process dynamics (Henze et al, 1986). Recently, ASM2 incorporating biological phosphorus removal has been developed (Gujer et al, 1995).

Although these structure-based models have been successfully applied for design and modelling purpose, there are still many problems in applying such a complex model to real process modelling and control. These include the following:

1. These models require the specification of a large number of parameters, many of which are difficult to measure. For example, ASM2 consists of 17 processes and 10 dissolved components.

2. These models need to respecify parameter values for different operational conditions

3. There are no on-line sensors which can identify and estimate the many of the important parameters. 

4. Most of the BNR processes have time-varying characteristics that are inherently nonlinear (Hong and Paik, 2008; Lee et al., 2011).
These constraints make structure-based modelling difficult from a real plant application viewpoint. As an alternative to a structure-based model, there has been major research interest in artificial neural networks (ANNs), a powerful tool for nonlinear modelling and process control. A number of researchers have successfully applied ANN to wastewater treatment processes (Capodaglio et al, 1991;Cote et al, 1995;Du et al, 1996;Zhao et al, 1997). 
The advantages of the ANN technique over the classical models are:

(1) it has the ability to learn complex nonlinear relationship with limited  prior knowledge of  the process structure

(2) it can perform inferences for an unknown combination of input variables.

However, when applying ANN to a new problem, it is very hard to determine the architecture of the ANN and select which input variables are key for a specific process. In order to overcome these problems, Genetic Algorithms (GAs) have been used to develop the architecture of an ANN (Miller et al, 1989;Whitely et al, 1990; Harp et al, 1990;Angeline et al, 1994;Maniezzo, 1994).

We introduce a genetic adapted time-delay neural network (GATDNN) which employs a GAs to design the architecture of the time-delay neural network (TDNN) based on finite-duration impulse response (FIR) neural network (Wan, 1990, 1994) and to select input variables. Then, the usefulness of a GATDNN as a dynamic modelling and identification tool for a complex full-scale Bardenpho wastewater treatment plant located at Rotorua, New Zealand is demonstrated. Input sensitivity analysis is performed to describe the relative strengths of the effects that input variables have on output variables in a GATDNN.

Methodology 

Time-Delay Neural Network (TDNN)

Among the variety of ANN architectures that have been proposed, the multilayer feedforward neural networks with the standard backpropagation algorithms are frequently applied to biological processes. However, a major limitation of the standard backpropagation algorithms is that they can only learn an input-output mapping that is static. This means that the common multilayer feedforward neural networks are static, having no internal time delays and responding to a particular input by immediately generating a specific output (Day & Davenport, 1993). Therefore they are unable to respond to time-varying patterns.
Dynamic neural networks are necessary since the most common biological processes have dynamic characteristics. For a neural network to be dynamic, it must be given memory (Haykin, 1994). One way in which this requirement can be accomplished is to incorporate time delay into a synaptic structure of the neural network and to adjust their values during the learning phase. This ANN is the so-called time-delay neural network (TDNN), which is typically described as a layered network in which the outputs of a layer are buffered several time steps and then fed fully connected to the next layer (Waibel et al., 1989;Wan, 1994).  The best known TDNN is the FIR neural network, which resembles a standard feedforward network where each synapse is replaced with an adaptive FIR linear filter and is trained using temporal backpropagation algorithms in which error terms are symmetrically filtered backward through the network  (Wan, 1990,1994). The most basic FIR neural network with a tapped delay line is shown in Fig.1. 
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corresponds to a weighted sum of past delayed values of the input:
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The output 
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 of a neuron in layer l at time k is now taken as the activation function of the sum of all filter outputs that feed the neuron (Fig. 1):
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where vector 
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 is the coefficient for the synaptic filter connecting neuron i to neuron j in layer l and 
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 denotes the vector of delayed states along the synaptic filter.

Now, assume that neuron j lies in the output layer with its actual output denoted by 
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both of which are measured at time k. The goal of the network training is to minimise the following cost function 
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To compute an estimate of the optimum weight vector 
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 that attains the above goal, the weight-update equation, called temporal backpropagation algorithm is used as the following pair of relations (Wan, 1990, 1994):
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where
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            Figure 1. The architecture of TDNN (
[image: image16.wmf]1

-

q

 represents a unit time delay operator,                           i.e.,
[image: image17.wmf])

(

)

1

(

1

k

x

q

k

x

-

=

-

).

Time-Delay Neural Network (TDNN) with a Genetic Algorithm
GAs are a parallel, global optimisation technique based on natural population genetics which are used to develop solutions to problems. They utilise a survival-of-the- fittest concept among string structures through genetic operators such as reproduction, crossover, and mutation (Goldberg, 1989). The success of GAs is based in their ability to keep in existence those parts of a solution, which have a positive influence on the outcome, and proceed with optimising the non-optimal parts. Due to their powerful behaviour as search engines, this GAs is being applied to problem solving in scientific, engineering, and even business contexts.
In order to solve a problem using GAs, the parameters of the problem (phenotype) must be coded into a genotype. A genotype may be represented by a bit string, an integer or float number string or other symbol string. The GAs work on a population of genotypes searching globally for the optimum genotype by applying genetic operators with respect to quality. The quality of a genotype is calculated by extracting the phenotype it represents and evaluating the fitness of the phenotype.

In our case, this means that a binary bit string (genotype) can be decoded into the topology of the neural network (phenotype). The fitness of the neural network is then calculated with respect to a quality function that may include the ability of the neural network to learn (train error) and generalise (test error), its complexity (amount of units and links) and various other criteria.

In this paper, a GANN, which is a combination of GAs and TDNN, is based on the following cyclic procedure.

Step 1: Initialisation  Generate an initial population of binary bit strings (genotype) to be evaluated  for TDNN randomly.

Step2: Decoding  Decode the binary  bit strings into TDNN structure. This process builds a TDNN (phenotype) based on the genotype.

Step 3: Fitness-value calculation  Train and test the TDNN to determine fitness and compute and compare the fitness of the TDNN. The fitness-value function is the inverse of the cost function, i.e. maximising the fitness value corresponds to minimise the cost function.

Step 4: Reproduction Select those TDNN in the population which are better. The process of selection ensures the genotype (individuals) of higher quality are more likely to be chosen for reproduction than those of lower quality. There are several ways of selecting genotypes. This research used a roulette wheel selection in which genotypes were randomly extracted.  

Step 5: Population Refilling  Refill the population back to the defined size. Since a GA uses selection methods which drop poor phenotypes, the population needs to be filled every generation. This process is based on cloning whereby the survivors of the selection process are cloned to refill the population.

Step 6: Crossover  Pair up the genotypes and mutate the genotypes by exchanging genes. This operator tries to combine vital parts of two individuals in order to create a superior individual. Although it is possible to choose multi-point crossover, two point crossover was selected, because multi-point crossover does not improve the optimisation process (Goldberg, 1989).

Step 7: Mutation  Alter the genotypes according to the mutation probability. Mutation, which is the main engine of  GAs, is used to introduce new solutions and prevent the population from unrecoverable loss of important information. Mutation probability is usually kept low to prevent a negative influence on crossover and to maintain a strong causality. With high mutation rate (e.g.0.5) the GAs would turn into a random search.

Step8: Repetition  Steps 2-7 are repeated from generation to generation so that the best fitness value increases until the termination criteria are satisfied.

Through the above cyclic process, the better TDNNs survive and their features are preserved in future generations and are combined with others to find a better TDNN. 

 The procedures of a proposed GATDNN described in the above is shown in Fig.2.
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Figure 2.  Cyclic process of a GANN

Results and Discussions

Description of Bardenpho Process at Rotorua
Rotorua’s wastewater (sewage) in New Zealand is treated daily at a central Wastewater Treatment Plant that uses a 5-stage Bardenpho process, the first full biological nitrogen and phosphorus process used for municipal wastewater in New Zealand. The Bardenpho process of Wastewater Treatment was developed by James Barnard of South Africa in the 1970’s. It is a biological nutrient removal process which goes through four stages. Anaerobic sludge is obtained from the anaerobic treatment tank of the plant and mixed with food waste, grass, or wastepaper. This organic waste material is subjected to anaerobic fermentation for a period of 2 to 4 days at a temperature of 30 to 40 ºC. Anaerobic sludge is used to obtain broth for fermentation. The fermentation broth is then sent through alternating anaerobic-aerobic-anoxic cycles in batch reactors. When under anaerobic conditions, phosphorous is secreted from the microbes that accumulate phosphorous. When the fermentation broth is then subjected to aerobic conditions, the phosphorous is taken up by the accumulating microbes. Nitrifying bacteria oxidize the ammonia nitrogen in this stage. When the final anoxic tank is filled with this broth, the oxidized nitrogen is converted to nitrogen gas by the bacteria.

In May 1982, a new 5-stage modified Bardenpho process was commissioned into operation in Rotorua, New Zealand. The layout of Rotorua’s Bardenpho process is shown in Fig. 3. The Bardenpho process employs an initial anaerobic zone followed by an anoxic zone which is then followed by an aerobic zone. The recycled sludge from the secondary clarifier is mixed with the influent wastewater, and a mixed liquor recycle from the aeration basin is introduced into the anoxic zone. As the recycled sludge contains very a little nitrate, anaerobiosis can be achieved in the anaerobic zone. Additional major elements of the Rotorua plant include introduction of volatile fatty acids (VFA) generator from fermentation of primary sludge, dissolved air flotation (DAF) thickener for waste activated sludge handling, and belt filter press for sludge dewatering.  

The Rotorua’s Bardenpho process serves a population of approximately 60,000 people. It has the capacity to serve a population of 75,000. At the plant, we treat an average of 18,000m3 (18,000,000 litres) of wastewater each day. We have the capacity to treat a daily average wastewater intake of 27 000m3. Most of Rotorua's wastewater is generated by domestic use. A small percentage is from industrial use.

In the Bardenpho process, as no chemicals are used, operating costs are lower and there is also no problem with removal of sludge that can come from sludge containing chemicals. Bardenpho Process plants are simple to operate and do not require any retraining of personnel. The sludge that is obtained in the final stages does not require any further treatment and can be easily disposed of. One of the main disadvantages of the Bardenpho process is the number of tanks required, which greatly increases capital cost. Detention times also need to be very strictly monitored and constant evaluation made of the BOD and COD values

Modelling and results of Rotorua’s Bardenpho process using a time-delay neural network with a genetic algorithm

When applying artificial neural network to simulate a complex biological wastewater treatment process, the input selection is important to obtain reliable process estimation. Inputs of each output were determined through prior knowledge of the Bardenpho process characteristics and statistical relationship known through correlation analysis. In our work, a GATDNN was applied for one-step-ahead prediction of the following variables: effluent total phosphorus (TP), effluent ammonia (NH4), effluent suspended solids (SS), effluent organic nitrogen (Org-N), and effluent COD.  Further detail relating to the sets of inputs and outputs for each prediction task is given in Table 1. 
A total of 89 data sets were compiled from Bardenpho process described in previous section. The data was split into two sets: (1) a training set including 80% of the data, and (2) a test set including the remaining 20%. 

[image: image187.wmf]Generate

intial

population

New populatoion

TDNN Generator

Fitness-value

calculation

Are termination

crieteria met?

Reproduction

Crossover

Mutation

No

Best ANN

Yes

TDNN

Results

Figure 3. Layout of Bardenpho process at Rotorua

Firstly, a proposed GATDNN was used for predicting one-step-ahead effluent TP concentration. In this case the 15 measured variables were used as the inputs to a GATDNN for the prediction of one-step-ahead effluent TP concentration.

The genetic parameters of GAs in a GATDNN are summarised in Table 2 and are identical for all modelling tasks.

Table 2. The genetic parameter of GAs

	Population size
	30

	No. of  generations
	30

	Minimum  number of neurons per layer
	1

	Maximum  number of neurons per layer
	32

	Crossover probability
	0.8

	Mutation probability
	0.25


Due to the nature of GAs, a GATDNN is a never-ending process as shown in Fig. 2.

The termination criterion used was based on the number of generations. A general rule of thumb for the number of generations is 2 times the number of input variables. In our experience, 30 generations was sufficient to evolve the architecture of ANN and to obtain a desired level of prediction accuracy. It has been found that only one hidden layer was required to give satisfactory predictions. Therefore, one hidden layer was used in all modelling tasks for simplicity's sake. 

After reaching 30 generations, GAs at 9 generation found an optimal topology of TDNN with the minimum Mean Squared Error (MSE) between the observed and predicted data. A topology of TDNN found was 6 inputs, one hidden layer with 10 neurons with logistic sigmoid function. Each hidden neuron had 7 connections back to the input layer, and the network had one output with a hyperbolic tangent transfer function with 1 connection back to each of the neurons in the hidden layer. Table 1 shows the significant input variables and the topology of the TDNN founded by GAs over each output.

The significant input variables that contribute to treatment efficiency of effluent TP are shown in Table 3, along with the results of sensitivity analysis. Through sensitivity analysis, Table 3 indicates which of the input variables have the greatest effect on the one-step-ahead effluent TP concentration when the inputs are varied between -10 and +10% of the base values. The relative input variables sensitivity ranking over effluent TP are in the order of
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Table 3. The relative input variable sensitivity ranking over effluent TP

	Input Name
	One-step ahead 
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Table 1. Initial input-output variables, input variables selected in a GATDNN, and topology of TDNN.

	Input variables
	Output variable
	Input variables selected by GAs
	Topology of TDNN found by GAs
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	6 inputs and 1 hidden layer with 10 Logistic neurons with 6 connections.

1 output neuron using a linear transfer function and 1 connection each
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	8 inputs and 1 hidden layer with 17 Logistic neurons with 5 connections.

1 output neuron using a linear transfer function and 1 connection each.

	
[image: image75.wmf])

(

t

SS

RS

,
[image: image76.wmf])

(

t

BOD

RS

,
[image: image77.wmf])

(

t

RP

RS

,
[image: image78.wmf])

(

/

)

(

t

COD

t

TP

RS

RS

,
[image: image79.wmf])

(

t

TP

RS

,
[image: image80.wmf])

(

4

t

NH

RS



 EMBED Equation.3  [image: image81.wmf])

(

/

)

(

t

COD

t

TKN

RS

RS

,
[image: image82.wmf])

(

t

TP

PE

,
[image: image83.wmf])

(

t

SS

PE

,
[image: image84.wmf])

(

t

RP

PE

,
[image: image85.wmf])

(

1

t

RP

a

,
[image: image86.wmf])

(

2

t

SVI

b

,
[image: image87.wmf])

(

t

SS

FE


	
[image: image88.wmf])

1

(

+

t

SS

FE


	
[image: image89.wmf])

(

t

SS

RS

,
[image: image90.wmf])

(

t

BOD

RS

,
[image: image91.wmf])

(

t

RP

RS

,
[image: image92.wmf])

(

2

t

SVI

b

,
[image: image93.wmf])

(

/

)

(

t

COD

t

TKN

RS

RS

,
[image: image94.wmf])

(

t

TP

PE

,
[image: image95.wmf])

(

t

SS

PE

,
[image: image96.wmf])

(

t

RP

PE

,
[image: image97.wmf])

(

1

t

RP

a


	9 inputs and 1 hidden layer with 33 Logistic neurons with 7 connections.

1 output neuron using the tanh transfer function and 1 connection each.
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	8 inputs ad 1 hidden layer with 29 Logistic neurons with 7 connections.

1 output neuron using the tanh transfer function and 1 connection each.
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	9 inputs ad 1 hidden layer with 30 Logistic neurons with 5 connections.

1 output neuron using the tanh transfer function and 1 connection each.


Fig.4 shows the difference between the predicted value by a GATDNN and the observed value, and demonstrates the ability of a GATDNN to fit the fluctuating effluent TP concentration even under changing operating conditions. 
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Figure 4. One-step-ahead prediction of effluent TP 

The plots in Fig.5 show the comparisons between the observed data and the one-step-ahead predictions for effluent SS, effluent NH4, effluent Org-N, and effluent COD. It can be seen that effluent COD prediction is the worst whereas that of NH4 is the most accurate. As shown in Fig. 6, the results for each simulation produced good predictions. Even though the simulation of effluent COD is the worst accuracy relatively, it follows the same pattern as the observed data, except for observation No.85.  The results of sensitivity analysis for Org-N, NH4, SS, and COD are presented in Table 4.
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In spite of the varied operational conditions in the complex Bardenpho process, the simulation results demonstrate that the modelling technique using a GATDNN provides a valuable tool for predicting the outputs with high levels of accuracy and for understanding the dynamic behaviour of the process.
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Figure 5. The comparisons between the observed data and the one-step-ahead predictions for effluent Org-N, effluent NH4, effluent SS, and effluent COD.

Table 4. Results of sensitivity analysis over Org-N, NH4, SS, and COD 
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Conclusions

A GATDNN, which can be applied to a complex biological process such as the Bardenpho process, has been developed and implemented. Using a GATDNN, we performed a three-step modelling procedure: (1) select significant input variables to maximise the predictive accuracy for each specific output; (2) find a suitable network topology for the ANN-based process estimator; (3) run sensitivity analysis according to a data set obtained from the previous operation of a GATDNN.

In contrast to the development of a traditional structure-based model such as ASM1 or ASM 2, a GATDNN offers a solution with a high degree of accuracy without prior knowledge of the structure of the relationships that exist in a given complex process. The use of a GAs provides an advantage over an ANN relying on trial-error method in building a topology of ANNs, as potentially better structure of ANNs and significant operating variables may easily be found through GAs. Most significantly, this GATDNN approach uses wastewater plant specific data to improve process performance and identify key operating variables.

The modelling approach discussed here has the potential to be successfully implemented within a design and control strategy and is readily applicable to a variety of other complex biological and manufacturing processes.

Notations
ALK      Alkalinity as CaCO3 

BOD      Biochemical Oxygen Demand

CLA       Chloride concentration     

COD      Chemical Oxygen Demand

MLSS    Mixed Liquor Suspended Solids concentration

NH4           Ammonia concentration

Org-N    Organic nitrogen concentration

RP          Reactive phosphorus concentration

SS          Suspended solids concentration

SVI        Sludge Volume Index

TKN      Total Kjeldahl Nitrogen

TP          Total phosphorus concentration

Superscripts

RS        Raw wastewater

PE        Primary clarifier effluent

FE        Secondary clarifier effluent
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