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Abstract
In daily life, sensorimotor integration processes are fundamental for many cognitive operations. The pursuit-tracking para-
digm is an ecological and valid paradigm to examine sensorimotor integration processes in a more complex environment 
than many established tasks that assess simple motor responses. However, the analysis of pursuit-tracking performance is 
complicated, and parameters quantified to examine performance are sometimes ambiguous regarding their interpretation. 
We introduce an open-source algorithm (TRACK) to calculate a new tracking error metric, the spatial error, based on the 
identification of the intended target position for the respective cursor position. The identification is based on assigning cursor 
and target direction changes to each other as key events, based on the assumptions of similarity and proximity. By applying 
our algorithm to pursuit-tracking data, beyond replication of known effects such as learning or practice effects, we show a 
higher precision of the spatial tracking error, i.e., it fits our behavioral data better than the temporal tracking error and thus 
provides new insights and parameters for the investigation of pursuit-tracking behavior. Our work provides an important step 
towards fully utilizing the potential of pursuit-tracking tasks for research on sensorimotor integration processes.
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Introduction

Sensorimotor integration processes are the fundament of 
many cognitive functions in everyday life and are at the 
center of many cognitive (neuro)science theories on how 
the integration of perceptual and motor processes unfolds 
(Hommel et al., 2001). In recent years, these processes have 
been subject to many studies investigating the learning and 

execution of complex motor skills, their influencing fac-
tors and transfer to related movements such as in driving 
(e.g., Broeker, Haeger, et al., 2020b). The exact mechanisms 
behind such sensorimotor integration processes have been 
the subject of different theories over the years. For instance, 
the perceptual control theory (PCT; Powers, 1973) estab-
lished motor control as the control of sensory input via nega-
tive feedback loops (Marken et al., 2013). In the framework 
of this theory, perceptual input generated by motor processes 
is hierarchically controlled depending on the level of percep-
tion. The input is compared to a reference variable that is set 
endogenously and the motor output is adjusted accordingly 
(Parker et al., 2020). The type of perceptual input, such as 
a moving target, thereby imposes temporal constraints on 
motor control processes (Marken et al., 2013). Sensorimotor 
integration processes thus depend on the level of perceptual 
input, with more effort needed for the perception of complex 
stimuli as in everyday life. PCT-based models were able to 
simulate and predict individuals’ performance in a pursuit-
tracking paradigm (Parker et al., 2017). Along these lines 
the field has also moved to more computational accounts of 
how sensorimotor integration processes are accomplished 
(Franklin & Wolpert, 2011; Körding & Wolpert, 2004) and 
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how such processes can contribute to aspects of cognitive 
control and intentions to act (Christensen & Bicknell, 2022).

Crucially, regardless of the conceptual background, most 
experimental paradigms assessing cognitive and motor 
functions related to sensorimotor integration use behavioral 
readouts such as button presses. These are unlikely to opera-
tionalize complex sensorimotor processes, thus indicating a 
need for paradigms putting higher demands on sensorimotor 
integration processes with higher ecological validity (Hill 
& Raab, 2005; Hoffmann et al., 2018; Wulf & Shea, 2002).

The pursuit-tracking paradigm offers a continuous and 
complex experimental setting used to examine sensorimo-
tor integration processes in more ecologically valid settings 
(Broeker, Ewolds, et al., 2020a; Broeker, Haeger, et al., 
2020b; Hill, 2009, 2014; Hill & Raab, 2005; Parker et al., 
2020; Pew, 1974; Sekiya, 2006; Wulf & Schmidt, 1997). In 
a typical pursuit-tracking task, participants watch a target 
moving along an (invisible) trajectory. The trajectory is usu-
ally a horizontally oriented waveform built using randomly 
generated sine and cosine waves (Wulf & Schmidt, 1997; see 
Methods section). Often, the first and last parts of the wave-
form are newly generated for each trial (i.e., the coefficients 
for the sine and cosine are randomly selected), whereas other 
parts of the trajectory remain constant across all trials (e.g., 
Künzell et al., 2016) and in some studies also across partici-
pants (e.g., Hill & Raab, 2005; Raab et al., 2013; Wulf & 
Schmidt, 1997). The pursuit-tracking task serves as a tool 
to investigate online sensorimotor integration processes by 
providing continuous data of participants trying to follow a 
steadily moving target. The pursuit-tracking paradigm thus 
enables a continuous measure of the quality of behavioral 
adaptation processes. This sharply contrasts with experimen-
tal operationalizations commonly used to examine behav-
ioral adaptation processes in which behavioral adjustments 
occur discretely in time (e.g., in Flanker, Stroop, Simon or 
other tasks in which behavioral adaption is measured across 
discrete trials via distinct sequences of button press events).

However, to fully utilize the advantage of continuous 
(real-time) access to behavioral adaptation processes offered 
by tracking procedures, appropriate behavioral research 
methods and parameters must be in place to quantify real-
time behavioral adaptation or the deviation between the 
desired and the achieved sensorimotor trajectory. In particu-
lar, the choice of a useful metric to access continuous behav-
ioral adjustments crucially depends on the device operated 
by the participants. Pursuit-tracking tasks are often executed 
using a joystick (Broeker et al., 2021; Broeker, Ewolds, 
et al., 2020a; Broeker, Haeger, et al., 2020b; Ewolds et al., 
2017, 2021; Hill, 2014; Künzell et al., 2016). Importantly, in 
such studies, participants can usually only control the verti-
cal movement of the cursor. Often, the horizontal motion 
is fixed to the target (i.e., x-axis speed of target and cur-
sor are aligned) to prevent participants from cutting trials 

short by moving the cursor straight to the aimed edge of 
the screen (Broeker, Ewolds, et al., 2020a; Broeker, Haeger, 
et al., 2020b). In contrast, in studies using other devices, 
such as a computer mouse, participants can often control 
the horizontal as well as vertical movement of the cursor 
(Hill, 2014; Raab et al., 2013; Zhu et al., 2014). Here, the 
task has a different data output since the difference between 
cursor and target positions can be analyzed in two dimen-
sions instead of one. However, these differences in the data 
structure are mostly not accounted for in analyzing the track-
ing data. Commonly, data analysis is based on calculating 
the root-mean-square error (RMSE), summing the distance 
between cursor and target at each time point. While this 
seems reasonable for data generated by participants actively 
controlling the horizontal and vertical cursor motion, the 
method has considerable weakness when applied to data that 
were obtained by participants having only vertical control 
of the cursor position:

The underlying assumption of the RMSE method is that 
the target trajectory and pursuit are best matched by compar-
ing the data points measured simultaneously. Following this 
assumption, a minimum of the error curve, i.e., the minimal 
distance between target and cursor at time point t, occurs 
when target and cursor cross each other but may move in 
different directions (see Methods section, Fig. 2). Therefore, 
this event does not necessarily indicate a peak in tracking 
performance since it could also be caused by an unexpected 
change in the target direction. Furthermore, a maximum of 
this error curve occurs when there is a local maximum of 
the distance between cursor and target at time point t. At 
this point, it has to be considered that an error maximum 
can be caused by different processes. For example, an unex-
pected change of the target direction while the cursor direc-
tion remains the same maximizes the distance between the 
cursor and target. Another potential cause for the sudden 
maximal distance between target and cursor could be that 
the direction of the cursor is changed anticipatorily, but there 
is no equivalent direction change of the target, which would 
thus be classified as false tracking. The numerous causes 
for minima and maxima of the error curve led to problems 
interpreting results based on this method. The often-used 
averaging of the deviation of target and cursor through the 
RMSE might be biased by extreme values caused by unex-
pected trajectory changes rather than by ‘extremely’ false 
tracking. Thus, another weakness of the simple error curve 
is that the resulting signal can be intermingled with differ-
ent cognitive processes, which hinders the interpretabil-
ity of summed measures such as the RMSE. For instance, 
continuous tracking processes have been characterized as a 
complex of sensorimotor feedback loops and feedforward 
processes, as well as the activation of inner representations 
of trajectories (Pew, 1974). Consequently, neurophysiologi-
cal insights into continuous tracking performance are subject 
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to ambiguity. While in some studies this way of analyzing 
the tracking data is sufficient to detect global differences in 
performance, such as the enhanced tracking performance 
during the repeated trajectory part that is induced by implicit 
learning (Ewolds et al., 2021; Künzell et al., 2016; Wulf 
& Schmidt, 1997) or related to higher predictability of the 
target trajectory (Broeker et al., 2021), the increase in the 
tracking error with time spent on task (Zhu et al., 2014) or 
the increased tracking performance if there is prior knowl-
edge about the repeated trajectory (Broeker, Ewolds, et al., 
2020a). In sum, the RMSE does not fully exhaust the poten-
tial and complexity of the data.

The open-source tool and algorithm we present in this 
study (https:// osf. io/ stz7u/) foregoes the weaknesses men-
tioned above and allows a more differentiated analysis of the 
data, considering the complexity of the pursuit-tracking par-
adigm. Given that the cursor movement and target trajectory 
are time series related to each other, we expect that there are 
(i) segments of anticipation (i.e., there is a cursor direction 
change that occurs before a target direction change, indicat-
ing feedforward processes) and (ii) segments of adaptation 
(i.e., target direction changes are followed by cursor direc-
tion changes, indicating feedback processes). Our method 
provides a way of calculating the distance between pursuit 
and aimed target trajectory, thus producing continuous data 
of the deviation of target and pursuit, which is not prone to 
suggest random crossings of the cursor and target trajecto-
ries as minimal tracking error, which can cause interpreta-
tive ambiguities of pursuit-tracking data. For pursuit-track-
ing data that vary only in the vertical dimension, we propose 
to distinguish two error types: the temporal tracking error, 
i.e., the simple error curve, and the spatial tracking error. 
We present the algorithm used to calculate the spatial error 
and apply our method to a sample of pursuit-tracking data 
(of course the temporal tracking error can also be calculated 
using the tool). For this sample, we contrast the results for 
both error types. The code used to implement the presented 
spatial error algorithm is provided in this publication and 
can be used for all data generated by the pursuit-tracking 
task with cursor movements locked to target movements on 
the x-axis. Furthermore, we provide tracking data of our 
pursuit-tracking paradigm for two participants (10 trials 
each) of our empirical sample.

Methods

Tracking trajectories

The target trajectory consisted of three segments. Each of 
these segments was created through a concatenation of three 
sine and cosine terms, by following the formula proposed by 
Wulf and Schmidt (1997):

with the coefficients a and b being randomly generated num-
bers in the range of −40 and 40 pixels. These boundaries 
were chosen to ensure that the trajectory stretches to the 
upper and lower edges of the monitor without transcend-
ing them. Importantly, for each target trajectory’s middle 
segment, a and b were fixed, thus producing a constant tra-
jectory for all trials and participants (with a1 = 37, a2 = −3, 
a3 = 26 and b1 = 23, b2 = −15, b3 = −9). The first and third 
segments of the target trajectory were generated randomly 
for each trial (see Fig. 1). To create smooth transitions 
between adjacent segments, gaps of 30 data points were 
inserted and interpolated via cubic splines. The target veloc-
ity was held constant along the trajectory. Three different 
velocity levels were implemented by varying the distance 
between the trajectory coordinates spaced equally along 
the trajectory. The participants were instructed to continu-
ously track the target, but they were not informed that one 
trajectory segment was repeated across all trials. In each 
trial, the target started in the screen’s center and moved on 
an invisible trajectory to the left or right at one of three 
velocity levels, resulting in six conditions (low, medium or 
high velocity × right or left side) that were counterbalanced 
across all trials. There were 12 repeats of the six respective 
experimental conditions, resulting in 72 trials with a break 
after every 10th trial to prevent fatigue effects.

The participants controlled only vertical movements of 
the cursor; the horizontal movement was fixed to the target. 
The mean trial duration was 12 seconds, resulting in an aver-
age task duration of 20 minutes. The coordinates of cursor 
and target were sampled with 60 Hz, equal to the framerate 
of the screen.

Calculation of the temporal tracking error

The temporal tracking error is defined as the deviation of 
the cursor and target at time point t projected on the y-axis 
because the horizontal motion of the cursor is fixed to the 
target. Note that the temporal error is not an error in time, 
but the difference of cursor and target based on the temporal 
allocation of coordinates. For an entire trial, the temporal 
error would be the mean vertical deviation of the cursor and 
target over all frames in time in this trial. This is commonly 
known as root mean square error (RMSE). As this track-
ing error is based on simultaneously comparing the cursor 
and target position, it is called a temporal tracking error. As 
described in the introduction, this error measure suffers from 
weaknesses that lead to limited interpretability. For instance, 
the error is minimal when the trajectories of the cursor and 
target overlap, which does not necessarily indicate good 

f (x) =

3
∑

i=1

ai ∙ sin (i ∙ x) + bi ∙ cos (i ∙ x)

https://osf.io/stz7u/
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tracking performance but may be caused by a change of tar-
get direction unexpected by the participant (see Fig. 2A, C).

Calculation of the spatial tracking error

We differentiate the trajectory coordinate shown with a par-
ticular cursor sample at time point t (i.e., the temporal error) 
and the putatively aimed trajectory coordinate of a subject at 
time point t. The latter is the intended trajectory coordinate. 
While the temporal tracking error is insufficient to quantify 
the distance to the intended trajectory at a particular time 
point or cursor coordinate, the spatial error considers the 
intended trajectory at time point t. It not only quantifies the 
difference of cursor and target in the vertical dimension but 
also provides a measure of the distance in 2D space (i.e., 
considering both vertical and horizontal dimensions) to the 
intended trajectory positions (see Fig. 2B).

Assumptions for estimating the intended trajectory To cal-
culate the distance to the intended trajectory coordinates 
(i.e., the spatial error), we must identify the intended or 

aimed target trajectory sample for each cursor pursuit sam-
ple. That is because during the pursuit-tracking task, par-
ticipants might not necessarily try to keep the cursor close 
to the target they see but instead follow the target trajectory 
with some latency or partly anticipate the upcoming target 
trajectory. These more complex cognitive processes cannot 
be accounted for by the temporal error and require calculat-
ing the spatial error of cursor pursuit and intended target 
trajectory. To find the intended target position (hereafter 
referred to as the trajectory sample) for each cursor posi-
tion (hereafter, pursuit sample), we make two main assump-
tions: (1) If a cursor movement is intended to track a spe-
cific target movement, these movements should be similar 
to each other, i.e., assumption of similarity. For instance, 
if the cursor changes the direction from moving upwards 
to moving downwards, the intended trajectory part is most 
probably a direction change from upwards to downwards as 
well. (2) The intended target movement is temporally and 
spatially close to the cursor movement, i.e., the assumption 
of proximity. Considering the direction change example, this 
indicates that the intended trajectory sample can be found 

Fig. 1  Concatenated target trajectory for two exemplary trials from different participants
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in the closest similar target direction change to the respec-
tive cursor direction change. In the following, we propose 
a procedure for estimating the intended trajectory for every 
pursuit sample based on the assumptions mentioned above.

The TRACK algorithm In pursuit tracking, a change of direc-
tion of the cursor can be regarded as an active decision in 
response to a perceived change of target direction. Hence, 
we use directional changes in cursor and target movement to 

Fig. 2  Values considered for the calculation of temporal and spatial 
tracking error and their result. A The blue lines depict the difference 
between cursor and target position, which is then used for calculat-
ing the temporal tracking error. The blue lines therefore indicate time 
points and are depicted for every fifth sample. B The red lines show 

the distance between the cursor position and the respective tracked 
target position as identified by the algorithm presented herein. C The 
resulting temporal (blue) and spatial (red) tracking error for the trial 
shown in (A and B)
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identify the intended target trajectory as anchoring events. 
To find all time points of direction changes of target and cur-
sor, we identify the local maxima and minima of the trajec-
tory and the pursuit. This is done by identifying all samples 
that are either larger (local maximum) or smaller (minimum) 
than their two neighboring samples, i.e., direction changes 
within 50 ms. Since the target trajectory is generated by 
concatenating sine and cosine terms, all maxima and minima 
are considered for the analysis. This is different for the cur-
sor pursuit because steering the joystick provokes smaller 
fluctuations in the signal, which are not intended changes in 
direction. The minimum prominence for peak (maxima and 
minima) detection in the cursor pursuit is set to 20 pixels to 
increase the chance of selecting only the intended direction 
changes. Prominence, in this case, describes how distinct 
the peak is compared to other peaks regarding its height and 
location. For other screen sizes, we recommend to adjust this 
parameter accordingly, so that it is set to approximately 2% 
of the screen size.

After identifying all direction changes of cursor and 
target, the intended target direction change for each cur-
sor direction change is estimated. This estimation is 
based on the two assumptions described earlier: First, 
the direction changes are similar and close in the tempo-
ral and spatial domains. The similarity criterion is given 
by only selecting target minima for cursor minima and 
target maxima for cursor maxima. Second, the proximity 
of the cursor and target movements is given by calculat-
ing a weighted distance measure of the cursor and target 
coordinates, where the distance of the two points on the 
x-axis is weighted double to ensure temporal proximity 
of the events.

After all maxima and minima of the pursuit have been 
assigned to matching maxima and minima of the target 
trajectory, the intended trajectory samples between these 
direction changes are determined. This is done in two steps. 
First, for each pursuit sample, the surrounding maximum 
and minimum and the matching trajectory maximum and 
minimum are determined. As the pursuit sample is enclosed 
by the maximum and minimum, the intended trajectory is 
also enclosed by the corresponding maximum and mini-
mum. Therefore, all trajectory samples enclosed by the 
matching trajectory direction changes are “candidates” for 
the intended trajectory of this pursuit sample. Second, the 
closest sample of these candidates is then determined as the 
intended trajectory sample for this pursuit sample. All pur-
suit values between a maximum A and a minimum B are 
assumed to be anticipations or tracking the trajectory sam-
ples between the respective trajectory maximum A′ and min-
imum B′. Following this approach, the intended trajectory 
for every pursuit sample can be derived from the data. Given 
the pursuit coordinates and the respective intended target 
coordinates, the spatial error is calculated as Euclidean 

distance d between the two points. For an overview of the 
whole “TRACK” algorithm, see Fig. 3.

Since the spatial error measure provides information on 
the spatial, i.e., vertical, as well as temporal, i.e., horizontal, 
dimension of the tracking performance, it enables the classi-
fication of adaptive and anticipatory cursor movements. That 
is, if the intended trajectory sample appears temporally after 
the respective pursuit sample, i.e., if the x-position of the 
intended trajectory sample is larger than the x-position of the 
pursuit sample, it is labeled as anticipative because a target 
direction change was predicted and executed prematurely.

Participants/sample

To evaluate and validate the performance of the algorithm, 
we applied it to empirical data from N < 34 healthy volun-
teers performing a pursuit-tracking task. One participant 
was excluded due to incomplete data recording, resulting 
in a sample of N < 33 participants from age 20 to 30 (25.26 
± 2.96 years). There were 11 male and 22 female partici-
pants; all were right-handed. All participants reported no 
history of psychiatric or neurological illness in the past six 
months, and all had normal or corrected-to-normal vision. 
All participants provided written informed consent and were 
compensated for their participation. The university’s ethics 
committee approved the study, and the study was conducted 
in accordance with the Declaration of Helsinki. For demon-
stration purposes, we provide tracking data for 10 trials of 
two participants, respectively.

Apparatus

The pursuit-tracking task was displayed on a 32″ screen 
(Asus VG248QE) with a resolution of 1920×1080 pixels 
and a refresh rate of 60 Hz. Participants sat in front of the 
screen with a viewing distance of approximately 60 cm. The 
target was a red square and the cursor displayed a white 
cross. Both stimuli had a diameter of 0.79° visual angle 
(32×32 pixels) and were shown on a black background. 
Participants operated a joystick (Thrustmaster T.16000M) 
with their right hand to move the cursor. They controlled 
only vertical movements of the cursor; the horizontal move-
ment was tied to the target. More precisely, there was a 1:1 
mapping of joystick deflection and cursor movement in the 
vertical direction, whereas moving the joystick horizontally 
did not affect the cursor. Full joystick deflection moved the 
cursor to the respective vertical screen border, relaxing the 
joystick put the cursor in the center of the screen. The target 
movement was computed by a self-developed program using 
PsychoPy2 (Peirce et al., 2019).
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Exclusion of erroneous trials

Trials are labeled as erroneous if there was a deviation of 
more than 100 pixels from the center of the screen at the 
start of a trial, indicating that the joystick was not relaxed, 
thus producing an error peak. Furthermore, trials are labeled 
as potentially erroneous if the highest temporal error in the 
trial exceeds three standard deviations above the mean high-
est error across all subjects and trials. To ensure that only 
trials with erroneous, i.e., random, tracking behavior and not 
those with bad tracking performance are excluded, visual 
checks of every potentially erroneous trial are performed 
before excluding any trial.

Validation of the spatial tracking error 
and statistical analysis

For every included trial, the mean temporal and spatial 
tracking error is calculated for the repeated and random 

trajectory segments. Both random segments are averaged as 
mean error for the random trajectory. Note that the first and 
third segment, i.e., both random segments, in our empiri-
cal data differ significantly regarding tracking performance, 
likely due to an intra-trial fatigue. However, we assume that 
an average of both segments approximates a fatigue level 
comparable to the constant, i.e., middle trajectory segment.

Further, the rate of anticipated intended target coordi-
nates is calculated for each trial and trajectory segment as 
the ratio of anticipated samples/overall number of samples. 
All trials are retrospectively grouped into three equal blocks 
to investigate the development of the temporal and spatial 
tracking error across the experiment. Since direction changes 
in target and cursor movements are the key event for allocat-
ing target and cursor coordinates, we investigate differences 
in the mean number of cursor (with a minimum prominence 
of 20 pixels) and target direction changes through a t-test.

First, to differentiate temporal and spatial tracking 
error, we calculate a 2×3×3 repeated-measures analysis of 

Fig. 3  Overview of the steps needed to calculate the temporal and the spatial tracking error
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variance (ANOVA) (based on the general linear model) for 
the mean tracking error with the within-subject factors error 
type (spatial/temporal), trial block (first, second or last trial 

block) and trajectory segment (repeated or averaged random 
segment). Second, to further investigate the validity of the 
spatial tracking error, we conduct another repeated-measures 
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ANOVA for the spatial tracking error with the within-sub-
ject factors anticipation (anticipated/adapted intended target 
coordinate), trial block and trajectory segment, resulting in a 
2×3×2 design. Then, for validating the measure of anticipa-
tion, we calculate a 2×3 repeated-measures ANOVA with 
the within-subject factors trajectory segment and trial block. 
A Greenhouse–Geisser correction is applied if necessary. 
Effect sizes are given for all significant (p <.05) results 
(Cohen’s dz for t-tests and ƞ2

p for F-tests). For exploratory 
analysis of the distribution of temporal and spatial track-
ing error, we visually inspect the distribution of both errors 
across the constant, i.e., repeated, trajectory segment. All 
error values are given in pixels. For descriptive statistics, we 
provide the mean and standard error. Confidence intervals 
in Fig. 6 are adjusted following the procedure described by 
Loftus and Masson (1994).

Results

Estimation of intended trajectory samples

Intended trajectory coordinates were estimated for pursuit 
coordinates following the described procedures. One exem-
plary allocation process for one trial is depicted in Fig. 4. An 
intended trajectory coordinate could be estimated for every 
pursuit coordinate.

A t-test revealed a significantly smaller number of 
direction changes of the cursor (15.988 ± 0.526) com-
pared to the target (19.267 ± 0.187) with t(32) = 33.167, 
p < .001, dz = 5.774. The distribution of temporal and spa-
tial error along the samples of the constant trajectory is 
depicted in Fig. 5. The error distribution correlates vis-
ibly with the course of the repeated trajectory for both 
error types. However, there are visible differences between 
the two approaches. For instance, the temporal error has 
a minimum approximately at sample 115 (see Fig. 5C), 
while the spatial error increases (see Fig. 5B). Note that 
the trajectory path at this time point (see Fig. 5A) shows 
a target direction change shortly before, which is most 
often followed by a crossing of cursor and target, when 
the cursor movement direction is adjusted to the changed 

direction of target movement. Another difference is that 
the temporal error exhibits broad unimodal error distribu-
tions at each sample of the constant trajectory, whereas the 
spatial error can detect complex distributions. However, 
this was not tested statistically.

Differentiation of temporal and spatial tracking 
error

Descriptive data of the behavioral performance in the 
tracking task are shown in Fig. 6. Figure 6A and B depict 
the spatial and temporal error for all trial blocks and both 
trajectory segments. In Fig. 6C, the spatial error for all 
three trial blocks is contrasted for adapted and anticipated 
trajectory coordinates. Figure 6D shows the anticipation 
rate contrasted for all trial blocks.

The repeated-measures ANOVA of the tracking error 
showed a significant main effect for error type, with higher 
values for the temporal error (41.105 ± 0.662) than for the 
spatial error (15.678 ± 0.309), with F(1,32) = 3825.78, 
p < .001, ƞ2

p = 0.992. Furthermore, there was a significant 
main effect of the trajectory segment with larger tracking 
error in the averaged random trajectory (29.237 ± 0.474) 
compared to the constant trajectory (27.546 ± 0.511), 
with F(1,32) = 39.02, p < .001 and ƞ2

p = 0.549. There was 
a significant main effect of the trial block, with signifi-
cantly larger errors in the first trial block (28.761 ± 0.479) 
compared to the third trial block (28.105 ± 0.484), but no 
significant differences to the middle trial block (28.309 ± 
0.495), F(2,64) = 6.346, p = 0.003 and ƞ2

p = 0.166.
We found a significant interaction effect between error 

type and trajectory segment with F(1,32) = 165.287, 
p < .001 and ƞ2

p = 0.838. Post hoc t-tests showed signifi-
cant differences between the trajectory segments (constant 
segment: 39.55 ± 0.714; averaged random segment: 42.659 
± 0.657) for the temporal error (t(32) = 8.699, p < .001, 
dz = −1.514), but not for the spatial error (t(32) = 1.326, 
p = 0.097).

Furthermore, there was a significant interaction of trajec-
tory segment and trial block with F(2,64) = 5.386, p = 0.007 
and ƞ2

p = 0.144. Post hoc ANOVAs revealed a significant 
effect of the trial block for the constant trajectory segment 
with a mean tracking error of 28.169 ± 0.535 for the first 
trial block, 27.374 ± 0.547 for the second trial block and 
27.097 ± 0.507 for the last trial block (F(2,64) = 10.541, 
p < .001, ƞ2

p = 0.248), but no significant effect of the trial 
block for the mean tracking error in the averaged random 
trajectory segment (F(2,64) = 0.587, p = 0.559).

There was no significant interaction of error type and trial 
block (F(2,64) = 1.639, p = 0.202). Further, the interaction 
of error type, trial block and trajectory segment was not sig-
nificant (F(2,64) = 2.909, p = 0.062).

Fig. 4  Steps for identifying intended trajectory samples shown for 
one exemplary trial. Target trajectory depicted as black line, cursor 
pursuit as grey line. A Matching maxima and minima are connected 
by red or green lines. If the cursor direction change occurs before 
the target direction change, the cursor direction change is labeled as 
anticipatory and the direction changes are connected by a green line. 
Otherwise, the direction change is labeled as adaptive and the con-
necting line is displayed in red. B Intended trajectory samples for 
pursuit samples between one minimum and maximum. C Intended 
trajectory samples for all pursuit samples. Anticipatory values are 
connected by green lines, adaptive values by red lines

◂
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Validation of the spatial tracking error

For the spatial tracking error, there was a significant main 
effect of anticipation (13.157 ± 0.356 for adaptive seg-
ments; 13.935 ± 0.352 for anticipated segments) with 
F(1,32) = 28.996, p < .001, ƞ2

p = 0.475. Furthermore, there 
was a significant main effect for trial block with a higher 
spatial error in the first trials (13.8 ± 0.364) compared to 
the second third of the trials (13.417 ± 0.387) and the last 
trials (13.420 ± 0.322) with F(2,64) = 3.653, p = 0.031, 

ƞ2
p = 0.102. Also, the trajectory segment showed a signifi-

cant main effect for the spatial error, with a smaller spatial 
error for the constant trajectory part (13.094 ± 0.362) com-
pared to the averaged random trajectory (13.998 ± 0.364), 
F(1,32) = 17.168, p < .001 and ƞ2

p = 0.349.
There was a significant interaction effect of antici-

pation and trial block, with F(2,64) = 5.651, p = 0.005 
and ƞ2 = 0.150. In post hoc analyses, a significant main 
effect of trial block for anticipated segments was found 
(F(2,64) = 7.852, p < .001, ƞ2

p = 0.197), but not for 

Fig. 5  A The repeated trajectory segment. B The distribution of the 
spatial error for each sample of the repeated trajectory. Vertical lines 
depict the error distribution for that sample of the repeated trajec-
tory. The frequency, i.e., number of subjects with a certain average 
error value for this sample, is depicted by color. C The distribution 

of the temporal error for each sample of the repeated trajectory. For 
instance, at the 100th sample of the repeated trajectory, the spa-
tial error appears to be distributed around a mean of approximately 
10 pixels, whereas the temporal error shows a broader distribution 
around a mean of approximately 120 pixels
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adapted segments (F(2, 64) = 0.733, p = 0.484). For the 
anticipated segments, the mean spatial error was highest 
in the first trial block (14.428 ± 0.372), smaller for the 
middle trial block (13.811 ± 0.417) and smallest for the 
last trial block (13.565 ± 0.330).

There was no significant interaction of trial block and 
trajectory segment (F(2,64) = 2.904, p = 0.062) and no 
significant interaction effect of anticipation and trajec-
tory segment (F(2,64) = 0.646, p = 0.428). The interaction 
of anticipation, trial block and trajectory segment also 
showed no significant result (F(2,64) = 0.041, p = 0.960).

Validation of the anticipation measure

For the rate of anticipated target coordinates in the spatial 
tracking error, we found a significant main effect of trial 
block (F(2,64) = 132.617, p < .001, ƞ2

p = 0.806) with a 
mean anticipation rate of 0.525 ± 0.004 for the first trial 
block, 0.498 ± 0.003 for the second trial block and 0.453 
± 0.003 for the third trial block. Neither the main effect 
of the trajectory segment (F(1,32) = 0.17, p = 0.897), 
nor the interaction of trial block and trajectory segment 
(F(2,64) = 0.108, p = 0.898) were significant.

Discussion

The pursuit-tracking task provides an experimental para-
digm to assess complex sensorimotor integration processes 
and continuously measure performance monitoring with a 
higher ecological validity than simple tasks. While there 
is a need for accurate measures of tracking performance, 
the classical tracking error does not provide the full infor-
mation contained in the continuous data, since it often 
only relies on the vertical difference between cursor and 
target. To circumvent the limited interpretability resulting 
from this measure and use the full potential of the task, we 
developed a new error measure, the spatial tracking error, 
by accounting for the target position that was intended at 
every cursor position. We provide an algorithm to esti-
mate the intended target coordinate for every data point 
of the pursuit and a script to calculate the temporal, i.e., 
classical, and spatial tracking error. Using the algorithm, 
we estimated the intended target position based on the 
assumptions of proximity and similarity between direc-
tion changes of cursor and target. The algorithm is open 
source (https:// osf. io/ stz7u/) and can be used for continu-
ous pursuit-tracking data where a cursor is supposed to 
follow a target moving on a trigonometric trajectory.

Fig. 6  Means and adjusted confidence intervals based on the proce-
dure of Loftus and Masson (1994). A Interaction effect of trial block 
and trajectory segment for the spatial error data. B Interaction effect 

of trial block and trajectory segment for the temporal error data. C 
Interaction effect of anticipation and trial block for the spatial error 
data. D The anticipation rate across trial blocks

https://osf.io/stz7u/
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Our empirical data comparing spatial and temporal 
tracking error showed that the tracking performance 
improved over the experiment irrespective of the error 
type and that there was a smaller error for the repeated 
trajectory segment. The mean tracking error improved 
mainly in the repeated segment, and no practice effect 
was found for the random segment. This indicates that 
participants improve their tracking performance by 
implicitly learning the repeated trajectory segment, 
while they do not improve in spontaneously tracking an 
unknown trajectory, replicating a robust finding in the 
pursuit-tracking literature (Wulf & Shea, 2002). Impor-
tantly, there was a smaller spatial tracking error com-
pared to the temporal or “classical” measure. Since the 
tracking error calculated through different approaches 
can be viewed as a composite of behavioral and model-
based error, an overall smaller spatial tracking error sug-
gests that this measure is potentially able to explain more 
variance in tracking behavior.

Investigating influences on the spatial error, our empiri-
cal data show a practice effect, i.e., a decrease in the spa-
tial tracking error across the experiment. Further, the spa-
tial error was smaller in the repeated segment, showing 
that the measure can detect the implicit learning effect. 
We found a higher spatial tracking error in the segments 
labeled as “anticipated” by our algorithm compared to 
those labeled as “adapted”. Furthermore, the spatial error 
specifically decreased for the anticipated values, but not 
in the adapted parts, over the course of the experiment. 
The anticipation rate was higher in earlier trials, but did 
not differ for the repeated and random trajectory parts. 
Since there is an improvement in tracking performance 
over time, together with a decrease in the anticipation rate, 
the participants seem to learn to track the trajectory but 
without being able to anticipate it. This is congruent with 
the findings for the trajectory segment: also here, there is 
a better performance in the repeated segment but there is 
no higher anticipation rate for this segment. An improve-
ment in tracking performance without an increase in the 
anticipation rate could be explained by the fact that the 
assumption that better tracking is associated with antici-
pation of the trajectory is inaccurate. However, another 
explanation could be that the measure of anticipation is 
so far still prone to error.

Yet, our new measure and algorithm for tracking perfor-
mance can replicate established effects of the pursuit-track-
ing paradigm, such as the implicit learning of the repeated 
trajectory segment (Ewolds et al., 2017, 2021; Künzell et al., 
2016; Wulf & Schmidt, 1997). Importantly, this shows that 
the spatial error is a valid measure for the tracking error. 
Beyond its ability to replicate established findings, we found 
indications that the spatial error provides new diagnostic 

aspects in the measurement of continuous tracking perfor-
mance. The spatial error appears less diffuse and noisy than 
the temporal error, thus providing a sharper quantification 
of the tracking error. Furthermore, the interpretive issues of 
the temporal error, i.e., the minimal error at random target 
and cursor crossings, are not present for the temporal error 
(see Fig. 5).

Limitations

We infer the tracking error from both vertical and horizontal 
distance to the target, whereas the horizontal distance to the 
target is inferred from the intended target position as identi-
fied by our algorithm. In addition, other distance measures 
could be applied as well, which can be further investigated in 
future development of the algorithm. Moreover, the identifi-
cation of intended target positions is mainly based on direc-
tion changes of cursor and target. However, this crucially 
depends on the number of direction changes of both cursor 
and target. If there are more direction changes of the cursor 
than performed by the target, this can make the algorithm 
more prone to errors.

Conclusion

The pursuit-tracking paradigm gives the opportunity to gain 
a more naturalistic insight into complex sensorimotor inte-
gration processes. However, the established error measure 
for tracking performance has some weaknesses that limit its 
interpretability. We developed an algorithm to calculate a 
new error measure, the spatial tracking error, derived from 
the distance to the intended target position. We can iden-
tify the intended target position based on the assumptions 
of proximity and similarity of target and cursor direction 
changes. By applying our algorithm to pursuit-tracking data, 
we found that the spatial error replicates established effects 
of the pursuit-tracking task. Beyond replication of estab-
lished findings, we showed that the spatial tracking error 
fits tracking behavior better and provides novel insights and 
parameters for research utilizing tracking tasks. Our method 
provides an important step for fully exploiting the potential 
of pursuit-track tasks for research on sensorimotor integra-
tion processes.
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