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ABSTRACT 

This paper presents hybrid spiral-dynamic bacteria-chemotaxis algorithms for global optimisation and their 
application to control of a flexible manipulator system. Spiral dynamic algorithm (SDA) has faster 
convergence speed and good exploitation strategy. However, the incorporation of constant radius and angular 
displacement in its spiral model causes the exploration strategy to be less effective hence resulting in low 
accurate solution. Bacteria chemotaxis on the other hand, is the most prominent strategy in bacterial foraging 
algorithm. However, the incorporation of a constant step-size for the bacteria movement affects the algorithm 
performance. Defining a large step-size results in faster convergence speed but produces low accuracy while 
defining a small step-size gives high accuracy but produces slower convergence speed. The hybrid algorithms 
proposed in this paper synergise SDA and bacteria chemotaxis and thus introduce more effective exploration 
strategy leading to higher accuracy, faster convergence speed and low computation time. The proposed 
algorithms are tested with several benchmark functions and statistically analysed via nonparametric Friedman 
and Wilcoxon signed rank tests as well as parametric t-test in comparison to their predecessor algorithms. 
Moreover, they are used to optimise hybrid Proportional-Derivative-like fuzzy-logic controller for position 
tracking of a flexible manipulator system. The results show that the proposed algorithms significantly 
improve both convergence speed as well as fitness accuracy and result in better system response in controlling 
the flexible manipulator. 
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1. INTRODUCTION 

Metaheuristic algorithms are currently gaining popularity among researchers worldwide due to their 
effectiveness in finding optimum solution and reliability in solving real world problems. They are widely 
employed to solve various complex problems in science and engineering [1], medicine [2], finance [3], 
management [4], etc. Metaheuristic algorithms are normally have the following four basic characteristics. First, 
they are inspired by natural phenomena in the universe such as biological-inspired or nature-inspired. Second, 
they include a stochastic approach where an optimum solution is not known and it is randomly searched in a 
feasible area. Third, they are free of gradient or do not use derivative term in finding solution and finally, they 
involve several parameters to be defined at the initial stage in order to function properly [5]. Examples of well 
known metaheuristic algorithms inspired from biological phenomena are bacterial foraging algorithm (BFA) 
[6], particle swarm optimisation (PSO) [7], genetic algorithm (GA) [8], ant colony (ACO) [9] and bee colony 
[10]. On the other hand, examples of metaheuristic algorithms inspired from natural phenomena other than 
living organisms are simulated annealing (SA) [11], tabu search (TS) [12], spiral dynamic algorithm (SDA) 
[13], harmony search [14] and central force optimisation [15]. Selection of user defined parameters at the 
intialisation is a challenging task and it affects the performance of the algorithm very much. A study on 
parameter variation on the performance of metaheuristic algorithm has been presented in [79]. Some 
researchers utilised mathematical formulation [16], [21] while some other researchers adopted intelligent 
approaches such as fuzzy logic [75], [76], [77] to adaptively vary the parameters based on certain variables or 
conditions. Another important factor that determines the successful application of metaheuristic algorithms in 
solving problems is a balance between exploration and exploitation strategies. The exploration is a technique of 
the algorithm to search an optimum solution thoroughly and diversely within a search area while exloitation is 
the ability to intensify the search operation within a more promising and feasible region. Both exploration and 
exploitaion can also be referred to as diversification and intensification strategies. A metaheuristic algorithm in 
general implements swarm searching behaviour in its operation. In order to improve the performance in terms 
of processing time for the whole search operation, in real-time applications, some researchers have utilised 
parallel computing architecture such as graphic processing unit. Unlike standard central processing unit, here 
the motion of each search agent to find an optimal solution is done in a parallel manner. Some of the 
metaheuristic algorithms that have successfully been implemented on parallel computing architectures include 
GA, PSO, differential evolution (DE) and SA [80], [81]. In this work, two metaheuristic algorithms namely 
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BFA and SDA, their development, modification and application to solve engineering problems are selected as 
the main subject in this paper. 
 SDA is a nature-inspired optimisation algorithm introduced by Tamura and Yasuda [13]. SDA 
appears to have good potential for further development due to its simplicity, fast convergence and low 
computation time. The strategy in this algorithm is generally based on spiral phenomena in nature such as 
spiral of galaxy, hurricane, tornado and nautilus shell. The most important feature of SDA is a spiral model that 
determines the shape and charateristic of the spiral. The advantage of having spiral strategy in metaheuristic 
algorithms is that it comprises both diversification and intensification phases. Diversification can be found at 
the initial stage or at the outermost layer of the spiral where the search point moves away from the original 
location towards the centre of the spiral with a large step size. Intensification occurs at the inner layer of the 
spiral where the search point moves with smaller step size towards the final point. It is interesting to point out 
that the spiral model has a dynamic step size in its motion starting with larger step size and getting smaller 
when it approaches the final point, which is located at the centre of the spiral. During the diversification phase, 
the search point has the opportunity to explore optimum solution with large distance while intensification takes 
place, it then exploits the solution optimally within a more confined, remote and promising area that could not 
be reached during the diversification phase. Combination of these two strategies will possibly allow an 
algorithm to search the area thoroughly and effectively. Although, SDA has covered both diversification and 
intensification phases, many publications in the literature have found that the exploration strategy of SDA still 
can be further improved to avoid the algorithm from getting trapped into local optima solutions. 
 SDA is a relative new algorithm and there are very few works found in the literature about the 
development and application of this algorithm to solve real world problems. [16] has conducted a study to vary 
the spiral model radius and angular displacement with respect to individual point fitness cost at every iteration. 
The authors have proposed adaptive mathematical formulations based on linear, quadratic and exponential 
funcions as well as adaptive intelligent method based on fuzzy logic inference. The proposed algorithms have 
been tested with several unimodal and multimodal standard benchmark functions. The authors have proposed 
other versions of adaptive SDA where instead of incorporating only fitness cost into the adaptive equation, the 
best fitness cost of the current iteration is also included [17]. The adaptive algorithms have been applied to 
optimisation of dynamic model of flexible manipulator system and the results show that the algorithms 
successfully avoid local optima. [18] has proposed hybrid spiral-dynamic BFA (HSDBF) to optimise PD 
control for position tracking control of flexible manipulator system. The authors placed bacteria-chemotaxis 
phase prior to hybrid spiral-dynamic bacteria-chemotaxis algorithm to enhance the exploration strategy and to 
avoid the original algorithm from being trapped into local optima. The tumble and swim actions for the bacteria 
during the chemotaxis phase were made in spiral motion rather than random. This algorithm however was 
employed to solve low dimension problems. [19] has proposed hybrid spiral–bacteria foraging algorithm 
(HSBFA) and hybrid bacteria-chemotaxis spiral-dynamic algorithm (HBCSD). In HSBFA, the authors 
incorporated the spiral model into chemotaxis phase of BFA to assist the exploration strategy of BFA, where 
the bacteria motion is guided towards global best position at every iteration. The algorithm has produced faster 
convergence speed and better fitness accuracy. However, incorporating the spiral model into BFA has 
increased the total computation cost needed to complete the whole search operation. As a result, the authors 
proposed another algorithm namely HCSA, which replaced the reproduction, elimination and dispersal phases 
of BFA with the presence of spiral model in the chemotaxis phase aiming to reduce the total computational 
time but maintaining the performances. In HBCSD, the authors placed bacteria-chemotaxis in the first part to 
cover the exploration strategy while the SDA was placed in the second to cover the exploitation strategy. In 
HBCSD the bacteria move in random motion as the original BFA for the tumble action. The proposed 
algorithms were employed to optimise high order dynamic model of flexible systems. HSDBF in [18] and 
HBCSD in [19] have collaborative type structure where the combination of the chemotaxis phase and SDA is 
in series and the combined features are executed one after another in a seqential order. A summary of related 
works on adaptive and hybrid types based on SDA is shown in Table I. 
 

Table I: Summary of related works on adaptive and hybrid SDA. 
References Strategies Applications 

[16], [17] 
ASDA: Adaptive spiral model radius and angle based 
on fitness cost. 

Benchmark functions test, linear dynamic 
modelling of flexible manipulator system. 

[18], [19] 
HSDBF, HBCSD: Bacteria-chemotaxis phase 
followed by SDA (Collaborative type algorithm).  

PD control for position tracking of flexible 
manipulator system. 

[19] HSBFA: Spiral model incorporated into BFA. Linear dynamic modelling of flexible system. 

Proposed 
methods 

HSDBC-S, HSDBC-R: Integrated chemotaxis phase 
into SDA (Integrative type algorithm). 

Benchmark functions test with statistical 
analysis and PD-like FLC control for flexible 
manipulator system. 

 



 3 

 BFA on the other hand, is a well known bio-inspired optimisation algorithm introduced by Passino 
[6]. It is developed based on unique strategy of Escherichia Coli (E-coli) bacteria in exploring food or nutrient 
during the whole of their life cycle within lower-intestine or warm-blooded organisms for their survival [20]. 
Three important phases of E-coli bacteria strategy which form a BFA are chemotaxis, reproduction, and 
elimination and dispersal. These three phases are placed sequentially after one another. The chemotaxis phase 
is the first phase of BFA and it is the most prominent stage in BFA. Here, bacteria move in tumble and swim 
actions continuously. Tumble is where the bacteria move randomly one step ahead aroud their original 
position, trying to find a better location than the current one. If the new location of bacteria has more food or 
nutrient, then they continuously swim a few more steps in the same direction as tumble. On the contrary, if the 
new location has less food source than the current one, then the bacteria perform another tumble action looking 
for a new and better position. Depending on the amount of food source at this new location, the bacteria again 
swim in the same direction as tumble or perform another tumble action. This process is continuously repeated 
during the chemotaxis phase. The reproduction phase comes after the chemotaxis where at this stage, the 
population of bacteria is classified into two groups based on their health condition. Here, the healthier group is 
duplicated to preserve the best and important features of their predecessor. In terms of the optimisation 
algorithm point of view, the bacteria population is sorted in ascending order based on their fitness cost. The 
fittest bacterium is the one that has the least fitness cost. The first half of the bacteria population is considered 
as healthier compared to the remaining half of the bacteria population and they are copied exactly the same as 
the original population. Duplicating healthier group of bacteria increases the total number of bacteria in the 
population. From the algorithmic point of view, this leads to unfavour situation where it can increase the total 
computation cost of the algorithm. In order to keep the size of population the same as the original population, 
the less healthy bacteria are eliminated. This ensures that only the best and fittest bacteria remain in the 
population. The final step is to relocate or redistribute the whole fittest bacteria population within the feasible 
search area randomly. This is to give the opportunity for the bacteria to be placed closer to the global optimum 
solution in a faster way. 
 Since the introduction of BFA, a lot of modifications have been proposed by researchers worldwide to 
improve its performance. Moreover, there are various publications about the successful application of BFA to 
solve real world problems. These developments and successful application of BFA to solve real world 
problems have increased the popularity of BFA within the optimisation algorithm community. The 
modification of BFA can be divided into two main groups. The first group is the introduction of adaptive 
formulation to vary bacteria step size with respect to fitness cost or index of iteration. The second group is 
hybrid approach where the BFA is synergised with other metaheuristic algorithms. 
 Introduction of a powerful adaptive formulation into chemotaxis phase to change the bacteria step size 
can significantly improve BFA performance without increasing the complexity of the original BFA structure. 
[21] has conducted a comprehensive study investigating the convergence, stability and oscillation behaviour of 
BFA near the global optimum point. They have established a linear relationship between step size and 
deviation of individual bacterium from global best position. The algorithm has been tested with ten benchmark 
functions and applied to parameter estimation of frequency-modulated sound wave. [22] employed adaptive 
BFA to optimise forecasting model for prediction of various stock market indices. They have formulated a 
linear adaptive equation to vary bacteria step size based on the individual fitness cost without taking into 
account the global fitness cost in that particular iteration. Similar type of formulation was adopted by [23] to 
solve automatic circle detection problem for a digital image. [24] used delta modulation to change the bacteria 
step size where the deviation between actual and modulated signal is integrated and fed into a voltage 
regulator. The algorithm was employed to optimise parameters of a linear antenna array problem. [25] has 
proposed nonlinear adaptive formulation to change the step size based on the index and total number of 
chemotaxis. The algorithm was applied to solve economic dispatch problem with consideration to power losses 
and valve-point effects. [26] formulated an adaptive strategy for changing the step size with respect to the best 
fitness cost and current iteration number. The algorithm was tested with several standard benchmark functions. 
Another adaptive strategy was formulated by [27] where fitness cost and sine function were incorporated into 
the equation. The algorithm was used to optimise fuzzy entropy for segmentation of gray images. [28] 
proposed nonlinear adaptive formula based on exponential function in terms of current and maximum number 
of iterations. A certain range within [Cmin, Cmax] for bacteria step size was introduced as they approach to the 
final search location. The algorithm was validated with various sets of parameters on two standard benchmark 
functions. Another strategy to vary the bacteria step size can be made based on intelligent approach. [29] has 
adaptively varied the bacteria step length through Takagi-Sugeno fuzzy logic approach based on minimum 
value of fitness cost. The algorithm was applied to estimate harmonic component of power system waveforms. 
[30] has proposed fuzzy adaptive BFA to optimise congestion management for a power generator. The authors 
have defined a total number of 52 fuzzy rules where the input and output for the fuzzy system were the 
production cost and the change of step size respectively. [31] have utilised the Mamdani-type fuzzy rule to vary 
bacteria step size based on absolute value of cost function. The algorithm was tested with several benchmark 
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functions and showed better performance compared to the original BFA. A summary of related works on 
adaptive types based on BFA is shown in Table II. 
 

Tabel II: Summary of related works on adaptive BFA approach. 
References Adaptive strategies 
[21], [22], [23], [27] Adaptive equation to vary bacteria step size based on fitness cost. 

[24] 
Bacteria step size based on problem (deviation between actual and modulated 
signal). 

[25], [28] Adaptive formulation based on index and iteration number. 
[26] Bacteria step size based on combination of fitness cost and iteration number. 
[29], [30], [31] Adaptive formulation based on fuzzy logic approach. 

 
The synergy of BFA and PSO is the most commonly found hybrid BFA in the literature. [32], [33], 

[34], [35] and [36] utilised chemotaxis strategy in BFA to serve as local search method while the velocity and 
position update equations in PSO were employed to act as global search method. [37] introduced a simplified 
version of BFA employing bacterial chemotaxis strategy and PSO velocity update equation to solve parameter 
identification problem of a heavy oil thermal cracking model. Reproduction and elimination stages were 
omitted to reduce computational time. [38], [39] and [40] introduced hybrid GA-BF algorithm by applying 
varying bacterial chemotaxis step size in BFA while employing modified mutation and crossover operation in 
GA. [41] developed cooperative BF-TS by combining adaptive BFA (ABFA) and adaptive tabu search (ATS). 
With limited exploration capability of ATS in the search space and complexity of ABFA, to provide suitable 
exploration at the early stage, the chemotaxis strategy of ABFA is incorporated into ATS. On the other hand, 
[42] used hybrid ABFA and ATS called BTSO, to analyse Lyapunov’s stability of linear and nonlinear 
systems. [43] proposed an intelligent biogeography-based optimisation (BBO) where a BFA is combined with 
BBO. In the algorithm, to determine a valid migration of an individual from one place to another, chemotaxis 
behaviour of bacteria is adopted into BBO migration process. This ensures the island that receives the migrated 
solution and preserves its fitness level by only accepting individuals that contribute to a better fitness value. 
[44] introduced a hybrid algorithm namely BPSO-DE by synergising BFA, PSO, and DE to solve dynamic 
economic dispatch problem with valve-points effect. PSO-DE features contain evolutionary operators and 
velocity update equation, and are used to perform exploration search over the entire search space while 
bacterial chemotaxis strategy with adaptive step-size in BFA is used to perform local search to enhance 
exploitation. [45] introduced a chemotaxis differential evolution where a BFA is hybridised with DE algorithm. 
In the algorithm, the mutation process in DE is combined with the chemotaxis strategy of bacteria. A summary 
of related works on hybrid type based on BFA is shown in Table III. 

 
Table III: Summary of related works on hybrid BFA approach. 

Hybrid types References Strategies 

BFA-PSO 
[32], [33], 
[34], [35], 
[36] 

 Exploitation: chemotaxis strategy of BFA. 
 Exploration: velocity and position update equation of PSO. 
 Incorporating velocity and position update equation of PSO into BFA. 
 Enhancing exploration capability of BFA. 

Simplified BFA-PSO [37]  Excluded reproduction, elimination and dispersal events. 

BFA-GA 
[38], [39], 
[40] 

 Exploitation: chemotaxis strategy of BFA. 
 Exploration: modified mutation and crossover operations of GA. 
 Synergising modified mutation and crossover operations of GA with 

chemotaxis strategy of BFA. 
 Enhancing the exploitation capability of GA. 

BFA-TS [41], [42] 

 Exploitation: ATS features. 
 Exploration: ABFA features. 
 Synergising ABFA and ATS features. 
 Enhancing exploitation capability of BFA. 

BFA-BBO [43] 

 Exploitation: chemotaxis strategy of BFA. 
 Exploration: BBO features. 
 Incorporating chemotaxis strategy of BFA into BBO. 
 Enhancing exploitation capability of BBO. 

BFA-PSO-DE [44] 

 Exploitation: chemotaxis strategy with adaptive step-size of BFA. 
 Exploration: PSO-DE features. 
 Incorporating PSO-DE operators into BFA. 
 Enhancing exploration capability of BFA. 

BFA-DE [45] 
 Exploitation: chemotaxis strategy of BFA. 
 Exploration: DE features. 
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 Incorporating chemotaxis strategy of BFA into DE. 
 Enhancing exploitation capability of DE. 

 
Flexible robot manipulators are used in the manufacturing industry as tools in the production process. 

Unlike a rigid manipulator, a flexible manipulator is lighter in weight, has smaller actuator, faster response, 
consumes less power, is less expensive, operates cost-efficiently, has higher payload to robot weight ratio and 
offers more safety to the user [46],[47]. A single-link flexible manipulator is considered in this work. This is a 
single-input multi-output system comprising rigid and flexible dynamics. An electromechanical actuator at the 
hub of the system produces rotational motion of the manipulator, and fast motion-induced vibration propagates 
along the flexible beam to the payload at the end-point of the beam. The control strategy for the flexible 
manipulator system can be realised through conventional control [48], [49] or intelligent control [50], [51], 
[52], [53] approaches. Fuzzy logic control (FLC) is one type of intelligent control approaches that increasingly 
attracts interest of researchers. The nonlinear control laws of FLC are more robust compared to conventional 
feedback control when dealing with unprecision and uncertainty of the controlled system. A more promising 
intelligent control approach to handle higher degree of uncertainty and information deficiency is through 
utilisation of interval type-2 fuzzy logic [61]. It is an extended and improved version of a classical type fuzzy 
logic. Interval type-2 fuzzy logic has been extensively used to solve complex problems in various applications. 
[68] has reported that it has been applied in the area of pattern recognition [69], system identification [70], 
theory [71], prediction [72] and classification [73]. In the area of control design, it has been extensively applied 
in a noisy and changing environment [62], [63], [64] and [65]. The drawback of FLC is the need for human 
expert to formulate linguistic description of fuzzy rules before they can be converted into a control signal to 
control a system. Moreover, training of such system is relatively complex due to large number of tuning 
parameters [78]. However, this limitation can be solved by applying an optimisation algorithm as a tuning tool, 
and this can lead to better performance than classical fuzzy tuning approach. In [66], the authors revealed that 
GA, PSO and ACO were the commonly used algorithms to optimise interval type-2 fuzzy in the area of 
intelligent control. However, the application of GA has been significantly reduced. [67] used a chemical 
optimisation algorithm to optimise interval type-2 fuzzy for the application of autonomous mobile robots. The 
authors pointed out that the interval type-2 FLC performed better than classical FLC in the presence of higher 
degree of uncertainty. [74] applied PSO and GA to optimise membership functions of interval type-2 FLC for a 
real-time application to control speed of a DC motor based on FPGA. The authors concluded that PSO 
outperformed GA in terms of accuracy and resulted in faster runtime. Another promising control approach for 
controlling a flexible system is feedforward input command shaping introduced by [54]. It is a common 
approach to suppress vibration of a flexible system where it cancels resonance poles of a system by convolving 
a desired command with a sequence of impulses. However, through conventional design approach for the input 
command shaping, information about the system characteristics such as resonance frequencies and 
corresponding damping ratios must be known prior to controller design [55]. This limitation can be overcome 
efficiently if an optimisation algorithm is employed in the design where it can produce optimum solution even 
if no prior knowledge about the system is known. In the application part of this paper, the SDA, BFA and the 
proposed optimisation algorithms are employed to design and optimise a hybrid PD-like FLC for position 
tracking of a single-link flexible robot manipulator. 
 This paper is an extended study of previously published work at a conference, where the hybrid spiral-
dynamics bacteria-chemotaxis algorithms were introduced [56], [57]. The proposed algorithms offer different 
strategies compared to the existing hybrid type presented in the literature as shown in Table I. First, it is an 
integrative type algorithm where the chemotaxis phase of BFA is integrated into SDA. Unlike the collaborative 
type structure as proposed by [18] and [19], the combined features of integrative type struture are executed in a 
parallel manner. Both chemotactic strategy and SDA are executed at the same time to balance the exploration 
and exploitation. In the strategy, SDA is the main and host algorithm where it provides platform for the 
chemotaxis phase of BFA. Second, the reproduction, elimination and dispersal phases of BFA are excluded so 
that the simple structure of SDA can be retained to achieve fast convergence speed and reduced computation 
time. It is different than the HSBFA in [19], which only adopted spiral equation into the chemotaxis phase of 
BFA and executed BFA as a whole algorithm, requiring more processing time than the original BFA. The 
proposed algorithms have simpler structure and shorter execution time than the original BFA. Third, the spiral 
radius and angle of the spiral model is determined based on fitness cost of each bacterium. It offers more 
dynamic step size compared to the original SDA.     

The development of the proposed algorithms has been motivated by the following issues. BFA 
provides good exploration strategy due to the chemotaxis approach but suffers from oscillation towards the end 
of its search process if large step size is used. It offers fast convergence speed but low accurate solution. On the 
contrary, for a small step size, it offers good exploitation and better accuracy but with slow convergence. There 
is unbalanced combination between the exploration and exploitation, and this makes the algorithm unable to 
produce both accuracy and faster convergence speed at the same time. Moreover, the total computation time for 
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the algorithm to complete the whole search operation is relatively high due to its complex structure. This 
situation is not favoured especially when it is adopted for solving a complex real world problem, 
implementation on a real-time application such as on-line tuning of controller parameters or dynamic 
modelling of a real physical system. In such situations, it requires high speed computing machine, which is 
very costly. On the other hand, SDA provides better stability when approaching the optimum point due to 
dynamic spiral step in its trajectory motion, has faster convergence speed and reduced computation time due to 
a relatively simple structure. However, it may potentially cause the search agents to get trapped into local 
optima due to insufficient exploration strategy throughout the search space and deterministic approach of the 
spiral trajectory thus offers low accurate solution at the end. The objectives of the proposed algorithms are to 
improve the performance of the original BFA and SDA in terms of both convergence speed and fitness 
accuracy as well as to reduce the complexity of the original BFA structure for shorter computation time.  

Statistical analyses of the proposed algorithms tested on various multi-modal, unimodal and different 
landscapes of benchmark functions are presented in the paper. The performance of the proposed algorithms on 
the benchmark functions is compared with the predecessor algorithms through non-parametric Friedman and 
Wilcoxon signed rank tests and parametric t-test analysis. Moreover, the paper presents an application of the 
hybrid schemes in optimising a hybrid intelligent control technique for a laboratory-scale flexible manipulator 
system. Classical type FLC is applied in this work rather than interval type-2 FLC since no payload is 
considered and the presence of relatively lower degree of uncertainty for controlling the hub angle position of 
the flexible manipulator system. It also provides a challenging and complex platform with fewer tuning 
parameters and faster computing time to assess the performance of the proposed algorithms in comparison to 
their predecessor algorithms.  
 The rest of the paper is organised as follows. Detailed description of the proposed algorithms is 
presented in section 2. Section 3 discusses the implementation and associated results of the proposed 
algorithms on a set of benchmark functions. Section 4 presents a description of the single-link flexible robot 
manipulator, the method used to design hybrid PD-like FLC for hub-angle position tracking and the 
corresponding results. The conclusions drawsn from the work presented in the paper are given in section 5. 

2. HYBRID SPIRAL-DYNAMIC BACTERIA-CHEMOTAXIS ALGORITHMS 

This section describes the proposed hybrid spiral-dynamic bacteria-chemotaxis (HSDBC) algorithms. The 
HSDBC is a combination of bacterial chemotaxis strategy used in BFA and SDA. It preserves the strengths and 
eliminates the weaknesses of both SDA and BFA algorithms. The HSDBC algorithm is divided into two types 
based on the swimming strategy of bacteria. In the first type namely HSDBC-S, bacteria swim through spiral 
approach while in the second type namely HSDBC-R the bacteria adopt a random approach. 

The parameters and description used in n-dimensional HSDBC optimisation algorithm are presented 
in Table IV. Step-by-step description of the algorithms is presented in Figure 1. To get a clearer picture, the 
HSDBC-S and HSDBC-R flowcharts are shown in Figure 2(a) and Figure 2(b) respectively. In the proposed 
hybrid approach, bacterial chemotaxis strategy is employed in step 2 to balance and enhance exploration and 
exploitation of the search space. 
 
 

Table IV: Parameters for HSDBC-S and HSDBC-R algorithms. 
Symbols Descriptions 

tumble  Bacteria angular displacement on ji xx   plane around the origin for tumbling. 

swim  Bacteria angular displacement on ji xx   plane around the origin for swimming. 

rtumble  Spiral radius for bacteria tumble. 

rswim  Spiral radius for bacteria swim. 

m  Number of search points. 

maxk  Maximum iteration number. 

Nsw  Maximum number of swim. 

)(kxi  Bacteria position. 

C Bacteria step size. 
nR  n x n square matrix. 

 
 
 
 
 
 



 7 

Step 0: Preparation 
Select the number of search points (bacteria) 2m , parameters  2,0  swimtumble , 

1,0  swimtumble rr  of ),( rSn , maximum iteration number, maxk  and maximum number of swims, sN  

for bacteria chemotaxis. Set 0,  0  sk . 

Step 1: Initialisation 

Set initial points miRx n
i ,...,2,1,  )0(   in the feasible region at random and centre *x as 

mixfixx iigig
,...,2,1)),  0((minarg),  0(*  . 

Step 2: Bacteria chemotaxis 
(i) Bacteria tumble 
    (a) Update ix   

    *)),(()(),()1( xIrSkxrSkx ntumbletumblenitumbletumbleni   , mi ,...,2,1 . 

 (ii) Bacteria swim 
    (a) Check number of swims for bacteria i. 

          If sNs  , then check fitness, 

          Otherwise set 1 ii , and return to step (i). 

    (b) Check fitness 

          If ))(())1(( kxfkxf ii  , then update ix , 

          Otherwise set sNs  , and return to step (i). 

    (c) Update ix  

         *)),(()(),()1( xIrSkxrSkx nswimswimniswimswimni   ,  mi ,...,2,1  for HSDBC-S  

  directionrandomsizestepkxkx ii     )1()1(  , mi ,...,2,1   for HSDBC-R 

Step 3: Updating *x  

)1(*  kxx
gi

, mikxfi iig ,...,2,1)),  1((minarg  . 

Step 4: Termination criterion 
 If maxkk  then terminate. Otherwise set 1 kk ,  

 and return to step 2. 
Fig. 1. Description of the proposed hybrid spiral-dynamics bacteria-spiral-chemotaxis and bacteria-random-

chemotaxis algorithms. 

 

2.1. HYBRID SPIRAL-DYNAMIC BACTERIA-SPIRAL-CHEMOTAXIS 

The bacteria move from low nutrient location towards higher nutrient location, placed at the centre of a spiral. 
The most important factor of HSDBC-S algorithm is the respective diversification and intensification at the 
early phase and later phase of the spiral motion. In the diversification phase, bacteria are located at low nutrient 
location and move with larger step size thus producing faster convergence. On the other hand, in the 
intensification phase, bacteria are approaching rich nutrient location and move with smaller step size hence 
eliminating oscillation around the optimum point. However, to avoid the bacteria from getting trapped into 
local optima points, swim action is adopted in step 2(ii), Figure 1. Bacteria continuously swim in spiral form 
towards optimum point if the next location has higher nutrient value compared to the previous location until the 
maximum number of swims is reached. In the swim action, the spiral radius value is not necessarily the same 
as in tumble. Giving larger or smaller radius enhances the exploration and exploitation strategy of the bacteria 
respectively. More importantly, the exploration and exploitation are kept alternated during the search operation. 
Instead of having constant radius or constantly varying step size, another spiral radius value or adaptive spiral 
radius is adopted in the swim action. It may introduce variation in the spiral radius itself and step size of the 
bacteria for the whole search operation. Moreover, through the adaptive approach, the determination of the 
spiral radius for swim is based on the fitness cost of each bacterium. This in turn gives more chances for the 
bacteria to move within the feasible space hence resulting in more accurate solution. Beside, the variations of 
the spiral radius through the adaptive approach can control the convergence speed of the algorithm. The 
convergence speed may also be improved if the average size of spiral radius is employed in the swim action. 
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Furthermore, incorporating only chemotaxis part of bacteria and adopting adaptive radius, the simple structure 
of SDA can be retained. 
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    (a)      (b) 

Fig. 2. Flowchart of the proposed hybrid algorithms, (a) Hybrid spiral-dynamic bacteria-spiral-chemotaxis 
algorithm and (b) Hybrid spiral-dynamic bacteria-random-chemotaxis algorithm. 

 

2.2. HYBRID SPIRAL-DYNAMIC BACTERIA-RANDOM-CHEMOTAXIS 

Instead of swimming in spiral manner where a deterministic approach is adopted, in HSDBC-R the bacteria 
swim in random direction, within 360° around their current position giving more flexibility to the bacteria in 
finding better path. Here, a combination of deterministic and random approaches is adopted during the tumble 
and swim respectively. Combination of these two approaches will complement each other where in the spiral 
approach, the trajectory of the bacteria is predetermined by the radius and the angle while in the random 
approach, the bacteria move freely in any direction. In terms of step size, the deterministic approach provides 
dynamic step size, which may balance the constant step size in the random approach. Moreover, in the tumble 
phase, the bacteria are guided by global best position, and this can speed up the convergence while in the swim 
phase, the bacteria move individually and independent to any other positions. A constant step size is adopted 
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for the swim action as shown in step 2(ii)(c) of Figure 1. Since the SDA has problem with local optima due to 
insufficient exploration, defining a large step size in the swim action can help the algorithm to explore more 
efficiently. Defining small step size helps the algorithm to improve the exploitation part. Instead of having the 
exploitation at the end of search operation only, here, additional exploitation in the swim with random 
trajectory is included, and it alternates repetitively with the exploration part in the tumble action. The HSDBC-
R flowchart is depicted in Figure 2(b). Notice that, after the bacteria move one-step ahead using the spiral 
model, they perform random tumble and swim actions without referring to the global best position. Moreover, 
an additional step is incorporated into the chemotaxis phase through the introduction of fbest and xbest. This is 
to ensure that the best solution and best fitness are always preserved when the bacteria move from one location 
to another when performing tumble and swim actions. In addition, it eliminates the oscillation problem in the 
algorithm convergence. 

3. EXPERIMENTS AND RESULTS WITH BENCHMARK FUNCTIONS 

This section presents an extensive study on the performance of the proposed hybrid algorithms in comparison 
to the original SDA and BFA with several well-known benchmark functions. 
 

3.1. BENCHMARK FUNCTIONS 

Eight well-known benchmark functions with different fitness landscapes, dimensions and complexities are used 
in this work. The mathematical representations and descriptions of the benchmark functions are shown in Table 
V [21]. The functions f1-f6 have the global optimum value of zero while the functions f7 and f8 have the global 
optimum values of 3 and -1.0316 respectively. All the functions used in the test are continuous and 
differentiable. 
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3.2. COMPARATIVE TEST STRATEGY 

The main aim of the benchmark functions test is to acquire statistical data which can be used to compare the 
performances of the proposed algorithms with those of the original algorithms. The tests focus mainly on these 
performance metrics: 1) The fitness accuracy achieved by the algorithm at the last fitness evaluation (FE) 
which may also be considered as the closeness of the solution to the global optimum point. 2) The speed of the 
algorithm to converge to the global optimum point in terms of the number of FEs. 3) The frequency of the final 
solution to reach the global optimum point. In this work, the dimensions for both f7 and f8 are defined as 2 
while dimensions 15, 30, 45 and 60 are tested for function f1-f6.  

In these tests, 30 independant runs were executed for each algorithm under study and, the mean and 
standard deviation values were generated. Moreover, the best and the worst values achieved by each algorithm 
are also presented as these can show the closeness of the final solution to the theoretical global optima. The 
number of total iterations for each algorithm is defined based on the total number of FEs which is set the same 
for all algorithms. Here, the maximum number of FEs is set to 80,000. The performances of the proposed 
algorithms and the original algorithms in terms of fitness accuracy or significant improvement are compared by 
conductiong Friedman and Wilcoxon tests and t-test on the best mean values achieved by the proposed 
algorithms and the BFA or SDA. The alpha value of 5% degree of significance is defined for all tests giving 
95% confidence interval for the generated results. Following the work of [58], symmetrical initilisation method 
is used for all the problems. The initial parameter used in the test for the BFA, SDA, HSDBC-R and HSDBC-S 
are presented in Table VI. The initial parameter values for the proposed hybrid algorithms were selected 
heuristically while the parameters for the BFA were adopted from [6], [32] and the SDA parameters were 
adopted from [13]. 
  

Table VI: Initial parameter values for BFA, SDA, HSDBC-R and HSDBC-S. 
 BFA SDA HSDBC-R HSDBC-S 

Parameter 

S=50 
Ns=4 
Nc=100 
Nre=4 
Ned=2 
C=0.1 

m=50 
=0.95 
r=/4 
 

S=50 
Ns=4 
=0.95 
r=/4 
C=1 

S=50 
Ns=4 
tu=0.95 
rtu=/4 
sw=0.99 
rsw=2 

 

3.3. EMPIRICAL RESULTS 

The analytical results for the benchmark functions tests representing the mean, standard deviation (SD), best 
and worst accuracy are presented in Table VII. The best mean among the algorithms is highlighted in bold 
font, while the best mean between the SDA and BFA is italicised. Notice that, both the proposed hybrid 
algorithms achieved better performance compared to the SDA and BFA for all benchmark functions. Except 
only for the 15 dimensions Rosenbrock function, the BFA achieved the best mean among the algorithms. 
Comparing the proposed hybrid algorithms, it is noted that HSDBC-S dominated the best mean result. The 
HSDBC-R had better mean than HSDBC-S for lower order 15 and 30 dimensions Rastrigin function. 
Comparing the original algorithms, it can be seen that SDA dominated the best mean result especially for 
functions f1, f3, f4, f5, and f6. BFA achieved better mean for functions f2, f7 and f8 compared to SDA. On the 
other hand, for the SD, the proposed HSDBC-S dominated the results especially for functions f2, f3, f5, f7 and 
f8. BFA dominated the SD result for functions f1 and f6 while the HSDBC-R had better SD for function f4. The 
best accuracy is the best value achieved by the algorithms to the targeted global optima location within 80,000 
FEs. It is noted that HSDBC-S dominated the best accuracy for functions f2, f3, f6, f7 and f8. Both the proposed 
hybrid algorithms shared the domination for the function f1 while for functions f4 and f5, HSDBC-R, HSDBC-
S and SDA shared the best performance. Overall, for the results presented in Table VII, HSDBC-S showed 
the best performance compared to all other algorithms. 
 

Table VII: Analytical results for BFA, SDA, HSDBC-R, HSDBC-S tested on benchmark functions. 
No Function Dim Accuracy SDA BFA HSDBC-S HSDB-R 
1 Rastrigin, f1 

 
15 Mean 56.2282 71.7664 49.8473 44.5291 

SD 21.4073 10.0497 29.8361 13.9978 
Best 22.0649 42.4882 14.9244 22.0333 

Worst 102.8827 87.0167 100.4904 70.7086 
30 Mean 177.3411 227.8996 145.0974 141.4004 

SD 42.0284 15.2076 40.7532 36.2115 
Best 109.7006 191.0726 77.6066 71.3614 

Worst 256.3584 255.9851 221.8472 215.0208 
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45 Mean 326.5830 399.5583 261.9378 281.4467 
SD 51.6715 21.3011 58.4445 49.6190 
Best 184.5732 365.2128 167.1521 194.3177 

Worst 391.1996 442.6647 415.8885 376.3560 
60 Mean 465.1590 583.9721 395.4618 420.6546 

SD 58.8316 27.2864 54.4317 69.4549 
Best 373.3858 507.5568 307.4419 277.7842 

Worst 601.6010 640.2427 548.2187 549.5155 
2 Sphere, f2 

 
15 Mean 0.0460 0.1453 1.02x10-16 0.0016 

SD 0.0985 0.0398 2.10x10-16 0.0025 
Best 1.57x10-10 0.0618 1.56x10-18 1.10x10-10 

Worst 0.4460 0.2139 9.29x10-16 0.0105 
30 Mean 11.3489 0.6566 2.40x10-9 0.1037 

SD 8.1754 0.1011 7.19x10-9 0.0641 
Best 1.2464 0.4697 1.29x10-11 0.0084 

Worst 33.5903 0.8894 3.32x10-8 0.2625 
45 Mean 44.5252 4.1923 5.51x10-7 0.4320 

SD 23.2000 0.9020 1.07x10-6 0.1219 
Best 11.5869 2.8172 2.51x10-8 0.2481 

Worst 109.8495 6.3640 4.49x10-6 0.7359 
60 Mean 59.6307 25.9662 1.99x10-4 0.6456 

SD 22.9318 4.4920 1.78x10-4 0.1476 
Best 18.6768 15.1910 1.68x10-5 0.4123 

Worst 121.5477 33.9146 9.38x10-4 0.9314 
3 Griewank, 

f3 
15 Mean 0.2285 207.2228 0.0970 0.1621 

SD 0.2652 40.6498 0.0459 0.1051 
Best 0.0137 116.9222 0.0123 0.0082 

Worst 1.1990 290.1331 0.2213 0.3938 
30 Mean 44.9101 572.9713 0.0136 8.6370 

SD 33.1576 42.4306 0.0113 16.1938 
Best 5.6035 475.3584 1.43x10-7 0.0221 

Worst 128.4010 664.2639 0.0394 71.5929 
45 Mean 157.2306 936.8041 0.0067 69.6809 

SD 101.6197 74.9055 0.0079 41.3909 
Best 25.4580 741.5544 3.65x10-4 5.4645 

Worst 449.1162 1057.4 0.0348 140.6752 
60 Mean 234.5367 1320.5 0.1123 45.6662 

SD 92.3632 96.7467 0.1049 33.4395 
Best 99.7027 1112.7 0.0194 2.5428 

Worst 463.9472 1484.7 0.5675 128.1832 
4 Goldstein 

& Price, f4 
2 Mean 3.0000 3.0790 3.0000 3.0000 

SD 2.80x10-15 0.0765 2.23x10-15 1.34x10-15 
Best 3.0000 3.0043 3.0000 3.0000 

Worst 3.0000 3.2865 3.0000 3.0000 
5 Hump, f5 2 Mean 4.65x10-8 0.0013 4.65x10-8 4.65x10-8 

SD 8.41x10-17 0.0013 5.63x10-17 5.63x10-17 
Best 4.65x10-8 1.09x10-6 4.65x10-8 4.65x10-8 

Worst 4.65x10-8 0.0063 4.65x10-8 4.65x10-8 
6 Ackley, f6 15 Mean 2.7560 17.2150 0.2733 0.4668 

SD 1.5520 0.8505 0.6686 0.5895 
Best 0.1578 14.2413 3.29x10-9 0.0024 

Worst 7.6937 18.2857 2.3168 1.6462 
30 Mean 10.3492 18.5364 1.0815 2.3763 

SD 2.9361 0.3884 0.9423 2.5354 
Best 5.6647 17.4426 2.67x10-5 0.6873 

Worst 15.7385 19.1476 2.6605 15.4803 
45 Mean 15.5079 18.8840 2.5513 5.3842 

SD 1.9447 0.2426 3.3276 5.3402 
Best 9.0870 18.3453 0.0033 1.7744 

Worst 17.9486 19.3364 18.650 18.1202 
60 Mean 16.3385 19.1621 3.3505 9.7372 

SD 1.5981 0.1771 4.2232 6.5962 
Best 12.3176 18.7347 0.9355 2.5041 

Worst 18.5273 19.4170 18.7603 17.6647 
7 Dixon & 

Price, f7 
15 Mean 21.2076 2.4073 0.6713 1.0066 

SD 37.1136 0.7815 0.0176 0.5801 
Best 0.6690 1.5245 0.6667 0.6685 

Worst 138.1960 5.7020 0.7448 2.9900 
30 Mean 30142 1644.7 0.8720 28.4950 

SD 63151 1163.2 0.3714 26.5510 
Best 368.8575 174.3992 0.6667 3.0957 
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Worst 268500 5183.1 2.5058 102.0375 
45 Mean 141120 115390 7.0515 74.5114 

SD 129630 33979 22.9881 75.2632 
Best 4865.4 36225 0.6686 17.8003 

Worst 607590 180080 125.8619 311.1949 
60 Mean 285880 778280 19.6118 134.6677 

SD 228680 115660 36.0167 108.5157 
Best 17710 450890 0.9558 19.0963 

Worst 1091300 969210 190.8919 388.0243 
8 Rosenbrock

, f8 
15 Mean 293.2540 28.3812 49.0480 49.9760 

SD 716.7687 3.6979 83.3906 62.0846 
Best 6.9860 21.5729 6.3186 7.9985 

Worst 3921 34.3244 338.6489 268.7396 
30 Mean 15610 699.4071 54.0812 196.6493 

SD 18883 314.8351 66.0543 218.4484 
Best 618.4347 172.2762 23.5363 33.1709 

Worst 67199 1756.6 346.2318 857.5338 
45 Mean 97738 30564 77.6202 398.2330 

SD 87041 13109 55.8222 319.0449 
Best 1581 8229.6 35.3515 156.3455 

Worst 326710 61866 242.9060 1691.7 
60 Mean 133400 199390 135.3810 522.2300 

SD 75235 62914 197.8978 407.3238 
Best 27401 60315 52.0677 134.9322 

Worst 396650 321830 1122.0 1661.4 

 
The performances of the four algorithms in terms of fitness accuracy were tested through 

nonparametric Frieman test and Wilcoxon signed rank test and the result is presented in Table VIII. Friedman 
test is used to rank the performance of three or more algorithms while the Wilcoxon signed rank test is used to 
compare the performance between two algorithms. The algorithm with lower rank in the Friedman test is 
considered as the algorithm with the highest accuracy achievement. In both tests, the algorithms are 
considered to have an equal performance if the two-tailed, p value is equal to or more than 0.05 with 5% 
degree-of-significance. Notice that, based on Friedman test, HSDBC-S achieved the lowest ranking followed 
by HSDBC-R, SDA and BFA. In other words, HSDBC-S was the best algorithm in terms of accuracy 
achievement. Based on Wilcoxon signed rank test, it is noted that the p value of SDA-BFA was bigger than 
0.05, which means that the difference between BFA and SDA in terms of accuracy achievement was not 
significant and thus had equal performance. Wilcoxon test result for other than SDA-BFA showed that the p 
value was less than 0.05. This, with reference to the Friedman test and p value of Wilcoxon test, means that 
both HSDBC-R and HSDBC-S ouperformed BFA and SDA with significant improvement. The results also 
show that HSDBC-S had better performance than HSDBC-R with significant difference. 
 

Table VIII: Result of Friedman test and Wilcoxon signed rank test. 

Algorithm 

Friedman test Wilcoxon signed rank test 

Mean 
rank 

p 2  
SDA-BFA SDA-HSDBCS SDA-HSDBCR 

R  R  p R  R  p R  R  p 

SDA 3.27 

<0.05 60.38 

203 148 0.48 0 300 <0.05 0 300 <0.05 

BFA 3.58 
BFA-HSDBCS BFA-HSDBCR HSDBCS-HSDBCR 

HSDBCS 1.19 
R  R  p R  R  p R  R  p 

11 340 <0.05 11 340 <0.05 277 23 <0.05 
HSDBCR 1.96 

 
The significant difference between the best mean of the proposed algorithms (bold font) and the best 

mean of the original algorithms (italicised) from Table VII were evaluated through t-test approach. The 
overall result for the t-test representing the standard error, t-value, 95% confidence interval and two-tailed, p 
value are shown in Table IX. As the degree of significace is 5% and degrees-of-freedom (DOF) is 58, if the 
two-tailed value is equal to or less than 0.05, then the mean difference is said to be significant. In other words, 
the result of the proposed algorithm was improved significantly compared to the standard algorithm. With 
reference to the result in Table VII, the BFA has achieved the best mean for 15 dimensions function f8. 
However, the result of the t-test has shown that it has two-tailed value 0.1803, greater than 0.05, which may 
be interpreted as equal performance to HSDBC-S. Besides, for functions f4 and f5, the t-test has shown the 
two-tailed values above 0.05; these were 0.1232 and 0.2347 respectively. This result is aligned with the result 



 13

shown in Table VII. The rest of the results show that the two-tailed value was less than 5% degree of 
significance, which concludes that the performance difference of the proposed hybrid algorithms to the 
original algorithms is statistically significant and better. Notice that both functions f4 and f5 have low 
dimension of 2 and SDA performed very well giving equal performance to the hybrid schemes. However, for 
higher order dimensions on other functions, the performance of SDA remarkably reduced and might not be 
suitable to use as an efficient tool especially for solving real world problems. 

 
Table IX: Results of t-test between the best mean of original algorithms and best mean of HSDBC. 

No Function Dim Standard 
error 

t - value 95% Confidence 
interval 

Two tailed, 
P 

Significant 
improve. 

1 Rastrigin 
 

15 4.6698 2.5053 2.3516 - 21.0468 0.0151 Yes 

30 10.1286 3.5484 15.6662 - 56.2154 7.75e-4 Yes 

45 14.2428 4.5388 36.1351 - 93.1552 2.90x10-5 Yes 

60 14.6333 4.7629 40.4055 - 98.9889 1.31x10-5 Yes 

2 Sphere 
 

15 0.0180 2.5570 0.0100 - 0.0820 0.0132 Yes 

30 0.0185 35.5554 0.6196 - 0.6935 4.46x10-41 Yes 

45 0.1647 25.4570 3.8626 - 4.5219 3.62x10-33 Yes 

60 0.8201 31.6611 24.3244 - 27.6077 2.69x10-38 Yes 

3 Griewank 15 0.0491 2.6758 0.0331 - 0.2299 0.0097 Yes  

30 6.0537 7.4163 32.7786 - 57.0143 5.85x10-10 Yes 

45 18.5531 8.4743 120.0858 -194.3620 9.87x10-12 Yes 

60 16.8631 13.9016 200.6692 - 268.1797 4.06x10-20 Yes 

4 Goldstein & Price 2 5.67e-16 1.5644 -0.02e-14 - 0.20e-14 0.1232 No  

5 Hump 2 1.84e-17 -1.2008 -0.59e-16 - 0.14e-16 0.2347 No 

6 Ackley 15 0.3085 8.0464 1.8650 - 3.1003 5.12e-11 Yes 

30 0.5630 16.4619 8.1408 - 10.3946 1.58x10-23 Yes 

45 0.7037 18.4127 11.5480 - 14.3651 6.68x10-26 Yes 

60 0.8244 15.7546 11.3379 - 14.6383 1.27x10-22 Yes 

7 Dixon & Price 15 0.1427 12.1647 1.4504 - 2.0217 1.33x10-17 Yes 

30 212.3715 7.7402 1218.7 - 2068.9 1.67x10-10 Yes 

45 6203.7 18.5986 102960 -127800 4.05x10-26 Yes 

60 41751 6.8467 202280 - 369430 5.30x10-9 Yes  

8 Rosenbrock 15 15.2399 -1.3561 -51.1729 - 9.8392 0.1803 No 

30 58.7322 10.9876 527.7605 - 762.8912 8.43x10-16 Yes  

45 2393.4 12.7376 25695 - 35277 1.89x10-18 Yes  

60 1373.6 9.7017 105770 - 160760 9.42x10-14 Yes 

 
The performance of the algorithms on the benchmark functions test in terms of convergence speed 

might be observed via graphical approach. The convergence plots comparing all algorithms for 30 dimension 
functions f1-f3, f6-f8 and 2 dimension functions f4 and f5 are depicted in Figure 3. It is noted that SDA had the 
fastest speed but for 30 dimension problems it got trapped into the local optima position. The BFA on the 
other hand, had the slowest speed among other algorithms; hence for 80,000 fitness iterations it was unable to 
reach the global optimum point satisfactorily. On the contrary, using the proposed hybrid schemes, the search 
points settled down to a location nearer to the global optima solution thus giving better fitness accuracy, and 
the convergence speed was relatively slower compared to SDA but much better than BFA.     
 



 14

 
(a)             (b) 
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    (g)      (h)  

 
Fig. 3. Convergence plot for BFA, SDA, HSDBC-S and HSDBC-R tested on benchmark functions, (a) Rastrigin 
function, (b) Sphere function, (c) Griewank function, (d) Goldstein and Price function, (e) Hump function, (f) 

Ackley function, (g) Dixon and Price function and (h) Rosenbrock function. 

 

4. DESIGN OF HYBRID INTELLIGENT CONTROLLER FOR FLEXIBLE ROBOT MANIPULATOR 

This is a comparative test between the proposed hybrid algorithms and original algorithms to solve a real 
world problem in the engineering field.   

4.1. EXPERIMENTAL RIG OF FLEXIBLE ROBOT MANPULATOR 

A schematic representation of the single-link flexible robot manipulator is shown in Figure 4. The physical 
characteristics of the beam such as length, l width, w and thickness, h are defined as 960 mm, 19.008 mm and 
3.2004 mm respectively. The Young modulus, E = 71 x 109, the second moment of inertia Ib = 0.04862 kg m2, 
mass density/volume,   = 2710 kg m-3 and hub inertia Ih = 5.86 x 10-4 kg m2 are further specifications of the 

system. 
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Fig. 4. Schematic representation of single link flexible robot manipulator. 

The single-link flexible robot manipulator arm developed by [59] and [60] is used in this work and its 
schematic diagram is shown in Figure 5. The system consists of a single flexible link made of aluminum beam 
and attached to an electromechanical motor. A U9M4AT type printed circuit board with bi-directional drive 
amplifier is used to rotate the motor shaft in both counterclockwise and clockwise directions. As there are three 
outputs of interest to be gauged from the system, three different sensor units are attached to the body of system. 
An accelerometer is placed at the tip of the beam and used to measure the end-point acceleration while an 
encoder with a resolution of 2,048 pulses/revolution and a tachometer are attached to motor shaft and used to 
measure hub-angle and hub-velocity respectively. Moreover, a personal computer (PC) embedded with 
Pentium Celeron 500 MHz processor is connected with PCL818G interfacing unit to the flexible robot 
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manipulator arm. Matlab/Simulink software installed in the PC is used as a tool for controlling and 
manipulation of the system.  
 

 
Fig.  5. Schematic diagram of single-link flexible robot manipulator rig [59], [60]. 

In general, there are one input and three output responses to be observed. Here, a random signal input 
is applied to the system and represented as electrical motor torque. The measured output responses of the 
system are hub-angle, hub-velocity and end-point acceleration. However, the hub-angle and end-point 
acceleration are the output responses of interest especially when dealing with controller design. In a real world 
application, the capability of the controller in dealing with position tracking problem of hub-angle and 
suppression of vibration at the end-point are mainly of concern. The flexible robot manipulator used in this 
study has three dominant resonance modes within the range [0-100] Hz as shown in Figure 6. Motion-induced 
vibration in the manipulator response appears and is dominated by the three resonance frequencies noted in 
Figure 6, while the system is in operation without vibration control. 

 
Fig.  6. Power spectral density for flexible robot manipulator. 

 

4.2. PD-LIKE FUZZY-LOGIC CONTROL 

In this work, PD-like FLC is implemented to track the hub angle position for a desired bang-bang input. The 
block diagram of PD-like FLC for a flexible system is depicted in Figure 7 [50]. Hub angle response is fed 
back and compared with the desired input. The difference between the actual and desired hub angle response is 
multiplied by a constant k1 representing proportional value and scaling factor for fuzzy input 1. The hub 
velocity representing derivative of the hub angle is taken directly from the system and multiplied by a constant 
k2 which is a derivative value or scaling factor for fuzzy input 2. Both of the outputs of the k1 and k2 are then 
injected into the input of the FLC. The output of the controller is then multiplied by another constant k3 or 
scaling factor for fuzzy output before it passes as an input torque into the flexible robot manipulator. 
Considering processing time and the performance of the FLC, five triangular type membership functions or 
fuzzy sets are defined for both fuzzy inputs and fuzzy output giving 25 fuzzy rules in total. The membership 
functions for both inputs and output are uniformly distributed on the universe of discourse within a range of [-
1, 1] as shown in Figure 8. The Mamdani-type with centre of area defuzzification method is used due to its 
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intuitiveness, widespread acceptance and suitability in dealing with human reasoning [31]. Besides, min type 
operator for implication and max type operator for aggregation are used in the scheme. Another important 
feature of fuzzy logic scheme is linguistic rule that comprises IF-THEN statements to establish relationship 
between antecedent and consequent. The general form of fuzzy logic linguistic rule for FLC is defined as: 
 

    IF   is A AND   is B THEN   is C                 (1) 
 

where A, B and C are linguistic values defined by fuzzy sets {negative big, negative small, zero, positive small, 
positive big}, represented by {NB, NS, Z, PS, PB}.The  ,   and   are the hub angle error, hub velocity and 
input torque to the flexible system respectively. The ‘IF   is A AND   is B’ is known as antecedent while ‘  
is C’ is known as consequent.   
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Fig. 7. Block diagram of the PD-like fuzzy logic control. 

 

  
   (a)                         (b)  

 
  (c)  

Fig. 8. Membership functions, (a) Hub angle, (b) hub velocity and (c) fuzzy output (torque). 
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4.3. HSDBC-BASED PD-LIKE FUZZY-LOGIC CONTROL 

The application of an optimisation algorithm as a tuning tool makes the design of PD-like FLC more efficient. 
Unlike conventional tuning methods, here the parameters k1, k2 and k3, the generation of rule base and the 
nonlinear mapping between the inputs and output are automatically determined and optimised by the 
optimisation algorithms.  

In the controller optimisation, a total of 103 variables are defined. The first 75 variables represent the 
fuzzy sets for hub angle error, hub velocity and fuzzy output. The next 25 variables represent the fuzzy weight 
for each fuzzy rule. The last three variables in the first part are for scaling factors k1, k2 and k3. In order to 
optimise the rule base, the linguistic variables of fuzzy set {NB NS Z PS PB} need to be transformed into 
numerical values as {1 2 3 4 5} repectively. Therefore, a range of [1, 5] is defined for the first 75 variables 
while a range [0, 1] is defined for the fuzzy weight. All the fractional numbers representing the fuzzy set are 
rounded to the nearest integer number. The ‘0’ value for the fuzzy weight means that the rule is ignored while 
the fuzzy weight with value ‘1’ means that the rule is fully used in generating the fuzzy output. This is a 
method of weighting a rule relative to other rules. The error function for tracking the hub angle used here is a 
mean of absolute error which is formulated as: 

  



N

i
desact ii

N
J

1

)()(
1   

where N is the number of data points, )()( ii desact    is the error between the actual and desired signal. The 

initial parameter values for BFA, SDA, HSDBC-R and HSDBC-S used to optimise the controller for tracking 
hub angle position are shown in Table X. The parameter values for the algorithms were heuristically tuned for 
optimal performance. 
 

Table X: Initial parameter values for BFA, SDA, HSDBC-R and HSDBC-S. 
 BFA SDA HSDBC-R HSDBC-S 

Parameter 

S=50 
Ns=4 
Nc=50 
Nre=4 
Ned=5 
C=0.5 

m=50 
=/4 
r=0.95 
 

S=50 
Ns=4 
=/4 
r=0.95 
C=0.008 

S=50 
Ns=3 
tu=/4 
rtu=0.95 
sw=/4 
rsw=0.65 

 
Table XI and Figure 9 show the gain value and fuzzy surface of the optimised PD-like FLC 

respectively. It is noted that the output torque obtained with the proposed schemes was higher compared to the 
original algorithms. This may affect the rise time and percentage overshoot of the hub angle response. The 
fuzzy rule of the optimised PD-like FLC is shown in Table XII. Notice that for the SDA-based rules, there is 
redundancy between rules 3 and 8 with the same weight. Rules 14, 18 and 19 also resulted the same linguistic 
scheme, but they had different weights. In this case, the rule with the highest weight (rule 18) is considered 
while all other rules with lower weights (rules 14 and 19) are ignored. Therefore, there are only 22 effective 
rules for the SDA-based FLC. For BFA-based FLC, rules 15 and 24 shared the same linguistic scheme but with 
different weights hence the effective number of rules were 24. For HSDBC-R-based FLC, rules 3 and 10, rules 
14 and 24, and rules 17 and 25 shared the same linguistic scheme with different weights, thus giving 22 
effective rules in total. The HSDBC-S-based FLC had 21 effective rules and it had the most redundancy with 
different weights compared to others. As shown in Table XII(d), rules 1 and 20, rules 3 and 12, rules 11 and 15, 
rules 24 and 25 shared the same linguistic schemes but with different weights. 
 

Table XI: Optimised gain values for PD-like FLC inputs and output. 
 BFA SDA HSDBC-R HSDBC-S 

Parameter 
k1=0.0164 
k2=0.0023 
k3=0.3247 

k1=0.0297 
k2=0.0025 
k3=0.2800 

k1=0.0230 
k2=0.0018 
k3=0.4452 

k1=0.0299 
k2=0.0025 
k3=0.4947 
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           (a)                      (b)  
 

  
           (c)                      (d)  
 
Fig. 9. Fuzzy surface of the PD-like fuzzy-logic control, (a) BFA-based, (b) SDA-based, (c) HSDBC-R-based and (d) 

HSDBC-S-based. 

Table XII: Fuzzy rules for PD-like fuzzy logic control. 
(a) SDA-based     (b) BFA-based 

No. Hub angle Hub velocity Torque Weight  No. Hub angle Hub velocity Torque Weight 
1 PB Z PB 0.4  1 NS Z NS 1 
2 NB NB Z 0.6  2 NS NB NB 0.6 
3 NS PS PS 0.6  3 NB PS Z 0.8 
4 PB NS Z 0.2  4 PS PB NS 0.4 
5 PB PB PB 0.4  5 NB PS PB 0.6 
6 Z PS NS 0.8  6 Z NS PS 0.6 
7 PS NS PB 0.4  7 NS PB Z 0.4 
8 NS PS PS 0.6  8 NB NB Z 0.6 
9 NS NS PS 1  9 NS PB PB 0.6 
10 PB NS PS 0.6  10 PS Z PS 0.6 
11 PS NB NS 0.4  11 NB PB PB 0.2 
12 PB PS NB 0.1  12 NS PS PB 0.8 
13 NB  Z NS 1  13 Z NB PS 0.8 
14 NS NS Z 0.4  14 PS PS PS 0.4 
15 NS NB PS 1  15 Z PS NS 0.2 
16 NS NS NB 0.6  16 NS NS PS 0.8 
17 PS Z PS 0.8  17 NS NS NS 0.6 
18 NS NS Z 0.8  18 PS NB NS 0.8 
19 NS NS Z 0.6  19 PB NS NB 0.6 
20 NB NB PS 0.6  20 PS Z PB 0.4 
21 PS NS Z 1  21 NS Z NB 0.4 
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22 NB NB NS 0.6  22 PS NB Z 0.4 
23 NB NS NS 0.4  23 NS Z PS 0.2 
24 PS PS NB 0.4  24 Z PS NS 0.6 
25 NS PS Z 0.4  25 PB PS PS 0.4 

 
(c) HSDBC-R-based    (d) HSDBC-S-based 

No. Hub angle Hub velocity Torque Weight  No. Hub angle Hub velocity Torque Weight 
1 PB NB Z 0.29  1 NS PS Z 0.42 
2 Z NS PS 0.89  2 NS NS PB 0.78 
3 Z PS NS 0.32  3 PS NB Z 0.34 
4 PS NB NS 0.25  4 Z PS PS 0.25 
5 PS Z PS 0.23  5 NS Z Z 0.41 
6 PS NS Z 0.17  6 Z NS Z 0.56 
7 NB NS NB 0.31  7 PS Z Z 0.88 
8 PS PB PS 0.42  8 NB Z NS 0.44 
9 PS PS NS 0.11  9 PS PB PB 0.40 
10 Z PS NS 0.86  10 NS PS NS 0.59 
11 NS NS Z 0.53  11 PS Z PS 0.25 
12 NB PS PS 0.33  12 PS NB Z 0.92 
13 PS NS PB 0.88  13 NS Z NS 0.89 
14 PS NB Z 0.53  14 PB PS NS 0.009 
15 PB NB NS 0.89  15 PS Z PS 0.36 
16 PB PB Z 0.52  16 NS NB NS 0.24 
17 NS Z NS 0.65  17 NS PB PB 0.43 
18 NS PS PB 0.35  18 PB NB NS 0.24 
19 Z NB NS 0.76  19 Z NS PB 0.74 
20 NS Z Z 0.05  20 NS PS Z 0.37 
21 Z NB PB 0.19  21 PB Z PB 0.40 
22 NB NS Z 0.85  22 NS NS NS 0.71 
23 NB Z NS 0.59  23 Z PB Z 0.04 
24 PS NB Z 0.89  24 Z PS NS 0.91 
25 NS Z NS 0.38  25 Z PS NS 0.93 

 
The results for the optimisation of the PD-like FLC for tracking hub angle position are shown in 

Figure 10.  Figure 10(a) shows that the hybrid algorithms achieved better accuracy compared to the original 
algorithms. Notice that, the SDA and HSDBC-S had the fastest speed at the very early iteration. However, 
SDA got trapped at local optimum with fitness accuracy of 2.049 when it reached iteration 50. The BFA 
showed the worst performance among all other algorithms in terms of convergence speed. The graph shows 
that, at the early iterations, it was hardly converging to a better fitness location. It converged to fitness value of 
2.315 and intercepted SDA at iterations 632 and 633 respectively. It achieved the best fitness value of 1.727 at 
iteration 700 and was unable to converge further until the end of the search operation. The HSDBC-R achieved 
the best accuracy of 1.560 followed by HSDBC-S which achieved the second best fitness accuracy of 1.609. 
HSDBC-R showed slower convergence at the early stage of the search, but it successfully intercepted SDA, 
BFA and HSDBC-S at iterations 81, 77 and 145 respectively. For a clearer visual representation, the best 
fitness cost achieved by the BFA, SDA, HSDBCS and HSDBCR is summarised in the bar chart shown in 
Figure 11. 

The optimised hub angle position is shown in Figures 10(b) and 10(c) while its numerical result is 
shown in Table XIII with the best value highlighted in bold font. The result shows that HSDBC-R had the 
shortest rise time followed by BFA, HSDBC-S and SDA. The position optimised by BFA and HSDBC-R 
presented the highest and lowest overshoot respectively. On the contrary, the result optimised by HSDBC-R 
and BFA presented the highest and lowest undershoot respectively. In terms of settling time, HSDBC-S 
performed the best, followed by BFA, HSDBC-R and SDA. For the steady-state error, both hybrid schemes 
resulted in smaller offset from the desired position where HSDBC-R had the smallest error of 0.01 while 
HSDBC-S had the second smallest error with the offset value of 0.04. A comparison of overall performance for 
the time-domain response of the hub-angle position is presented in bar chart form in Figure 12. Overall, for 
optimisation of PD-like FLC for tracking hub-angle position, the result has shown that the proposed hybrid 
algorithms outperformed both the predecessor algorithms. 
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(a) 

 

 
                    (b)                              (c) 
Fig. 10. Results of optimisation of the PD-like fuzzy logic control for tracking hub angle position, (a) Convergence 

plot of best fitness vs iteration, (b) Hub angle position in the time-domain and (c) Zoom-in of the hub angle 
position.  
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Fig. 11. Best fitness cost of the BFA, SDA, HSDBCS and HSDBCR. 

 
Table XIII: Numerical result of the optimised hub angle position. 

 BFA SDA HSDBC-S HSDBC-R 
Settling time, ts 0.4381 0.5396 0.4262 0.5188 
Steady state error, ess 0.0500 0.1300 0.0400 0.0100 
Rise time, tr 0.2195 0.2725 0.2281 0.2074 

Percentage overshoot, os 6.6900 6.3333 5.1111 1.5000 

Percentage undershoot, os 0.6700 1.5555 1.6111 2.6944 
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Fig. 12. Comparison of the time-domain response for hub angle position in bar chart form, (a) settling time, steady-
state error and rise time and (b) percentage overshoot and percentage undershoot. 

 

5. CONCLUSION 

Two types of hybrid schemes synergising SDA and chemotactic strategy of BFA have been proposed in this 
paper. SDA with dynamic step size solves the oscillation problem around global optima for the BFA. Unlike 
the original SDA algorithm, in the proposed schemes, a swim strategy has been introduced to enhance the 
search strategy of SDA. Moreover, the reproduction, elimination and dispersal phases of the BFA have been 
excluded, retaining the simplicity of original SDA algorithm, hence avoiding long computational time for the 
algorithm to complete the whole process. The first type known as HSDBC-S uses spiral approach of swimming 
while the second type named HSDBC-R employs random approach of swimming. Incorporation of the swim 
action into the original SDA has balanced the exploitation and exploration aspects of the algorithm. The 
analytical results of tests based on nonparametric Friedman and Wilcoxon signed rank on eight well known 
benchmark functions have shown that the proposed algorithms statistically outperform the original SDA and 
BFA in terms of fitness accuracy  as well as convergence speed with number of fitness evaluations.  

The application of the algorithms to optimise hybrid conventional-intelligent controller for hub-angle 
position tracking of a flexible robot manipulator has shown that the hybrid schemes achieve better results 
especially on the fitness accuracy. The study has shown that the SDA has the fastest convergence speed at the 
very early iterations but it tends to get trapped at local optima. On the contrary, the BFA has the longest 
computation time and it hardly converges to a better location. Moreover, it is evidently shown that the hybrid 
schemes show better result for position tracking of the flexible manipulator. Overall, the hybrid schemes have 
shown the best performance where they have achieved the best accuracy with relatively faster convergence.  

Future research will expand this algorithm to a multiobjective type for finding pareto front to give 
multiple options rather than a single solution where two or more conflicting objectives will be compromised for 
best performance. Also, adaptive formulation of bacteria step size based on intelligent fuzzy logic approach 
will be further considered to increase the algorithm performance. Moreover, comparison and testing of the 
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proposed algorithms with other state-of-the-art algorithms and benchmark functions will be further explored. In 
this paper, in terms of real world problems, a classical type FLC has been applied for position control of hub 
angle of a flexible manipulator. In future work, this will be extended to include hub angle position as well as 
vibration reduction at the end-point of the flexible manipulator system with payload variation where a more 
dynamic environment will be considered to provide a more challenging platform for testing and comparing 
interval type-2 FLC with classical type FLC using various optimisation algorithms. Finally, an online tuning 
approach through parallel computing architecture such as graphic processing unit for faster computation and a 
real time application for control design will be considered to show the effectiveness of the proposed algorithms 
in optimising the control scheme with hardware implementation.  
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