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Abstract
Diagnostic theories are fundamental to Information Systems practice and are represented 
in trees. One way of creating diagnostic trees is by employing independent experts to 
construct such trees and compare them. However, good measures of similarity to com-
pare diagnostic trees have not been identified. This paper presents an analysis of the suit-
ability of various measures of association to determine the similarity of two diagnostic 
trees using bootstrap simulations. We find that three measures of association, Goodman 
and Kruskal’s Lambda, Cohen’s Kappa, and Goodman and Kruskal’s Gamma (J Am Stat 
Assoc 49(268):732–764, 1954) each behave differently depending on what is inconsistent 
between the two trees thus providing both measures for assessing alignment between two 
trees developed by independent experts as well as identifying the causes of the differences.

Keywords Diagnostic theory · Tree · Threshold building

1 Introduction

Diagnostic theories are theories about the appropriate corrective action to take when 
given a set of observable conditions (Reiter 1987). They are fundamental to Informa-
tion Systems (IS) practise (Webster and Watson 2002; Rooney and Van den Heuvel 
2004; Clauset et al. 2008). For example, when an Information Technology (IT) system 
fails, it can fail for a myriad of reasons. The tree of symptoms and diagnoses associ-
ated with an IT system failure is a diagnostic theory. Similarly, when a new IT product 
is launched, there can be many reasons why users do not adopt it. Again, that tree 
of possible causes is a diagnostic theory. Indeed, many expert systems operate based 
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on diagnostic theories. For instance, Mycin (Shortliffe 2012) and other expert systems 
navigate a decision tree to identify the root cause of a problem. Despite the fact that 
diagnostic theories are core to IS practise, little attention has been paid in IS research 
to diagnostic theories. Perhaps this is because diagnostic theories are not explanatory 
theories like variance or process theories (Webster and Watson 2002), but instead are 
prescriptive theories- they directly inform decision making. Nevertheless, like all the-
ory, diagnostic theories need to be validated.

One way of creating diagnostic theories is to have an expert creating the theory. 
To validate the diagnostic theory, a second expert in the same area creates another 
diagnostic theory, and the two are compared. However, good measures for the cor-
respondence of two diagnostic theories are essentially non-existent. This study aims 
to develop measures useful for comparing two diagnostic theories. Existing measures 
for trees such as edit-distance are not suitable for diagnostic theories because they are 
sample size dependent. An edit-distance of 20 is very bad when comparing two trees 
with 40 nodes each but is not so bad if the two trees have over 1000 nodes. Ratios of 
edit-distance (e.g., 10% of the tree are different) are also not suitable, because a lack of 
correspondence near the root of a diagnostic tree is a more severe issue than a lack of 
correspondence near the base of the tree-an idea a ratio does not capture.

To address our problem, we performed a set of bootstrap simulations to measure 
how various statistics change as a hypothetical diagnostic tree deviates from a “true” 
version. We apply traditional statistical measures in a new way to measure tree simi-
larity. In particular, we transform the tree into a contingency table and employ tradi-
tional contingency table statistics to evaluate similarity. Our contribution is the discov-
ery that three measures of association, Goodman and Kruskal’s Lambda (λ), Cohen’s 
Kappa (ƙ), and Goodman and Kruskal’s Gamma (γ) (Goodman and Kruskal 1954) 
together provide information useful for assessing the similarity of two diagnostic theo-
ries. Each of these three statistics behaves differently depending on what is inconsist-
ent between the two trees thus providing both metrics for assessing alignment between 
two diagnostic theories developed by different experts as well as identifying the causes 
of the differences.

The paper is constructed in the following manner. First, we present the limitations 
of previous work. Then, we attempt to address those problems by providing a pro-
cess for developing good thresholds for the construct validity of diagnostic tree and 
diagnosing their differences. We conclude with a discussion of diagnosing inter-rater 
reliability.

2  Diagnostic theory

A diagnostic theory is represented by a tree. For instance, Hopp et al. (2007) used a 
diagnostic tree for evaluating and improving production line performance. A diagnos-
tic tree consists of a root, which corresponds to the problem domain (Geoffrion 1989). 
The root of the tree is unpacked to represent broad classes of diagnoses. As one trav-
erses down the tree, the classes become narrower until we reach the tree’s base, where 
specific potential solutions are identified. For example, consider Fig. 1 which presents 
a diagnostic tree to identify why users have low Instagram self-efficacy—i.e., what 
is it about Instagram they find most hard to use? In this example, the top-level nodes 
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encompass the different dimensions of Instagram skill. Each top-level node, in turn, 
links to more specific areas a user can experience problems in.

2.1  Comparison of trees

Diagnostic trees are typically built by experts and have certain properties. First, they can 
have hundreds of nodes, where nodes concerning higher-level concepts are mapped to 
nodes with greater precision. The nodes then have a parent–child relationship. Second, 
nodes higher up the tree are more important than those lower in the tree. Nodes lower in 
the tree are sub-nodes of those higher in the tree. This means that any errors or disagree-
ment in the higher levels propagate to lower levels.

One way to validate diagnostic trees is to compare, the similarity of two diagnostic 
trees, created by two independent experts in the same domain. However, appropriate meas-
ures and “good enough” thresholds for demonstrating the similarity of two diagnostic trees 
are unknown. In addition, good measures for identifying problematic nodes in the tree are 
undiscovered. As an example, if two experts disagree on the mapping of two nodes, we 
would want to know whether the experts think that the nodes belong to different parents, or 
whether the experts disagree on the precision of the node in the hierarchy. In effect, meas-
ures akin to the modification indices of variance-based structural equation models need to 
be formulated (Gefen et al. 2000).

The remainder of this section reviews the principal existing methods of measuring tree 
similarity, which are edit-distance and statistics-based. We demonstrate the limitations of 
both methods and identify elements that can provide a foundation for creating a threshold 
for diagnostic trees.

2.1.1  Edit‑distance based techniques

Edit-distance is a poor general comparator for diagnostic trees for several reasons. One 
is that existing algorithms do not take into account that nodes in the tree are not equally 
important (Jiang et al. 1995; Weinberg and Last 2017). To illustrate, consider Fig. 2, where 

Fig. 1  Diagnostic tree example for perceived Instagram skill
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Trees B and C are each inconsistent with Tree A in exactly one way. Tree B swaps nodes 
2 and 5, while Tree C swaps nodes 2 and 3. The typical edit-distance algorithm treats both 
inconsistencies equally. However, Tree B suggests the expert considered node 5 as a parent 
to node 2, while the expert for Tree B considered nodes 2 and 3 to be completely different 
nodes from the expert creating Tree A. The difference represented in Tree C is more seri-
ous than Tree B, as the expert (1) considered the nodes to effectively be two different nodes 
(as opposed to different levels in the same node), and (2) the issue occurred at a relatively 
high level in the tree, suggesting there are further problems lower in the tree that were 
undiscovered. In comparing trees, a technique that identifies such differences is necessary.

Also, edit-distance measures are often sample size sensitive. Clearly if there are two 
trees, each having 50 nodes, where 10 changes are required to transform one into the other, 
this is different from two trees, each having 500 nodes where only 10 changes are required. 
In statistical thinking, we want to compare the statistic to some probability distribution to 
standardize results according to “sample size”. We then calculate confidence intervals or 
p values of significance, where the threshold (typically 0.05 or 0.01) is sample size inde-
pendent. The tree edit-distance literature has no equivalent analogue.

Finally, as a corollary to the above two points, we would like measures of tree similarity 
to systematically identify where the differences are between the trees. Edit-distance algo-
rithms do this for individual nodes- they identify that to transform one tree into another, 
these are the nodes that must be changed and how (Grassi et al. 2015; Green and Ricca 
2015). However, they do not, for example, tell us that most errors occur in the top of the 
tree (very bad) or at the bottom of the tree (not so serious)-or tell us that most of the errors 
are occurring in the children of node 1.

2.1.2  Statistics based techniques

Existing statistics-based methods are not suitable for several reasons. One is that exist-
ing measures and statistics are employed for generally “flat” question structures, and not 
the hierarchical structure of trees. For example, the traditional factor analytic concepts of 
convergent and divergent validity are assessed with correlations (Sartori 2006; Sartori and 
Pasini 2007; Hair et al. 1998). However, in diagnostic trees, nodes have a parent–child rela-
tionship. If the nodes behave correctly, the parent correlates highly with at least one child 
but is unlikely to correlate with all. For example, if a respondent answers that she is dissat-
isfied with food quality, then the respondent might be unhappy about the way the food was 
prepared but be satisfied with portion size. Factor loadings do not take this into account.

Fig. 2  Tree hierarchy limitation example
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The inferential statistics tradition in several academic disciplines such as IS is to 
employ thresholds to evaluate whether two things are the same (Boudreau et al. 2001). 
For example, we regularly consider a p value under 0.05 to be “good enough”. In cases 
where thresholds are unknown, research is done to identify them. As an example, Hu 
and Bentler (1999) examine the adequacy of the “rules of thumb” of conventional cut-
off criteria and propose new alternatives for various fit indexes in structural equation 
models. However, such techniques have not been applied to trees.

In this study, we apply traditional statistical measures in a new way to measure tree 
similarity. Essentially, we map the tree into a contingency table and employ traditional 
contingency table statistics to evaluate similarity. The three measures used are Good-
man and Lambda (λ), Cohen’s Kappa (ƙ), and Goodman and Kruskal’s Gamma (γ) 
(Goodman and Kruskal 1954). Goodman and Kruskal (1954, p. 749) interpret Lambda 
(λ) as “how much more probable it is to get like than unlike orders in the two classi-
fications, when two individuals are chosen at random from the population.” We chose 
Lambda (λ) because it has a meaning akin to r in a regression (Anderson and Gerbing 
1988), i.e., Lambda (λ) is the measure of the strength of association in a contingency 
table (Everitt 1992; Goodman and Kruskal 1963). We chose Kappa (ƙ) because it is 
the observed proportion of agreement between the assigners after chance agreement is 
removed from consideration (Cohen 1968). Kappa (ƙ) is widely used as a measure of 
association for contingency tables (Hambleton and Zaal 2013; Rudick et al. 2013; Sen-
gupta and Te’eni, D. 1993; You et al. 2012). In addition, Landis and Koch (1977) pro-
posed the English-language meanings of Kappa (ƙ) thresholds featured in Table 1. We 
chose Gamma (γ) because it is explicitly designed for data with ordinal values (Higham 
and Higham 2019; Nelson 1984), and hierarchies are ordered data structures. Goodman 
and Kruskal (1954) interpret Gamma (γ) as how much more probable it is to get like 
than unlike orders in the two classifications, when two individuals are chosen at random 
from the population (Davis 1967; Göktaş and İşçi 2011; Goodman and Kruskal 1954). 
The value of the Gamma (γ) coefficient ranges from − 1 to + 1 where the latter value 
indicates perfect agreement between the two classifications (Baker 1974).

3  Foundation for threshold building

To build suitable thresholds for comparing and assessing diagnostic trees, we first gen-
erate a hypothetical “perfect” tree. We then make a copy of the tree and systematically 
change the tree and measure the statistic. We make a second change on the tree and 
measure the statistic again, repeating, the process many times to get a good appreciation 

Table 1  Kappa (ƙ) interpretation Kappa (ƙ) statistic Strength of agreement

< 0.00 Poor
0.00–0.20 Slight
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.80 Substantial
0.81–1.00 Almost perfect
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for how statistics vary as two trees diverge. We then do the same with other “perfect” 
trees of various sizes.

There is one constraint on modifications- each parent cannot have just one child node- 
with only one child node, there is no “branching”. In the below, we formally define terms 
employed in the remainder of the paper.

Level is the distance of a node from the root. A node is on the n + 1 level of its parent 
node. As an example, a node located on the 3rd level is three levels below the root node 
and its parent is on the 2nd level. Levels closer to the root are considered higher levels 
and levels further from the root are considered lower levels.
Root is the node with no parent. The root of the tree is on level 0.
Degree given two nodes a and b of level m and n such that a is the ancestor of b or b is 
the ancestor of a. The degree of the pair d(a,b) = |m − n|.
Descendant is the nth degree child of an ancestor node. As an example, 3rd degree 
descendant of a node is located three levels below its ancestor node. A first-degree 
descendant of a node is also called a child node.
Top-level are first-degree descendants of the root. The top level of the tree has a level of 1.
Ancestor an ancestor is the nth degree parent of a descendant node where n > 0. As an 
example, the ancestor of 4th degree is located four levels above its descendant node. A 
first-degree ancestor of a node is also called a parent node.
Relative Given two nodes, a and b, either a and b share an ancestor which is not the root, 
or a is an ancestor of b, or b is an ancestor of a.
Non-relative is any node whose only ancestor to another node is the root.
Modification given two trees, one of the differences between the two trees.
Movement Given a tree T with nodes labelled from 1 to n. A movement M(a,b) where a 
and b are nodes in T such that 0 ≤ a ≤ n, 0 ≤ b ≤ n, a <> b and b has descendants and a is 
not a first-degree descendant of b, is defined as: T′ such that a is the child of b, i.e., a is a 
first-degree descendant of b. There are three types of movements:

• Type 1 movement is a movement such that a in T is a childless node.
• Type 2 movement is a movement such that in T, a is a parent node. In T’, all descend-

ants of a in T become descendants of a’s parent.
• Type 3 movement with child(ren) is a movement such that in T, a is a parent node. In 

T′ all descendants of a in T have the same parents.

Direction of movement given two nodes a and b in tree T, a can move in three possible 
directions to become a child of b in T′, (1) within relatives (up or down), (2) within its 
level (left or right), or (3) both within relatives and levels. Movements can occur with 
any kind of node (with or without descendant).

• Hierarchy movement is a direction movement M(a,b) where a and b are nodes in 
T and a is a relative of b. In T′ a becomes a first-degree descendant of b. If b is 
descendant of a in T, then a hierarchy movement type 3 is not possible, because 
effectively, nothing happens to b. A hierarchy movement is effectively a movement 
up or down the tree. We care about hierarchy movements, because these suggest a 
certain type of error. In a diagnostic tree, the top-level nodes are unpacked and their 
descendants are mapped. This type of error indicates that experts disagree on the 
mapping of their direct relative nodes. As an example, consider Fig. 3 which pre-
sents two trees from experts 1 and 2. The experts disagree on the parent of node 6 
as expert 1 has mapped node 6 to node 2, while expert 2 has mapped node 6 to node 



Statistical measurement of trees’ similarity  

1 3

5. In addition, expert 2 sees node 6 on a lower level than expert 1, as expert 1 has 
mapped node 6 to node 2 which is on a higher level. In this example, as node 6 (a) 
moved to become a child of node 5 (b), and does not have any descendants, we call 
this a type 1 hierarchy movement.

• Level movement is a direction movement M(a,b) a is in the same level as a child 
of b, is defined as: T’ such that a is the child of b. We care about level movements, 
because these suggest that while experts agree on the level of the node, they dis-
agree on the “family” of nodes the question relates to. As an example, consider 
Fig. 4a where in Tree 1, node 6 is on the same level as nodes 7, 8, and 9. Figure 4b 
presents level movement type 1 for node 6 (a) as it moved from node 2 to node 3 
(b). The level of node 6 has not changed, however, experts disagree on the direct 
parent node. This indicates that the experts are confused between nodes 2 and 3.

• Diagonal movement is a direction movement M(a,b) that is both a hierarchy and 
level movement. Diagonal movements suggest two experts thought of a node in very 
different ways, as they disagree on both the level of the mapping and their direct 
relative nodes.

Fig. 3  Example of type 1 hierarchy movement

Fig. 4  Example of level movement type 1



 S. Sabbaghan et al.

1 3

• Swap a combination of two or more movements, which we treat as one. A swap is 
S(a,b) in T, where in T’, b becomes the child of a’s parent and takes a’s children 
as descendants (if any), while a becomes the child of b’s parent and takes b’s 
children as descendants (if any). We consider swap distinctive from movements 
because this reflects a single cognitive difference between two experts rather than 
two or more cognitive differences. Similar to direction movements, there are 
three types of swaps, which are hierarchy, level, and diagonal.

• Hierarchy swap is where a is a relative of b in T. For example, consider Fig. 5, 
which presents a hierarchy swap between nodes 11 and 2. In Fig. 5b, node 11 is 
closer to the root (node 1), hence it becomes the ancestor of node 2. This shows 
that the experts disagree on the mapping of the direct relative nodes of nodes 2 
and 11.

• Level swap is a swap where a and b in T are located in the same level and if both 
a and b do not have any descendants, they must not share a first-degree ancestor 
(direct parent) as tree T’ will be the same as T. As an example, in Fig. 6, nodes 
2 and 3 are on the same level and have been swapped. This shows that while the 
experts agree on the level of the nodes, they disagree on the mapping of the par-
ent node.

Fig. 5  Example of hierarchy swap

Fig. 6  Example of level swap
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• Diagonal swap is a swap where a and b in T are located on different levels and are 
not relatives. Diagonal swaps suggest the two experts are confused with two nodes 
in very different ways, as they disagree on both the level of the mapping and their 
direct relatives.

In addition, we want to perform analyses comparing the result of moving nodes at 
higher levels of the tree versus moving nodes at lower levels of the tree. Changing nodes 
at higher levels of the tree should have a greater impact, because this suggests problems 
with more important nodes. As an example, consider Fig. 7, which presents Trees A, B 
and C. In Trees A and B, experts disagree in the mapping of node 3 and in Trees A and 
C the experts disagree on the mapping of node 14. The disagreement between Trees A 
and B is more serious than the disagreement between Trees A and C.

To simulate these conditions, we perform analyses where we restrict the levels where 
movements and swaps occur. For every perfect tree with levels 0,…,n, we introduce a 
variable x where 2 < x < n. Using the perfect tree as a base, we perform a set of swaps 
and movements between levels 1 and x. We then use the perfect tree as a base again, and 
perform a second set of swaps and movements between levels x and n and we compare 
the difference in scores. To distinguish the two, the swaps and movements performed 
between levels 1 and x are called movements and swaps on the “top” of the tree, and 
those between x and n as on the “bottom” of the tree.

3.1  Insertion and deletion

Finally, in some cases, one expert may not choose to map all pre-determined nodes and 
the two trees could have different numbers of nodes. Hence, we assess the impact of an 
insertion/deletion of a node in a tree. As deletion is the reverse of insertion, we only 
assess the impact of insertions. We consider two types of insertion as there are only two 
ways to insert a node to a tree, (1) insertion in levels where there is an increase in the 
number of branches per node and (2) insertion in a hierarchy where there is an increase 
in the number of levels.

Fig. 7  Example of levels in diagnostic trees
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4  Threshold building and diagnostic process

For the diagnosing process, we systematically identified all the ways a node can move in a 
tree hierarchy which has 1 to n- levels and 1 to m branches per node. We generate 12 (i.e., 
3 × 4) perfect trees to test. Each tree has between three and five (i.e., three possibilities) 
branches per node and three to six levels (i.e., four possibilities) as tabulated in Table 3. We 
did not perform the simulation on trees with more than 200 nodes, because the computa-
tions required to simulate these trees become exponentially complex (Goldreich 2011). Our 
analysis of smaller trees suggests that statistics are similar regardless of the size of the tree. 
In addition, we drop the 3-branch 3-level tree as the number of nodes is too small to run a 
simulation for 100 rounds. Hence, six trees remain for the diagnosing process. These are 
identified as the bold cells in Table 2.

To diagnose each type of disagreement among the experts, each perfect tree is compared 
to a series of 27 possible modifications. Each modification is performed 100 times on each 
perfect tree. The total number of tests is therefore 16,200 (27 × 6 × 100). These modifica-
tions are:

• Nine possible direction movements comprising a combination of a movement type 
(Types 1–3) and direction (level, hierarchy, diagonal).

• Three possible movements where we keep the type constant, and allow random direc-
tions.

• Three possible movements where we keep the direction constant, and allow random 
types.

• Three possible swaps (level, hierarchy, diagonal).
• Eight top and bottom movements, where we restrict one half of a tree. Consider an 

example with tree T which has five levels. We first limit movements and swaps for only 
levels two and three and then for only levels four and five. It should be noted that by 
definition, the scores on the top half of the tree will change more than on the bottom 
half of the tree, given there are fewer nodes on the top half, and thus any change will 
have a greater effect. However, we wanted to know what the magnitude of the differ-
ence would be.

• One random movement/swap where a random change (either one of the 12 movements 
or 3 swaps) is performed. Each change is equally likely. The aim is to compare the 
results and evaluate how the statistics change and identify a suitable threshold.

Finally, for the insertion process, we assess our trees by first creating a perfect tree, T. 
Next, we make a copy of the tree, as T’. Then for each type of insertion, we randomly add 
one node to T and map it to a node. Contingency table analyses are unable to be performed 
to compare two different sample sizes. To address this, for every missing node in tree T, a 
node is represented in T’ in the same location with a number not found in T’. We repeat this 

Table 2  Number of nodes in 
each tree

Branches Levels

3 4 5 6

3 13 40 121 364
4 21 85 339 1363
5 30 156 781 3906
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20 times. As an example, consider a 3-level 3-branch tree as illustrated in Fig. 8, node 14 
is in tree T and mapped to node 1. Node 14 does not exist in tree T’, hence, for tree T’, we 
insert the dummy node 100 to represent node 14 of tree T. As this increases the number of 
branches per node and not the number of levels, we consider this a level insertion.

4.1  Data collection

Each variation of the tree is represented in a contingency table as follows. First, every node 
is given a number from 1 to n. 1 is the root node. The tree is then translated into a two-
column table. The first column denotes the parent node, and the second denotes the child. 
Table 3 presents a 3-level 3-branch tree transformed into two columns. As seen, in Table 3, 
there are 12 child nodes and each parent node has 3 children. Each row represents a child 
and a parent. As an example, row 11 shows that child node 11 belongs to parent node 4.

4.2  Simulation analysis

The perfect tree is placed alongside the modified tree and a statistical comparison between 
the two is performed. Each pair of trees is compared on three statistics, Goodman and 

Fig. 8  Level insertion for a 3-level 3-branch tree

Table 3  Transformed tree

Row Child Parent
1 1 0

     2      2 1

3 3 1

4 4 1

 5  5 2

6 6 2

7 7 2

8 8 3

9 9 3

10 10 3

11 11 4

12 12 4

13 13 4
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Kruskal’s Lambda (λ), Cohen’s Kappa (ƙ), and Goodman and Kruskal’s Gamma (γ) 
(Goodman and Kruskal 1954). Recall that we analyse six possible perfect trees varying 
in number of levels and branches. Next, for the first 100 runs of each type of movement or 
swap, the six trees are transferred into a table, each child and parent is combined into an 
individual column and the means and standard deviations of the three statistics are calcu-
lated. In addition, the mean change (i.e., how much each statistic changes from one run to 
the next) and standard deviations of the mean change are calculated for the first 100 runs 
of each movement and swap (a total of 98 mean changes). Lambda (λ), Kappa (ƙ), and 
Gamma (γ) of the 100 rounds for six trees are recorded in each column and a paired sample 
t-test for each pair of the measures is calculated. Finally, for each type of insertion process, 
we calculate Lambda (λ), Kappa (ƙ), and Gamma (γ) of the 20 rounds.

5  Results

To build suitable thresholds for comparing and assessing diagnostic trees, we compare each 
of our hypothetical “perfect” trees to the modified tree and measured the statistic, repeating 
this process many times. Our results demonstrate Lambda (λ), Kappa (ƙ), and Gamma (γ) 
change at different rates depending on the kind of movement and swap performed. Table 4 
presents a summary of these changes. There are several insights for each movement or 
swap, which we discuss below.

5.1  Movements

There are several insights for each direction or type of movement. Table  5 presents the 
means, standard deviations, and Cohen’s distance for the first 100 runs of each movement 
for the six trees. Cohen’s distance provides a measure of the strength of the difference in 
a t-test (Cohen 1988). In addition, Table 6 presents the mean changes in the measures for 
each directional movement.

Results indicate that for all hierarchy movement types, Gamma (γ) decreases more dra-
matically than the other two measures. In addition, the mean for Gamma (γ) is lower than 
the other two measures throughout all types of hierarchy movements. As an example, in a 
4-level 3-branch diagnostic tree as illustrated in Fig. 9a, Gamma (γ) in run 20 drops from 
0.978 to 0.683 in hierarchy movements while Kappa (ƙ) drops from 0.966 to 0.839. Paired 
sample t-tests between Gamma (γ) and Kappa (ƙ) (the next lowest measure) are all statisti-
cally significant.

In level movements, results indicate the mean for Kappa (ƙ) for the six trees is lower 
than the other two measures. In addition, Kappa (ƙ) decreases at the fastest rate of all 
three measures. All changes are statistically significant when Kappa (ƙ) is compared to 
Gamma (γ), the next lowest measure. As an example, in a 4-level 3-branch diagnostic tree 
as presented in Fig. 9b, the mean change for Kappa (ƙ) is 0.0036, while Gamma (γ) is only 
0.0016 in level movement. In addition, in level movements, for a 4-level 3-branch diag-
nostic tree, Kappa (ƙ) in run 20, drops from 0.991 to 0.635, while Gamma (γ) drops from 
0.999 to 0.761.

In diagonal movements, Lambda (λ) decreases at a faster rate than for any other move-
ment as shown in Table 6. As an example, in a 4-level 3-branch diagnostic tree, Lambda 
(λ) in diagonal movements, in run 20, drops from 0.982 to 0.77, while in level movement 
it drops from 0.9871 to 0.8423 and in hierarchy movements it drops from 0.991 to 0.866. 
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We ran a paired sample t-test on six different diagnostic trees to compare the raw scores of 
Lambda (λ) with the next lowest measure (Kappa (ƙ) or Gamma (γ)) for different diagnos-
tic trees. The results for each pair was significant which indicates that the measures change 
at different rates.

Finally, as shown in Table 5 in type movements, Lambda (λ) is more sensitive to type 2 
movements; the mean for Lambda (λ) is lower compared to other movement types (1 and 
3). Type 2 movements consist of two steps, (1) a move of the parent node and, (2) a move 
of the child nodes to the former parent’s parent node. These two steps have a bigger impact 
on Lambda (λ) than other measures, as more than one node is impacted.

5.2  Swaps

Our insights, which are shown in Tables 7 and 8 concerning swaps are as follows:

• Lambda (λ) does not change in swaps, as both the mean and mean change are zero.
• For hierarchy swaps, the mean of Gamma (γ) is lower than Kappa (ƙ), and mean 

changes for Gamma (γ) are higher than the mean difference for Kappa (ƙ), which indi-
cates that Gamma (γ) drops faster than Kappa (ƙ). In the example shown in Fig. 10a, 
in a 4-level 3-branch tree, Gamma (γ) in run 20, for hierarchy swap drops from 0.9092 
to 0.231, while Kappa (ƙ) drops from 0.974 to 0.520. The difference between Kappa 
(ƙ) and Gamma (γ) is statistically significant. This is consistent with Kappa (ƙ) and 
Gamma’s (γ) behaviour for hierarchy movements.

• In level swaps, Kappa (ƙ) tends to decrease faster than Gamma (γ) as the mean change of 
Kappa (ƙ) is higher than Gamma (γ). As an example, as shown in Fig. 10b, in a 4-level 
3-branch tree, Kappa (ƙ) drops from 0.949 to 0.72 while Gamma (γ) drops from 0.992 

Table 6  Mean changes in 
different directional movements

Movement/measure Mean change 
for Lambda 
(λ)

Mean change 
for Kappa (ƙ)

Mean change 
for Gamma 
(γ)

Hierarchy movement 0.000647 0.00088 0.00138
Level movement 0.000660 0.000697 0.000067
Diagonal movement 0.001688 0.001667 0.00163

Fig. 9  The difference between Kappa (ƙ) and Gamma (γ) in level and hierarchy movements for a 4-level 
3-branch tree
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to 0.889 in level swaps. The difference between Kappa (ƙ) and Gamma (γ) is statistically 
significant. This is consistent with Kappa (ƙ) and Gamma’s (γ) behaviour for level move-
ments.

5.3  Top and bottom movements and swaps

Given the sample size in a top movement/swap is always smaller than in the equivalent bottom 
movement/swap, our results unsurprisingly indicated that the measures decrease at a faster 
rate in top movements and swaps than bottom movements and swaps. As an example, Table 9 
demonstrates the mean changes and standard deviations of the top, bottom, and general hier-
archy and level movements and swaps for a 4-level 3-branch diagnostic tree. As presented 
in Table 9, Gamma (γ) decreases the fastest in top hierarchy movements and swaps, as the 
mean change is higher. In contrast, Kappa (ƙ) decreases the fastest in top-level movements and 
swaps.

5.4  Insertion process in diagnostic trees

Depending on the type of insertion, Lambda (λ), Kappa (ƙ), and Gamma (γ) change dif-
ferently. Consider Table 10 which presents the results of level and hierarchy insertion for a 
3-level tree with 3-5 branches. In total, 20 nodes were added to tree T and T’. In insertion 
to levels, Kappa (ƙ) is lower than Gamma (γ), while in insertion to hierarchy, Gamma (γ) is 
lower than Kappa (ƙ). Lambda (λ) drops faster in insertion to hierarchy than to level. The dif-
ference between Kappa (ƙ) and Gamma (γ) is statistically significant. This is consistent with 
Kappa (ƙ) and Gamma’s (γ) behaviour for hierarchy and level movements and swaps. In all 
three cases, Gamma (γ) is lower than Kappa (ƙ) in hierarchy changes, and Kappa (ƙ) is lower 
than Gamma (γ) in level changes.

Fig. 10  The difference between Kappa (ƙ) and Gamma (γ) in level and hierarchy swaps for a 4-level 
3-branch tree
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6  Threshold properties for empirical use

Many academic disciplines employ threshold values for “satisfactory” levels of inter-rater 
reliability. For example, the typical threshold for both Cronbach’s alpha and Cohen’s Kappa 
(ƙ) is 0.7(Nunnally 1978; Watkins and Pacheco 2000). We believe suitable thresholds for 
comparing two diagnostic trees are when Lambda (λ) > 0.7, Kappa (ƙ) > 0.4 and Gamma 
(γ) > 0.3. These thresholds are established for the following reasons:

• It is important to consider all three measures, because each measure signals different 
kinds of issues. Changes in Lambda (λ) signify movements are occurring, changes in 
Gamma (γ) suggest hierarchical inconsistencies, while changes in Kappa (ƙ) suggest 
level inconsistencies.

• The three thresholds combined suggest that regardless of sample size, two trees that 
score above threshold differ in no more than 30% of their nodes. This has been assessed 
by testing the thresholds in random movements and swaps.

The question remains as to what happens and how efficient the measures are if, (1) only 
two of the thresholds were used in the comparison of all three thresholds and (2) small 
changes are made to the thresholds. Table 11 presents a comparison summary where only 

Table 8  Mean and standard deviations for the first 100 runs of each swap for the six trees

Type of change Mean difference and (SD) 
for Lambda (λ)

Mean difference and (SD) 
for Kappa (ƙ)

Mean difference and 
(SD) for Gamma (γ)

Hierarchy swap 0 (0) 0.003 (0.023) 0.007 (0.035)
Level swap 0 (0) 0.004 (0.029) 0.002 (0.013)
Diagonal swap 0 (0) 0.014 (0.16) 0.015 (0.08)

Table 9  Mean difference and standard deviations for top, and bottom, and general hierarchy and level swaps 
and movement for a 4-level 3-branch diagnostic tree in 100 runs

Type of hierarchy swap/movement Mean difference and 
(SD) for Lambda (λ)

Mean difference and 
(SD) for Kappa (ƙ)

Mean difference and 
(SD) for Gamma (γ)

Top hierarchy swap – 0.0072 (0.024) 0.0074 (0.043)
Bottom hierarchy swap – 0.0050 (0.019) 0.0023 (0.02)
Hierarchy swap – 0.0090 (0.012) 0.0072 (0.03)
Top hierarchy movement 0.0030 (0.005) 0.0050 (0.12) 0.0083 (0.016)
Bottom hierarchy movement 0.0020 (0.004) 0.00419 (0.03) 0.0001 (0.002)
Hierarchy movement 0.0040 (0.004) 0.0050 (0.09) 0.0080 (0.013)
Top level swap – 0.0050 (0.019) 0.0020 (0.019)
Bottom level swap – 0.0005 (0.0002) 0.0002 (0.00025)
Level swap – 0.006 (0.025) 0.0030 (0.012)
Top level movement 0.0042 (0.005) 0.0066 (0.0087) 0.0030 (0.004)
Bottom level movement 0.0034 (0.004) 0.003 (0.004) 0.0012 (0.005)
Level movement 0.0053 (0.006) 0.006 (0.009) 0.0040 (0.012)
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two of the three thresholds are used. If only two thresholds are applied, it is possible for 
two trees to meet the thresholds when they have substantial differences from each other. 
For example, if only λ > 0.7 and ƙ > 0.4, then it is possible for our 4-level trees to differ by 
up to 60% of nodes.

Table 12 presents what other thresholds mean when comparing two trees. As an exam-
ple, consider a 0.1 change of Lambda (λ) from 0.7 to either Lambda (λ) > 0.6 or Lambda 
(λ) > 0.8 while holding Kappa (ƙ) > 0.4 and Gamma (γ) > 0.3. We count the number of 
modifications for each tree and calculate the percentages. Table 12 presents the results of 
the impact of such 0.1 sized changes with each threshold and the standard deviation of the 
percentages demonstrates the accuracy of the thresholds for identifying the estimates.

Results indicated that Kappa (ƙ) and Gamma (γ) are especially sensitive to changes to 
their threshold values. As an example, when only Gamma (γ) drops from 0.3 to 0.2, the 
standard deviation for the percentage of modifications is 13.82 while an increase from 0.3 
to 0.4, the standard deviation is 1.21. However, when lambda (λ) drops from 0.7 to 0.6, the 
standard deviation of the percentage of modifications is 5.83 and with an increase from 
0.7 to 0.8 the standard deviation is 5.14. There are several reasons. Firstly, the thresholds 
are tested in randomised movements and swaps, as Lambda (λ) does not change in swaps, 
hence small changes to Lambda (λ) would be less dramatic. Secondly, in random move-
ments either or both levels and the hierarchy of nodes are affected, which makes each 
measure more sensitive to small changes, as each measure not only changes with both 
movements and swaps but changes more dramatically in swaps. Hence, Kappa (ƙ) and 
Gamma (γ) must be simultaneously adjusted to find suitable thresholds.

In addition, different combinations of measures can identify different levels of modi-
fication between two trees. Table 13 presents four thresholds for when the percentage 
of modifications are at 15, 20, 25, and 30% between two trees. As an example, a thresh-
old of λ > 0.75, ƙ > 0.5, and γ > 0.4 can identify an estimate of 25% of modifications 
between two diagnostic trees, while a threshold of λ > 0.85, ƙ > 0.7, γ > 0.5 is suitable 

Table 12  The impact of thresholds with small changes 3-branch trees of 3–6 levels

Thresholds Number of levels 3 Levels 4 Levels 5 Levels 6 Levels SD
Number of nodes in tree 13 40 121 364

λ > 0.7, ƙ > 0.4, γ > 0.3 Modifications 3 12 35 104
Percentage 23.07 30 28.92 28.5 2.6

λ > 0.6, ƙ > 0.4, γ > 0.3 Modifications 6 17 50 111
Percentage 46.15 42.5 41.32 30.49 5.83

λ > 0.8, ƙ > 0.4, γ > 0.3 Modifications 3 15 36 104
Percentage 23.07 37.5 29.75 28.57 5.14

λ > 0.7, ƙ > 0.3, γ > 0.3 Modifications 3 23 51 115
Percentage 23.07 57.5 42.14 31.59 12.84

λ > 0.7, ƙ > 0.5, γ > 0.3 Modifications 3 13 31 102
Percentage 23.076 32.5 25.61 28.02 3.47

λ > 0.7, ƙ > 0.4, γ > 0.2 Modifications 3 24 49 112
Percentage 23.07 60 40.49 30.76 13.82

λ > 0.7, ƙ > 0.4, γ > 0.4 Modifications 3 8 27 83
Percentage 23.07 20 22.31 22.8 1.21
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Table 13  Thresholds according to different amounts of modifications for 3-branch trees of 3–6 levels

Thresholds Number of levels 3 Levels 4 Levels 5 Levels 6 Levels SD
Number of nodes in tree 13 40 121 364

λ > 0.85, ƙ > 0.7, γ > 0.5 Modifications 2 5 22 53
15% Percentages 15.38 12.5 18.1 14.5 2.03
λ > 0.8, ƙ > 0.65, γ > 0.45 Modifications 2 8 25 70
20% Percentages 15.38 20 20.6 19.2 2.04
λ > 0.75, ƙ > 0.5, γ > 0.4 Modifications 3 9 27 87
25% Percentage 23.07 22.5 22.3 23.9 0.61
λ > 0.7, ƙ > 0.4, γ > 0.3 Modifications 3 12 35 104
30% Percentage 23.07 30 28.92 28.5 2.6
λ > 0.65, ƙ > 0.4, γ > 0.25 Modifications 4 15 47 121
35% Percentage 30.76 37.5 38.84 33.241 3.23
λ > 0.65, ƙ > 0.35, γ > 0.25 Modifications 6 17 53 133
40% Percentage 46.15 42.5 43.8 36.53 3.54

Table 14  Trees and transformed trees of the node “Other Social Networks”
Nu

m

expert

1

expert

2

1 10 10

2 14 14

3 14 14

4 11 11

5 14 14

6 8 7

7 0 0

8 7 6

9 10 10

10 7 7

11 7 7

12 15 11

13 15 11

14 11 11

15 11 10

16 8 6

17 15 10

18 14 15

19 15 15

20 10 15

(a)Expert1

(b)Expert2
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for identifying an estimate of 15% of modifications of two trees. In addition, Table 13 
presents less strict thresholds such as a λ > 0.65, ƙ > 0.35, and γ > 0.25 which can iden-
tify an estimate of 40% of modifications between two diagnostic trees.

6.1  An example of assessing the similarity of diagnostic trees

As an example, consider a top-level node “Other social networks” from a perceived Ins-
tagram skill diagnostic tree presented in Fig. 1. Table 14 presents the two trees created 
by the experts (expert 1 and 2) and its transformation to tables and Table 15 presents the 
initial results of the measures. We have set the thresholds at 30% which suggests there is 
no more than 30% modification across the two trees. The actual scores for the measures 
are 0.531 for Lambda (λ), 0.474 for Kappa (ƙ), and 0.673 for Gamma (γ). The measures 
provide several insights. Firstly, the trees are not similar enough, and the problematic 
nodes will need to be edited accordingly. Secondly, Kappa (ƙ) being the lowest measure 
suggests the principal problem is the number of disagreements of mapping of nodes of 
the same level. Comparing across trees, we can see that the experts disagree on the par-
ent nodes of nodes 12, 13, 14, 15, 17, 18, and 20 which are all located on the same level. 
Assume we correct this problem so that experts agree on the mapping of those nodes, 
the statistics become 0.85 for Lambda (λ), 0.76 for Kappa (ƙ), and 0.76 for Gamma (γ) 
which indicates a strong inter-rater agreement. 

At present, the only alternative to employing our measures is the use of edit-distance 
algorithms. As previously mentioned, these algorithms are neither sensitive to sample 
size nor to the various kinds of differences that can occur in two trees.

To illustrate, in our “Other social networks” Instagram efficacy instrument, the edit-
distance of the two trees would have been 12 or 6% (i.e., edit-distance/total number 
of nodes). Observe that while this provides some measure of the non-correspondence 
between the two trees, it doesn’t provide any useful diagnostic information. Further-
more, the reported level of difference- 6% does not appear too severe. In contrast, our 
statistical measures identified a systematic (level) difference across the two trees. If we 
were to correct the errors across nodes 12-18 and 20, the edit- distance jumps to 6 or 
3%.

Contrast this example against another hypothetical one where we had the same num-
ber of nodes, but the problem was with the mapping of the nodes of the same level of 
the trees, as the experts disagree with the mapping of the parent/child nodes.

Edit-distance provides exactly the same statistics, but our measures provide addi-
tional information as each behaves differently based on the types of modifications 
occurred in the trees. Thus, Kappa (ƙ) would decrease faster in changes within the same 
level, such as after 20 modifications Kappa (ƙ) would drop from 0.991 to 0.635. Thus, 
as can be seen, our measures provide substantially more information than edit-distance 
and allow us to identify and target the principal problem first. Fixing the principal prob-
lem allowing us to quickly achieve satisfactory inter-rater agreement.

Table 15  Results of the measures 
for the node “Other Social 
Networks”

Node (λ) (ƙ) (γ)

Social networks 0.531 0.474 0.673
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7  Limitations and conclusion

Our analysis reveals several limitations with using Lambda (λ), Gamma (γ), and Kappa 
(ƙ) as measures of trees. First, the thresholds are inapplicable once the number of 
branches is greater than seven. To demonstrate this limitation, consider different thresh-
olds for 3-level trees with 3-10 branches per node as presented in Table 16. Once there 
are eight or more branches, the measures are less effective for providing a threshold. As 
an example, in a 3-level 9-branch tree, the thresholds misrepresent the number of modi-
fications, such as when the thresholds are set to identify 20% of the modifications, they 
only identify 10%, hence underestimating the number of modifications.

In addition, similar to other studies (van der Ark and van Aert 2015), we found 
Gamma (γ) too unstable to provide a reasonable threshold for small samples sizes such 
as trees with a total number of nodes below 25. However, for trees with a total number 
of nodes above 25, Gamma (γ) appears more stable. The point of trees is to facilitate 
choice between hundreds of options. Thus, for the purposes of assessing trees’ similar-
ity, Gamma (γ) remains a reasonable measure.

Furthermore, due to the exponentially complex computations required, we were una-
ble to run simulations of trees with a total number of nodes above 200, hence could not 
make any conclusions. However, in our analysis, the measures have been fairly consist-
ent as the growth of trees has been linear as the number of nodes per tree increased. 
Thus, the threshold results will most likely stay the same in trees with a total number of 
nodes above 200.

7.1  Conclusion

This study presents an analysis of the use Lambda (λ), Gamma (γ), and Kappa (ƙ) as meas-
ures of the similarity of diagnostic trees and tools for diagnosing their differences. To build 
suitable thresholds for comparing and assessing diagnostic trees, we first generated a hypo-
thetical “perfect” tree. We then made a copy of the tree and systematically modified the 
tree. We created two general types of modifications, movements and swaps.

We repeated the modifications many times and did this for other “perfect” trees of vari-
ous sizes. We found that:

Table 16  Thresholds for different amounts of modifications for 3-level trees with 3–10 number of branches 
per node

Thresholds Number of branches B4 B5 B6 B7 B8 B9 B10 SD
Number of nodes in tree 21 31 43 57 73 91 111

λ > 0.85, ƙ > 0.7, γ > 0.5 Modifications 1 3 6 7 8 8 9
15% Percentages 4.7 9.6 13.9 12.2 10.95 8.79 8.1 2.77
λ > 0.8, ƙ > 0.65, γ > 0.45 Modifications 2 5 7 11 9 9 11
20% Percentages 9.5 16.1 16.2 19.3 12.32 9.89 9.9 3.6
λ > 0.75, ƙ > 0.5, γ > 0.4 Modifications 3 6 9 12 11 12 14
25% Percentage 14.2 19.3 20.9 21.05 15.06 13.18 12.61 3.41
λ > 0.7, ƙ > 0.4, γ > 0.3 Modifications 6 6 10 16 11 12 14
30% Percentage 28.5 19.3 23.2 28.07 15.06 13.18 12.61 6.26
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• Gamma (γ) is useful for identifying disagreements with the hierarchy of the nodes.
• Kappa (ƙ) is useful for identifying disagreements on the mapping of nodes of the same 

level.
• Lambda (λ) is useful for determining two things. The first is whether the principal 

problem is disagreement among single nodes (type 2 movements), which indicates that 
while experts agree on the grouping of child nodes, they disagree on the parent of the 
child nodes. The second is that a high Lambda (λ) concurrent with a low Kappa (ƙ) or 
Gamma (γ) is useful to detect swaps.

We then proposed thresholds for various levels of inter-rater reliability, as an example, a 
threshold for when Lambda (λ) > 0.7, Kappa (ƙ) > 0.4, and Gamma (γ) > 0.3, suggests there 
is no more than 30% modification between two trees.

This work is particularly useful for assessing the node and content validity of two diag-
nostic trees. As future research, we hope to explore and evaluate diagnostic trees in several 
areas. One, very little research has been done on measuring other types of validities for 
diagnostic trees. For example, we do not yet have clear techniques for assessing the nomo-
logical validity of diagnostic trees. Two, we intend to compare several popular measures 
used to compare trees with our statistical method to further demonstrate the use of this 
study’s method.
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