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Abstract

This Chapter aims at outlining some quantitative models for the analysis of two crucial themes associated to the lifecycle of the water. By one side, we discuss the pollution of water generated by the impact of human activities on biological occurrences; by the other side, we present some arguments on the stock of available water, by including also some details on the causes of its evolution and its possible exhaustion. 
1. INTRODUCTION

In this period of climate change and overconsumption of natural resources, the theme of sustainability is at the center of the debate. In particular, a growing interest is paid on how to manage pollution and to avoid the exhaustion of the irreplenishable natural resources. In this context, a crucial role is played by water.
This contribution deals with the analysis of the evolution of the stock of water, with the precise scope of discussing how the external events are able to modify it. 

We present two types of contexts, leading to two different characterizations of the term ‘stock’: by one side, we consider the issue of the water pollution –so that, ‘stock of water’ has to be intended as ‘clean water’; by the other side, we discuss the theme of depletion of water –so that, ‘stock of water’ means ‘physical amount of water’. 

In the former setting, we provide some notes on the so-called ‘shallow lakes’, which are remarkably sensitive to the pollution created by human activities and agriculture; in the latter one, we introduce and discuss some stochastic models for describing the evolution of the amount of water, to face the relevant theme of avoiding its depletion.

Needless to say, the physical stock of water has to be intended in a specific region, and when we deal with depletion, we have in mind the exhaustion of water in a limited area. Thus, we face the relevant task of green areas becoming arid.

Moreover, the shallow lake setting has also biological ground, being the pollution of a shallow lake generated by the action of the vegetation of the lake. In general, the patterns of the stock of water is remarkably affected by human activities and physical interventions on the environment. In all the considered meanings of stock of water, a not irrelevant role is played by solicitations of mechanical nature. Examples can be found in the fractured soil conditions, which are driven by a growth of the temperature or the level of humidity. Under this perspective, one can experience a sudden increase of the level of pollution of a lake or a collapse of the available stock of water. 

Furthermore, the mediums where water is naturally stored might lead to a quick decrease of its level, mainly in presence of porous medium effect.

Water scarcity and water quality represent two crucial themes for policymakers and scientists.

To deal with such tasks, a policymaker must strike a balance between the economic reasoning -which pushes consumption- and conservation of water reserves. In this context, human actions and natural phenomena represent sources of water pollution and they are able to modify the quantities of available stock of water. This said, the evolution of water stock and water pollution is surrounded by uncertainty, which calls for randomness.

A large strand of literature has focused on the identification of the factors affecting the the level of pollution in the water or its availability. In the context of human activities and climate changes, refer to Loukas et al. (2002); Jones and Post (2004); Tamerius et al. (2006); Wang et al. (2006); Zhang et al. (2010); Yu et al. (2011); Cazcarro et al. (2016); Martin (2019). 

Let us enter some detail on the specific contexts we deal with.

Shallow lakes have been extensively studied in Kiseleva and Wagener (2010) and Wagener (2013) through deterministic dynamical systems theory (see e.g the survey in Perko, 2013). We present a critical view of these studies, by enlarging also the perspective to a stochastic model of Markov chain type for assessing the regimes of the dynamics of pollution in the shallow lakes (see e.g. Anatolyev and Vasnev, 2002; Huisman and Mahieu, 2003 and, more recently, Cerqueti et al., 2013, 2015, 2017a, 2017b).

It is important to point out that the pollution of the water and the case of the shallow lakes can be discussed also through the methods of the colloidal science, for which the employment of porous membranes and the exploitation of the hydrostatic osmosis might modify the natural pattern of the level of phosphorus in the water. In this respect, the Markovian assumption can be violated, and the evolutive model can be suitably grounded on processes of Poisson type. Under the same perspective, one can also discuss how the fractality-dependent decrease of suspension mass is associated to the departure from the Markovian setting. Such relevant themes are not developed in the present report, but they represent hints for future studies. 

For what concerns the physical stock of water, we refer to the literature on stochastic growth models and its applications (see e.g. Ausloos and Kowalski (1992), Gadomski (1996, 2003), Ausloos and Vanderwalle (1996), Gadomski and Ausloos (2006), Vanderwalle and Ausloos (1996a, 1996b, 1997). In particular, we follow the approach followed by Mitra and Roy (2007) and propose some stochastic models based on Markov chains (see e.g. Norris, 1998 for a panoramic view of this mathematical instrument). As a further analysis, we deviate from the Markovian context by outlining a model based on point process for the evolution of the available resource, as in Cerqueti (2014). The main assumption on this framework is that the stock of water is generated by impulsive events. In so doing, we are in line with stochastic growth model of non-Markovian type generated by impulsive events occurring at random times. In this respect, we point the attention of the reader to the relevant contribution of Łuczka et al. (1995), where Poisson processes are efficiently employed for modeling purposes. We are inspired by Łuczka et al. (1995), and we propose a stochastic growth model for stock of water whose distributional assumption is of Spatial Mixed Poisson Process type (see e.g. Grandell, 1997).
The proposed models deserve a deep research activity. Nevertheless, the considered settings allow gaining some conclusions on the need of taking care of the quality of water and on its availability.

2. BIO-POLLUTED WATER: THE CASE OF THE SHALLOW LAKES
We here give a quantitative perspective on the dynamics of pollution in the so-called shallow lakes, which are particularly sensitive to the human actions and to the activities that might bring polluting substances in the water.
This theme is of paramount relevance: indeed, the Legislator needs to pay attention to two competing objectives: by one side, the economic development of a non-urban area, to be understood as the exploitation of agricultural resources; by the other side, the need to preserve the natural environment and ecosystems in the region.

At a first glance, the problem seems to be of purely economic nature. However, as we will see below, it has also a biological root. 
Let us deal with economic reasoning. It is evident that intensive cultivation is associated with high profits, and is therefore encouraged by agricultural operators; however, they also have a strong environmental impact. In this sense, it is well-known that the devastation of ecosystems also arises as an economic problem, due to the consequent depression of the tourism industry of the region involved and the huge costs associated with climate change generated by pollution.

In the context we are analyzing, shallow lakes represent a paradigmatic case. A lake is said to be ‘shallow’ when its maximum depth is 3 meters. Starting from this definition and unlike different lake systems, both the uniform growth of large aquatic plants and the resuspension of pollutants previously sedimented on the seabed are possible in a shallow lake.

The vegetation level of the lake is determined by the amount of nutrients present in its waters. When the nutrient level is low, lake vegetation consists of small algae. The increase in nutrients is strongly influenced by human intervention: in fact, the chemical fertilizers used for agricultural activities can be transported through the rain from the shores to the water of the lake system, generating an increase in the nutrient level.

The phenomenon of the increase in nutrients in the water of a shallow lake generates a chain of events.

The first occurrence is the growth of large algae. From this, it derives an increase in phytoplankton biomass, the direct consequence of which is a cloudiness of the water of the lake. 
A layer of sediment then covers the leaves of the aquatic plants, and this helps to reduce the amount of light that reaches the bottom of the lake. At this point, therefore, the algae begin to die. The disappearance of aquatic plants is associated to the disappearance of the hiding places of the zooplankton, which takes refuge during the day among the submerged leaves. In this way, the fish easily manage to prey on zooplankton, whose population then reduces drastically. 
Since zooplankton is the largest natural predator of phytoplankton, the population of phytoplankton increases, and this makes the water of the lake increasingly turbid. This effect is also amplified by the lack of algae in their function of anchoring sediments on the seabed.

We intend to provide some brief details on the irreversibility of the process described above. More in detail, we want to establish whether, by reducing the level of nutrients in the murky water of a shallow lake through appropriate agricultural policies, it is possible to obtain clear water again.

2.1 A quantitative perspective on the pollution of a shallow lake

The most appropriate quantitative tool for analysis of this type is represented by the theory of dynamic systems. The founding principle of the study lies, in fact, in the formalization of an evolutionary phenomenon (or system) through an appropriate differential equation, with which there are associated balances that describe the states of the system. In our specific context, the system is given by the dynamics of the phosphorus concentration - which represents a proxy of the nutrient level - in the lake water. The balances represent the state of clarity of the lake system.

For a proper writing of the dynamics, one has to consider the way the phosphorus level evolves and the variables which are connected to it. In particular, the increase in the level of nutrients is directly related to the amount of fertilizers used in crops and inversely related to the amount of phosphorus already present in the lake. 
In addition, it has been experimentally observed that the inverse relation between level of nutrients and phosphorus level depends also on a factor, denoted by b, which describes the sedimentation rate of the phosphorus. 
Factor b is a number between 0 and 1, and by convention we have b = 0 when the phosphorus does not settle on the bottom and remains permanently in suspension, while b = 1 is the case in which the phosphorus precipitates immediately and completely at the bottom of the lake.

Interestingly, the reversibility of the process depends on the sedimentation rate b, so that there exists a critical threshold b* such that b>b* implies that the lake becomes permanently turbid (see Kiseleva and Wagener, 2010; Wagener, 2013).
However, it is important to give credit to technological procedures leading to a forceful reversibility of the pollution pattern. Indeed, the successful employment of porous means and membranes might lead to a reverse hydrostatic osmosis process, which is able to depurate water and reduce the phosphorus level in the shallow lakes. In this respect, one is authorized to model the sedimentation rate b as a function of such types of depuration devices.

2.2 An optimal regimes-based Markov chain model for the evolution of the pollution of the shallow lakes

Section 2.1 discusses the impact of the chemical fertilizers in determining the pollution of the water of a shallow lake.

Starting from this premise, we now aim at outlining a stochastic model for making a proper prediction of the future evolution of the level of chemical fertilizers in the water of the lake.
The ground of the model lies in the randomness of what will be the agricultural activity on the lakesides in the future. It is clear that human interventions are able to rule the economic activities, so that the impact on them on the environment can be efficiently controlled. However, we propose a model based on the knowledge of past activities and without imposing constraints, to have an unbiased view of what will be the future evolution of the agricultural activities; in so doing, we wish to provide a device to be used by the policymakers for planning pollution control strategies.

Take now in consideration a sample of N consecutive properly measured observations of the level of the chemical fertilizers in the water of a shallow lake.

We assume that the amount of chemical fertilizers in the lake evolves accordingly to a Markov chain {X(t)}t ≥0. The states of the Markov chain are empirically identified by the available distinct observations, while the transition probabilities are obtained by looking at the empirical transitions from an observation to the subsequent one, on the basis of the observed sample. We denote the empirical transition probability of the Markov chain by P.

The Markovian assumption is one of the possible distributional conditions on the dynamics of pollution; however, it is quite suitable in the context we deal with. Indeed, one can argue that the level of fertilizers in a shallow lake  increases/decreases with respect to the previous value, disregarding the previous history. This is due to the additive nature of the fertilizers on the lake, so that their level at a given time t+1 is the one observed at time t with the addition of the fertilizers added in/removed from the lake at time t+1. This is totally in line with the Markov chain hypothesis.

Generally, the number of distinct observations of the level of chemical fertilizers is so high that the resulting Markov chain {X(t)}t ≥0 becomes trivial for forecasting purposes. Indeed, one has empirically a few transitions from a state to another one –mostly, only one transition- so that transtition matrix P is filled by a large number of 0’s and 1’s. 

To gain in meaningfulness, states have to be properly lumped together. Let us enter the details.
We assume that the interval A=[u,v] is the variation range of the empirical observations.

Moreover, we build a partition π of A in J non-overlapping intervals a1, …, aJ, such that if x belongs to ai and y belongs in ai+1 then x<y. 
Of course, the observed sequence of observations leads to a corresponding sequence of intervals a's. Since more than one of the observations could hypothetically belong to the same interval, the sequence of observations leads to the identification of H=H(N)≤N different intervals a's, which will be denoted hereafter simply as a1, …, aH.
Starting from partition π, we can identify a new Markov chain {Xπ(t)}t ≥0  whose states are a1, …, aH and the transition probability matrix empirically derived and denoted by Pπ.
It is possible to select the optimal partition π* such that the Markov chain {Xπ*(t)}t ≥0  is the ‘best’ approximation of the original Markov chain {X(t)}t ≥0, where ‘best’ has to be intended in the twofold sense of leading to the highest statistical similarity while avoiding perfect reproduction of the original stochastic process. Basically, this means that π* is the solution of a minimization problem of the distance between P and Pπ, under the constraint that a diversity measure between P and Pπ below a pre-fixed threshold is appropriately penalized.

The presence of a critical threshold for the sedimentation rate leading to the irreversibility of the pollution has to be modelled as a further constraint on being some states of {Xπ(t)}t ≥0  of absorbing type.
The elements of the optimal partition are said to be the regimes of the dynamics of the amount of chemical fertilizers in the water of the shallow lake.

3. DISCUSSING THE PATTERNS OF THE PHYSICAL STOCK OF WATER and its exhaustion: SOME STOCHASTIC MODELS 
The debate on the depletion of non-renewable resources is particularly heated today. This interest is not based only on the assessment of the obvious impact that the exhaustion of natural resources would have on our existence, but also on recent results regarding the residual life time of non-renewable sources. More precisely, it is noted that the extraordinary economic-demographic expansion of the highly growing countries (like e.g. India and China) and the unstoppable consumption level of the West of the World are jointly responsible for the forecasts of exhaustion of some important resources in very short times.

The main purpose of this section is to provide some models for the evolution of the physical stock of water, by including in the discussion also the possibility of its extinction. This issue is addressed through the construction and study of appropriate quantitative models, in which the formal description of the evolution of the stock of water and of the event linked to its extinction, interpenetrates with a mathematical tractability that allows obtaining results of real practical interest. In essence, formalism and scientific rigor are maintained, but with the declared purpose of avoiding a mere philosophical speculation and, rather, arrive at the writing of policies to be proposed to the decision maker.

The models proposed for our study rest on two theories, i.e. Markovian models and point process models. The former context is explored here by means of two specific settings:
(A) Markov chains;

(B) Disturbed Markov chains.
The latter one relies to a specific class of Poisson processes, and it will be treated separately. 

3.1 Markovian stochastic models

Before going into details, some preliminary considerations are appropriate.

Model (B) provides, as we will see, reasonable and truly feasible results, while model (A) offers answers of little practical interest. This dissonance is because Markov chains do not actually describe the problem we intend to address in a realistic way. However, their introduction is necessary because it is a prelude to the construction of the model (B), of which they constitute a trivial sub-case.

Models (A) and (B) share, as it is reasonable, the main characteristic of the phenomenon we are dealing with: they are stochastic models. In fact, it is not imaginable to describe the future evolution of the available quantity of a resource and the event linked to its extinction through deterministic models.

We denote with Rt the quantity of water available at time t>0. By conventional agreement, it is assumed that t=0 represents today (i.e. the starting time of our analysis), and therefore R0 is the initial endowment of the considered natural resource.

It is assumed that R0 is a nonnegative number and it is known, so that it is a deterministic quantity. Differently, having fixed a certain value t> 0, the value Rt is projected into the future, and therefore it is a stochastic term. From a mathematical perspective, this means that {Rt}t>0, is a stochastic process.

We now present the stochastic models used for the development of the problem we deal with.

(A) Markov chain model
Suppose that the quantity Rt of water available at time t is a Markov chain. The number 0 must necessarily be one of the states of the chain, because it corresponds to the case in which the quantity of water is zero. In this type of model, we assume that if quantity is 0, then water has become depleted. This condition means that we do not admit that it will be possible to discover a new reservoir of water after it is declared to be exhausted

Under a purely mathematical perspective, this assumption means that 0 represents an absorbing state of the chain, that is:
Rt = 0 implies that Rt+1 = 0, for each t>0.
Given this premise, the problem of extinction of water can be addressed by studying the probability of absorption of the chain, or the probability that there exists t*>0 such that Rt* = 0. Clearly, given the the condition that 0 is an absorbing state, the problem aims at identifying the smallest value t*>0 such that Rt* = 0. 
To avoid unnecessary complications, therefore, we will in fact look for the probability that Rt* = 0, knowing that before t* the chain had never reached the absorbent state 0. This probability is expressed as follows:

P (Rt* = 0 | Rt*-1 ≠ 0, Rt*-2 ≠ 0,…, R0 ≠ 0).

An important mathematical result of immediate intuition states that the probability expressed above depends on the initial endowment of resource R0 and on the transition matrix of the Markov chain. We can therefore conclude that, in the case of Markov chain, the problem of the avoidance of extinction of water can find a solution only if the policymaker pursue the target of controlling the transition probabilities from a state to another one. This cannot be given for granted in a simple Markov chain model, since transition probabilities can be exogenously determined. 

Moreover, the initial endowment is an exogenous datum, that the decision maker cannot manage, and therefore no intervention can be put in force in this respect to avoid the exhaustion of water. 
However, the contribution of this type of models remains valid when the objective is adequately describing some features of the stock of water and its evolution. 
In the next subsection, we overcome the limitations of the Markov chain approach presented above.

(B) Disturbed Markov chain model

The introduction of Disturbed Markov Chains (CMDs) responds to the need of building a model that includes real control by the decision maker. As we observed in the previous section, in fact, the Markov chains provide a purely descriptive analysis of the dynamics linked to the quantity of water.
A CMD is a stochastic process {Rt}t≥0, the starting point is established at t=0 which takes values in the elements of a discrete set called state space and whose elements are called states. Differently from a Markov chain, a CMD is endowed with a stochastic process {st}t≥0, called disturbance, such that

P (Rt = j | Rt-1 = i) = P (Rt = j | Rt-1 = i; st-1; … ; s0).
Above formula has a simple interpretation: the passage from time to state from one state to another also depends on the previous realizations of process {st}t≥0.

The disturbance process {st}t≥0 represents the quantitative translation of all events that can occur on a certain date and affect the process {Rt}t≥0. 
The variation range of the process {st}t≥0 can be set to the entire real line or to an interval centered in zero. In so doing, by conventional agreement, we assume that a positive realization of st is a "good news", and it is able to enlarge the probability of increasing the amount of water. Similarly, a negative realization is a "bad news", and induces a large probability of a decrease in the stock of water. The case st = 0 means that, at time t, absolutely nothing has happened with an impact on the dynamics of the quantity water.
The introduction of the disturbance process precludes the possibility that both the memory loss property and the invariance of transition probabilities are satisfied; hence, process {st}t≥0 formalizes the difference between the standard Markov chains models and the CMD. In this respect, notice that a CMD is not a Markov chain in general. By the opposite perspective, the converse statement holds true: a Markov chain is also a particular CMD with disturbance st = 0 with probability 1, for each t≥0.

Let us now assume that the quantity Rt of water available at time t is modeled through a CMD with disturbance {st}t≥0. 
Similarly to what was elaborated in the previous case, also in this situation we propose that the number 0 is one of the states, and it is associated to the extinction of the stock of water. In essence, 0 is an absorbent state also in the CMD model. 

The probability that water achieves its absorbing state at time t* -and we assume that it does it for the first time- is

      P (Rt* = 0 | Rt*-1 ≠ 0, Rt*-2 ≠ 0,…, R0 ≠ 0; st*-1; … ; s0).

It can be demonstrated that the probability expressed above depends on the initial endowment of resource R0 and on all the realizations of the disturbance process before t*. This means that the decision maker is able, through regulatory policies or by investing in research and development, to implement actions able to reduce consumption of water, in order to minimize the probability of extinction expressed above or to make the absorption time t* very remote. The entities of the implemented actions are captured by the disturbance process {st}t≥0.
3.2 Point process models

In this section, we offer a different view of the evolution of the stock of water. Specifically, we focus on impulsive events of random nature, which generate the dynamics of the stock. Thus, we pay attention on the jump component of the amount of available water.
We introduce a point process 

S={(τi, αi)}i=1,2,…
representing the couples of random times τ’s in which events with entities α’s occurring in the surrounding environment appear –being clear that such events have an impact on the available stock of water. The index i is a counter, so that the event in τi appears before the one in τi+1.

As preannounced above, an event translates in a jump in the stock of water. We denote the point process of the jumps in the stock of water by
U={(γi, βi)}i=1,2,…
being γi and βi given by the time and the entity of the jump in the stock of water generated by the event (τi, αi). 
Evidently, (γi, βi) is obtained as a transformation of the terms in (τi, αi).
We reasonably assume that γi is given by τi with the addition of a random delay. Such a condition captures the evidence that the effect of an event on the stock of water is not necessarily simultaneous, and the identification of such a delay can be driven by uncertainty. 

The mark βi is assumed to depend on the mark of the corresponding event αi but also on time τi, so that the same event generates different effects on the water when measured at different times. 
By summing the marks of process U, one is able to derive the time-dependent available amount of water on the basis of the occurrences captured by the events in S.
In this framework, the exhaustion of water can be declared in correspondence of a critical mark for the events such that the resulting (negative) jump in process U leads to null aggregated stock of water. 

The estimation of the expect value of the stock of water can be performed over a prefixed time-interval J; this might lead to useful insights on the depletion of such a precious resource. 
At this aim, some technical assumptions can be stated on the nature of the process S and on its components.

The main assumption on S it that is is a Spatial Mixed Poisson Process. This assumption allows to use an invariance property of this type of stochastic processes, so that mild conditions on the components of S and on the operator transforming S in U guarantee that also U is a Spatial Mixed Poisson Process. 
The estimation procedure is of Bayesian type. The idea is to take a testing interval I. The estimation of the expected stock of water accumulated in J can be performed by knowing; the number of events occurring during I, the number of jumps in the stock of water measured in J and the number of events measured in I leading to jumps in the process U on the same interval. 
For more details on Spatial Mixed Poisson Processes, on the required technical conditions and on the estimation procedure, refer e.g. to Cerqueti (2014). 
4. CONCLUSIONS

In this work, two contexts on the stock of water have been presented; they allow to understand the relevance of the human activities and of biological and mechanical factors on the vital cycle of this crucial natural resource.

By one side, we deal with pollution; by the other side, with depletion of water. 

Our words suggest that the quantitative analysis is able to foster good practices when pursuing sustainability. In particular, decision makers should implement long-term policies for avoiding the irreversibility pollution of shallow lakes or the depletion of water in a specific region. 

The arguments set out call consciences towards greater responsibility on environmental protection, since the damage caused by external events is sometimes irreversible. 

References
Anatolyev, S., & Vasnev, A. (2002). Markov chain approximation in bootstrapping autoregressions. Economics Bulletin, 3, 1–8.
Ausloos, M., & Kowalski, J. M. (1992). Stochastic models of two-dimensional fracture. Physical Review B, 45(22), 12830.

Ausloos, M., & Vandewalle, N. (1996). Growth models with internal competition. Acta Physica Polonica. Series B, 27(3), 737-746.
Cazcarro, I., López-Morales, C. A., & Duchin, F. (2016). The global economic costs of the need to treat polluted water. Economic Systems Research, 28(3), 295-314.
Cerqueti, R. (2014). Exhaustion of resources: a marked temporal process framework. Stochastic Environmental Research and Risk Assessment, 28(4), 1023-1033.
Cerqueti, R., Falbo, P., Guastaroba, G., & Pelizzari, C. (2013). A tabu search heuristic procedure in Markov chain bootstrapping. European Journal of Operational Research, 227(2), 367-384.

Cerqueti, R., Falbo, P., Guastaroba, G., & Pelizzari, C. (2015). Approximating multivariate Markov chains for bootstrapping through contiguous partitions. OR Spectrum, 37(3), 803-841.

Cerqueti, R., Falbo, P., & Pelizzari, C. (2017a). Relevant states and memory in Markov chain bootstrapping and simulation. European Journal of Operational Research, 256(1), 163-177.

Cerqueti, R., Falbo, P., Pelizzari, C., Ricca, F., & Scozzari, A. (2017b). A mixed integer linear program to compress transition probability matrices in Markov chain bootstrapping. Annals of Operations Research, 248(1-2), 163-187.
Gadomski, A. (1996). Stochastic approach to the evolution of some polycrystalline (bio) polymeric complex systems. Chemical Physics Letters, 258(1-2), 6-12.

Gadomski, A. (2003). Multilineal random patterns evolving subdiffusively in square lattice. Fractals, 11(supp01), 233-241.

Gadomski, A., & Ausloos, M. (2006). Agglomeration/Aggregation and Chaotic Behaviour in d-Dimensional Spatio-Temporal Matter Rearrangements Number-Theoretic Aspects. In: The Logistic Map and the Route to Chaos (pp. 275-294). Springer, Berlin, Heidelberg.
Grandell, J. (1997). Mixed Poisson Processes (Vol. 77). CRC Press.

Huisman, R., & Mahieu, R., 2003. Regime jumps in electricity prices. Energy Economics, 25(5), 425-434.

Jones, J. A., & Post, D. A. (2004). Seasonal and successional streamflow response to forest cutting and regrowth in the northwest and eastern United States. Water Resources Research, 40(5), 052031–0520319.

Kiseleva, T., & Wagener, F. O. (2010). Bifurcations of optimal vector fields in the shallow lake model. Journal of Economic Dynamics and Control, 34(5), 825-843.

Loukas, A., Vasiliades, L., & Dalezios, N. R. (2002). Potential climate change impacts on flood producing mechanisms in southern British Columbia, Canada using the CGCMA1 simulation results. Journal of Hydrology, 259(1-4), 163-188.

Łuczka, J., Hänggi, P., & Gadomski, A. (1995). Diffusion of clusters with randomly growing masses. Physical Review E, 51(6), 5762.
Martin, E. (2019). Cover Crops and Water Quality. Environmental Modeling & Assessment, 24(6), 605-623.
Mitra, T., & Roy, S. (2007). On the possibility of extinction in a class of Markov processes in economics. Journal of Mathematical Economics, 43, 842–854.
Norris, J. R. (1998). Markov Chains (No. 2). Cambridge University Press.

Perko, L. (2013). Differential Equations and Dynamical Systems (Vol. 7). Springer Science & Business Media.

Tamerius, J. D., Wise, E. K., Uejio, C. K., McCoy, A. L., & Comrie, A. C. (2007). Climate and human health: synthesizing environmental complexity and uncertainty. Stochastic Environmental Research and Risk Assessment, 21(5), 601-613.
Vandewalle, N., & Ausloos, M. (1996a). The screening of species in a Darwinistic tree-like model of evolution. Physica D: Nonlinear Phenomena, 90(3), 262-270.

Vandewalle, N., & Ausloos, M. (1996b). Growth of Cayley and diluted Cayley trees with two kinds of entities. Journal of Physics A: Mathematical and General, 29(22), 7089.

Vandewalle, N., & Ausloos, M. (1997). Construction and properties of fractal trees with tunable dimension: The interplay of geometry and physics. Physical Review E, 55(1), 94.
Wagener, F. (2013). Shallow lake economics run deep: nonlinear aspects of an economic-ecological interest conflict. Computational Management Science, 10(4), 423-450.

Wang, H., Yang, Z., Saito, Y., Liu, J. P., & Sun, X. (2006). Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: connections to impacts from ENSO events and dams. Global and Planetary Change, 50(3-4), 212-225.

Yu, H. L., Yang, S. J., Yen, H. J., & Christakos, G. (2011). A spatio-temporal climate-based model of early dengue fever warning in southern Taiwan. Stochastic Environmental Research and Risk Assessment, 25(4), 485-494.

Zhang, Q., Xu, C. Y., Tao, H., Jiang, T., & Chen, Y. D. (2010). Climate changes and their impacts on water resources in the arid regions: a case study of the Tarim River basin, China. Stochastic environmental research and risk assessment, 24(3), 349-358.
14
13

