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Abstract: Indoor positioning is a core enabler for various 5G identity and context-aware applications
requiring precise and real-time simultaneous localisation and mapping (SLAM). In this work, we
propose a K-nearest neighbours and deep neural network (K-DNN) algorithm to improve 3D indoor
positioning. Our implementation uses a novel data-augmentation concept for the received signal
strength (RSS)-based fingerprint technique to produce a 3D fused hybrid. In the offline phase, a
machine learning (ML) approach is used to train a model on a radiomap dataset that is collected
during the offline phase. The proposed algorithm is implemented on the constructed hybrid multi-
layered radiomap to improve the 3D localisation accuracy. In our implementation, the proposed
approach is based on the fusion of the prominent 5G IoT signals of Bluetooth Low Energy (BLE) and
the ubiquitous WLAN. As a result, we achieved a 91% classification accuracy in 1D and a submeter
accuracy in 2D.

Keywords: indoor localisation; 5G IoT; deep learning; machine learning; information fusion; tracking;
Internet of Things

1. Introduction

Supported by AI (artificial intelligence) and IoT (Internet of Things), 3D position-
ing is a core enabler for various 5G identity and context-aware applications requiring
precise and real-time simultaneous localisation and mapping (SLAM) both indoors and
outdoors [1]. Typical scenarios include mobile robots (MRs) performing surgery on a
patient, autonomous ground vehicles (AGVs) docking newly arrived products in a smart
factory, and unmanned aerial vehicles (UAVs) monitoring crops’ status [2–4]. Very recently,
a Cisco report [5] predicted an increase in the number of these specialised IoT devices
connected to the internet from 8.8 billion in 2018 to 13.1 billion by 2023—1.4 billion of them
will be 5G-capable. In this respect, while space giants (SpaceX and Lockheed Martin) [6]
are working to improve the outdoor accuracy of GPS III to below 3 m, heterogeneous 5G
IoT networks (HetNets) represent themselves as an indispensable source for improving
indoor positioning systems (IPSs).

A 3rd Generation Partnership Project (3GPP) release established the requirements for
improved indoor/outdoor 3D localisation using a RAT-independent positioning scheme
for vertical and horizontal sectors [7]. Therefore, this specification put a strong empha-
sis on seamless collaborations and fusion between various radio technologies, such as
device-to-device communication, ultra-dense communication, millimetre wave (mm wave),
sub-6 GHz, and vehicle-to-everything (V2X) [8], and protocols such as IEEE 802.15.1 (Blue-
tooth Low Energy), IEEE 802.11be (extremely High Throughput WLAN), and IEEE 802.11az
(Next Generation Positioning) [9]. In light of this, a very good opportunity has emerged in
the area of indoor localisation for both urban areas and smart cities.
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To further improve positioning accuracy, researchers have focused on various hybrid
approaches. For 5G IoT networks, the location of the user’s equipment is estimated using
a combination of signal propagation characteristics such as angle of arrival (AOA), time
of arrival, time difference of arrival, received signal strength (RSS), RSS difference (RSSD),
direction of arrival (DOA), and frequency difference of arrival (FDoA) [3]. These hybrid
approaches were recently further surveyed in [10–12]. Among all these approaches, the
RSS fingerprint-based method is the most widely used for real-time tracking. Additionally,
most of the existing approaches consider the use of the RSS from specific radio technology.
However, the offline phase of fingerprint collection requires a considerable amount of
human resources and is also time-consuming, especially for complex buildings. For this
reason, we propose a K-nearest-neighbours and deep neural network (K-DNN) algorithm
to improve 3D indoor positioning. The contributions of this paper can be summarized
as follows:

• A realistic information fusion scenario for 5G IoT networks was planned and deployed
utilizing a 5G IoT gateway, a Bluetooth Low Energy (BLE) network, and a set of
wireless IoT access points without requiring any extra information such as a magnetic-
inductive sensor, acoustics, visible light, or a powerline.

• Our implementation used a novel data-augmentation concept for a received signal
strength (RSS)-based fingerprint technique to produce a 3D fused hybrid fingerprint.
This concept was supported by the interquartile range (IQR) method for the detection
and elimination of outliers.

• To improve 3D positioning accuracy, a K-DNN cooperative algorithm was imple-
mented on the constructed hybrid multi-layered radiomap.

The concept presented is a continuation of our previous work in [13,14] towards
cooperative localisation. This paper is divided into the following parts: Section 2 covers
the state of the art in fingerprint-based techniques for 3D/2D positioning and information
fusion methods. The proposed system model and the underlying algorithms are presented
in Section 3. The 5G IoT physical network environment is explained in Section 4. The
experimental setup is covered in Section 5. Section 6 provides the performance evaluation,
and Section 7 analyses the obtained results. Finally, a summary and directions for future
work are presented in Section 8.

2. State of the Art
2.1. Received Signal Strength

Received signal strength (RSS) is a way to measure the signal power received by a
user’s equipment. This is expressed in decibel milliwatts (dBm) or milliwatts (Mw). The
RSS-based method is one of the methods widely adopted by the indoor localisation research
community. RSS can be used to approximate the distance between a user device (UE) and a
transmitting device (Tx), as shown in Figure 1.

Using an RSS indicator (RSSI), a relative measurement of RSS, and a free-space path
loss (FSPL) propagation model [15], the distance delta between a UE and Tx can be esti-
mated via the formula below:

FSPL(dB) = 20log10(d) + 20log10( f ) + φ (1)

where d is the distance expressed in metres; f is the frequency measured in kilohertz,
megahertz, or gigahertz; and φ is a constant based on the frequency unit. During location
determination, this formula assumes that the antennas are lossless and their polarisation is
the same. However, this is not often the case in complex and unpredictable environments
with continuous noise.
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Figure 1. RSS-based positioning.

2.2. RSS Fingerprint-Based 2D and 3D Indoor Positioning

In the RSS fingerprint-based method, unlike the free-space path loss (FSPL) model,
the location is estimated by matching the signal received from the user equipment with
a database of preconstructed location radiomaps. The most significant advantage of this
method is its ability to maintain high accuracy in a cluttered multi-path environment,
according to a study conducted by [16,17]. As shown in Figure 2, this technique has two
phases: offline and online. In the offline phase, a site survey or measurement campaign is
conducted through which a set of RSS signals is collected and linked to its corresponding
location XY in the 2D case and XYZ in the 3D case. The constructed radiomap is then
used to train a localisation algorithm with a distance error loss function, such as least
squares [18], weighted least means [19], maximum likelihood estimation [20], or convex
optimisation [21].

Figure 2. Fingerprint -based positioning phases.

To construct a radiomap, the most commonly used method for collecting signal
fingerprints is called war-diving [22]. After identifying the indoor area of interest, the user
equipment stays in each position for a specific time interval to obtain enough fingerprint
information. As the monitoring device moves along the grid, the collected RSS single is
stored in the database along with a reference point. Regarding 5G IoT positioning indoors,
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the use of this technique was investigated by Huan et al. in [23]. The authors used the
Kalman filter to remove the noisy RSS values. Next, a universal kriging (UK) algorithm
was used for spatial interpolation and data augmentation to reduce dependency on the
fingerprinting database. Finally, the authors trained a KNN model to calculate the user
equipment’s location, achieving a 1.44 m positioning error. Although this approach is
interesting, it was not established whether the system could perform equally in a 3D
environment. Additionally, the use of a single base station might seem to save power,
but it does not guarantee the same accuracy given the changes in the environment and
the LOS issues in cluttered space. Similarly, Gong et al. [24] suggested a two-step KNN
(2-KNN) algorithm that used reference signals from the state information of the channel
(CSI). During the offline phase, a smooth rank sequence (SRS) estimated the number of
received signal paths. During the online phase, a trained 2-KNN algorithm was used
to determine the 2D location of the user equipment. Most studies have overlooked 3D
localisation, which is essential for scenarios like robot navigation, immersive shopping,
and virtual reality. This was the main motivation for us to investigate this area. Further
studies on 5G and beyond (6G) can be found in the following survey papers: [25,26].

2.3. Information Fusion for 5G IoT

Information fusion for 5G IoT has attracted considerable attention from the research
community. This technique, as shown in Figure 3, involves blending data from various
sources or sensors using a data fusion system to gain better inference and improve accu-
racy/precision. This concept produces an effective and reliable IPS (indoor positioning
system) while saving the cost of expensive infrastructure [27]. Over the last decade, re-
searchers have attempted to merge data readings from sources such as RFID [28], GPS [29],
pedometers [30], BLE (Bluetooth Low Energy) [14], VLC (visible light communication),
and many other technologies, as stated in [13,31]. Very recently, Klus et al. [32] examined
fusing GNSS with WLAN data in a 5G network to improve positioning. The authors
implemented a neural network as their main algorithm. Based on the authors’ conclusions,
the proposed approach achieved an accuracy of 1 m in an open space and 3.4 m in a
cluttered area. A serious limitation of this study was the GNSS’s inability to penetrate
walls composed of different materials, especially in complex environments. In a more
recent work, Alvarez-Merino et al. [33] looked into using WiFi fine-time measurement
(FTM), UWB, and cellular-based radio fusion to improve indoor location accuracy. The
authors’ approach showed promising results. However, unlike [32], this system did not
rely on existing infrastructure but required a UWB setup that could be costly and was
limited to user equipment with this capability. These limitations motivated us to propose a
cost-effective setup based on BLE and WiFi. A detailed discussion of these techniques can
be found in the following resources: [34–36].

Figure 3. Information fusion localisation process.

BLE Technology

BLE has emerged as a low-cost wireless solution for localising people and assets,
offering traditional Bluetooth protocol capabilities over ultra-low power consumption
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circuits [37]. BLE-enabled devices communicate over 2.4 GHz and use 40 channels (PHY
channels) divided by a 2MHz frequency gap. Channels 37, 38, and 39 are used for advertis-
ing, while the rest are used for data transfer during a connection. This technology uses a
neighbour discovery process (NDP) in which a BLE-enabled device, often referred to as a
“scanner”, searches for nearby BLE devices called “advertisers” [38]. Once the discovery
process has finished, a list of available devices is returned based on availability and RSS
value. According to the core specification, BLE 5.0 has improved drastically compared to
version 4.2, offering two types of discovery process: basic and advanced [39]. Recently, BLE
has become a central source of information fusion amongst the research community. Several
research papers have explored the use of this technology to improve indoor localisation
accuracy. Kanakareja et al. [40] investigated using the BLE protocol along with LoRa to
reduce the distance error of an indoor tracker called “The Things Network” (TTN). The idea
is very promising; however, it only works for environments where a low-power wide area
network (LP-WAN), like a wireless sensor network, is deployed. To track the movements of
elderly people indoors, Kolakowski et al. [41] used BLE and ultra-wide band technologies.
While this is a very effective low-power solution, realising it requires the deployment of
UWB infrastructure. Additionally, UWB suffers from clock synchronisation issues due
to the time-sensitive nature of its pulses, which is not practical for real-time localisation
systems [42]. Finally, to label areas like parking lots and meeting rooms with localisation
information, Hu et al. [43] proposed a system called Grid-Loc that combined both active
radio frequency identification (RDFID) and BLE. Similarly, this solution needed a pre-setup
to start tracking and did not make use of widely existing infrastructure technologies such
as wireless local-area networks (WLANs). In our work, to improve 3D localisation, we
implemented a fusion of BLE and the ubiquitous WLAN. This concept is further discussed
in Section 3.

2.4. Machine Learning

In the fingerprint-based localisation method, the application of machine learning
involves training a model on a radiomap dataset that has been collected during the offline
phase. Given a radiomap database, the localisation model aims to infer the state or location
of the user’s device from the received measurement vector σ, which includes RSS values
σi from several access points. According to the literature, the widely used algorithms can
be classified into deterministic and probabilistic algorithms. The principle behind these
methodologies is based on searching a database of fingerprints and finding one or more
locations whose RSS values have the highest similarity to the one currently observed.

2.4.1. Probabilistic Approach

In the probabilistic approach, the position is determined based on the likelihood that
the user is in the location ’x’ given vector or RSS values received during the online phase.
Assuming that a set of location candidates L is L = {L1, L2, L3, ..., Lm} for any obtained RSS
vector values σ, one selects Li if

P(Li|σ) > P(Lj|σ) for j, k = 1, 2, 3, ...n, i 6= j (2)

where P(Li|σ) is the probability that a user device is at location Li given the RSS vector σ if
its likelihood is higher than that of P(Lj|σ).

Finally, using Equation (2), the 3D location (x̂, ŷ, ẑ) can be estimated using the weighted
average probability as follows:

(x̂, ŷ, ẑ) = Σn
i=1(P(Li|s)(xLi , yLi , zLi )) (3)

2.4.2. Deterministic Approach

In the deterministic positioning approach, location λ is considered a non-random
vector [44]. The main objective is to estimate λ̂ at every step. Usually, the location estimate
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is treated as a linear combination of calibrated points pi. The principle behind this approach
can be summarised in the following equation:

λ̂ = Σk
i=1

wi

ΣM
j=1wj

λi (4)

Here, the set {λ1 . . . λi} denotes the sequence of reference points associated with ∆i,
which is the distance between the respective radiomap fingerprint r̄i and the measurement
x taken during live positioning, i.e., ∆i = ||xi − r̄||. The norm ||.|| in this equation can
be any arbitrary formula. This can be the Mahalanobis norm [45], the Manhattan norm
(1 norm) [46], or the Euclidean norm (2 norm) [44]. As this paper focusses on the latter, wi
can be written as follows:

∆i =

√√√√ N

∑
j=1

xij − sj)2 (5)

In Equation (4), wi is a set of non-random weight coefficients assigned to each reference
point based on its importance in distinguishing it from other fingerprints. Consequently,
the value of wi assigned to each fingerprint impacts the location estimation. In this case,
the weight allocation expressed in Equation (4) refers to the weighted K-nearest neigh-
bours (WKNN) algorithm [46]. A possible value for wi can be the inverse of the RSS
innovation [46], which can be expressed as follows:

wi =
1

||x− r̄|| (6)

If Equation (4) is simplified, it can be assumed that all fingerprints are assigned equal
weights. As a result of this assumption, wi is eliminated, and the formula becomes the
K-nearest neighbours (KNN) method. Thus, setting K = 1, the equation yields the simple
nearest neighbours (NN) method [44,47]. In terms of performance, it was demonstrated
in [44,46] that the KNN and WKNN methods offer a higher degree of accuracy than the
NN method in the cases of K = 3 and K = 4, respectively. However, the NN method appears
to perform satisfactorily and offers the same results in the presence of high-density RSS
radiomaps [48].

Several researchers have addressed the question of indoor localisation in 5G networks
using KNN [23,24,49–53]. Despite this, the KNN method alone failed to deal with a highly
dense 3D radiomap, as studied in [13,54,55]. This motivated us to propose a combination
of deep learning and KNN methods to improve localisation in complex 3D environments.
Since the main focus of this paper is on the deterministic positioning approach based on
deep learning and K-nearest neighbours, more complex methods such as the database cor-
relation method (DCM), linear discriminant analysis (LDA), and the k-anonymity method
can be found in [56–58], respectively. The following subsection deals with existing research
contributions related to deep learning.

2.4.3. Deep Learning

Deep learning is a subclass of machine learning algorithms based on artificial neural
networks (ANNs) and representation learning [59]. Artificial neural networks themselves
were inspired by biological networks. These types of algorithms are more powerful than
traditional machine learning algorithms as they use multiple connected layers to extract
complex patterns from raw data [60]. The training technique used in deep learning can
be supervised, semi-supervised, or unsupervised [61]. In 5G networks, the adaptation of
these techniques [62,63] in indoor and outdoor localisation has shown some great results.
Wafaa et al. [64] studied the use of CNNs to reduce localisation error and improve accuracy.
Their approach converted a 2D fingerprint radiomap and its kurtosis values to a 3D RSS
radio image. This 3D tensor was then used as an input for their proposed model. This
localisation framework was tested in a 20 m × 20 area. The reported results suggest
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that this concept could achieve up to 94.13% accuracy in a grid size of 2 m × 2 m with
10 anchors. Although it sounds promising, this concept has not been tested in a 3D
environment. Similarly, Yang et al. [65] proposed an indoor 3D localisation scheme based
on a 1D CNN and BLE signal fingerprinting. This approach was tested in a 3D space of
4.0 m × 2.0 m × 3.0 m. The authors deployed eight BLE beacons and divided the 3D space
into 16 grids of 1 m × 1 m × 1 m in size. Following these steps, the system was able to
achieve a 0.25 m error and a precision of almost 100%. A serious limitation of this work was
that the framework was tested in a small and uncluttered environment. Furthermore, to
achieve the same result, according to the adopted setup, a BLE must be deployed for each
1 m2. This is usually not cost-effective, especially for large complex buildings. To overcome
these two limitations, we suggest the use of a hybrid radiomap and a combination of KNN
and DNN to realise a cost-effective scalable solution. The following section covers the
proposed approach in detail.

3. The Proposed Approach

Our proposed approach aimed to improve indoor positioning using several 5G IoT
wireless signal data sources. This could be achieved by merging actual BLE and WiFi
3D location data with simulated BLE and WiFi location data into a multi-layered hybrid
radiomap to save the tedious time spent constructing a fingerprint database. To support
this data augmentation approach, K-DNN, a new cooperative positioning algorithm that
combines KNN (K-nearest neighbours) and DNNs (dense neural networks) was developed
to reduce the localisation error. Figure 4 provides an overview of the algorithmic flow of
the proposed K-DNN system. The following subsections describe in detail the K-DNN
algorithm used in this paper.

Figure 4. The flow of the proposed K-DNN system model.

3.1. K-DNN Architecture and Hybrid 3D Localisation for 5G IoT

K-DNN is a novel cooperative positioning algorithm. Given a set of WLAN trans-
mitters N and a set of BLE transmitters M connected to a set of 3D locations (XYZ), two
machine learning models are trained to support each other to achieve minimal distance
error. During the offline phase, the algorithm receives two matrices of hybrid radiomaps.
This can be mathematically expressed as

BLE_RSS : {(x1, y1, z1, ble1. . . blem),. . . , (xi, yi, zi, ble1. . . blem)}
WLAN_RSS : {(xi, yi, zi, wlan1. . . wlann),. . . , (xi, yi, zi, wlan1. . . wlann)}

K-DNN begins by eliminating outliers from the given radiomaps using the IQR
(interquartile) method [66]. The cleaned fingerprint datasets are then merged into a single
radiomap. Next, a min–max normalisation technique is implemented to convert the RSSI
values of the BLE and WLAN into the same scale. As a final step in this phase, the KNN
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model is first trained to predict the 2D location (X, Y), and the DNN is trained to predict
the 1D location (Z).

During the online phase, the K-DNN receives the following input:

BLE_RSSonline : {ble1,. . . , blem}
WLAN_RSSonline : {wlan1,. . . , wlann}.

Given this, KNN attempts to approximate the 2D (XY) locations as an output. This
outcome is then fed along with the original input received by KNN into the DNN, which
in turn predicts the 1D (Z) location. As a result, the 3D (XYZ) location is realised through
this cooperative prediction approach. The main reason for including these two models was
the nature of the 1D (classes) and 2D (continuous values) outputs.

3.2. K-DNN Model Architecture
3.2.1. KNN

The K-nearest neighbours algorithm is a non-parametric supervised machine learning
algorithm used for pattern classification and regression. This means that it does not make
any assumptions about the data being analysed. Since learning in KNN is supervised, the
trainer has to choose the parameters to achieve the best results. This algorithm was first
proposed in 1951 by Evelyn Fix, Joseph Hodges [67], and Thomas Cover [68], who later
expanded on it. In the K-DNN algorithm, KNN is used to predict the 2D (XY) location. As
previously highlighted in Algorithm 1, this algorithm receives a set of RSS values as input
R. This can be written as R = [RSS1, RSS2, . . . , RSSn]

The input provided to KNN consists of a vector of seven normalised RSS values. This
part of K-DNN model attempts to reduce the localisation error of the X and Y location
using the Euclidean distance. The output of this model is then combined with the original
input R and fed into the DNN model.

3.2.2. DNN

Deep learning is a crucial building block in the proposed K-DNN system. It allows
the learning of complex patterns and data representations through multiple processing
layers [61]. One of the most important architectures in deep learning is the deep neural net-
work, also known as multiple-layer perceptron (MLP) or a deep feed-forward network [69].
The DNN considered in K-DNN is a classification model. Figure 5 shows the number of
layers, neurones, and input and output parameters used in this model.

The input layer of this network receives transposed vectors of signal values and 2D
locations. This can be expressed as

DNNinput = [X, Y, RSS1, RSS2, . . . , RSSn]
T (7)

where X and Y are the 2D points predicted by KNN and RSSi represents the signal value
of the ith transmitter (BLE or WLAN).

The calculated result for this layer is then fed into the first hidden layer. Each input
element from Equation (7) is multiplied by a specific weight vector ~w. The product of this
operation is then added to a bias b. The formula for this can be expressed as follows:

h1 =
n

∑
i=1

w1
i Ii + b1

i (8)

where Ii is the element ith of the input vector. The summation of all these inputs is then
passed onto an activation function unit A. In our proposed network, this is the rectified
linear unit (ReLu).

A1 = max(0, h1) (9)
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Here, A1 is the activation function of the first hidden layers. The output of this layer is
128 neurones. In the same way,

h2 =
n

∑
i=1

w2
i a1

i + b2
i (10)

The result of this hidden layer is passed onto a further activation unit A2:

A2 = max(0, h2) (11)

Finally, the output of Equation (11) is received by hidden layer 3 to make a similar
calculation for h1 and h2:

h3 =
n

∑
i=1

w3
i a2

i + b3
i (12)

The values calculated by Equation (12) are then fed into the activation function below:

A3 = max(0, h3) (13)

To predict the correct height of the mobile device, the softmax function equation below
is used:

θ(ai) =
exp(a3

i )

∑j exp(a3
j )

(14)

Figure 5. Layers of the DNN.
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3.3. K-DNN Psuedocode

For clarity purposes, the Algorithm 1 below explains how K-DNN works.

Algorithm 1: K-DNN Algorithm for 3D Localisation

Input : BLE_RSS : {(x1, y1, z1, ble1...blem)} ; . Get Hybrid BLE RSS
Input :WLAN_RSS : {(x1, y1, z1, wlan1.....wlann)} ; . Get Hybrid WiFi RSS
Output : Λ ; . Output 3D location
Require: Signal UpperThreshold µ;
Require: Signal LowerThreshold η;
Require: First quartile Q1;
Require: Third quartile Q3;
IQR← Q3-Q1 ; . Calculate Interquartile
for blei in BLE_RSS and wlani in WLAN_RSS do

if blei<Q3+(1.5*IQR) and blei>Q1-(1.5*IQR) then
ble_r← blei ; . Apply IQR method to BLE

if wlani<Q3+(1.5*IQR) and wlani>Q1-(1.5*IQR) then
wlan_r← wlani ; . Apply IQR method to WLAN

RSS← wlan_r ∪ ble_r ; . Fuse BLE and WLAN Radiomaps
end
for RSSi in RSS do

R← RSSi−µ
µ−η ; . Normalize signal

X_Y ← KNN(R) ; . Apply first model prediction
Z ← DNN(R, X_Y) ; . Apply second model prediction
Λ← X_Y ∪ Z ; . merge results output

end
return Λ

4. 5G IoT Physical Network Environment

In this part of the article, we explain the main components of the 5G IoT network
that was used in this experiment. For clarity purposes, Figure 6 shows the logical network
architecture.

Figure 6. 5G IoT network logical architecture.

4.1. 5G Core Network

In this experimental testbed, we adopted 5G NSA (non-stand-alone) access as sug-
gested by 3GPP release 15 [70]. This concept uses dual connectivity (eNodeB/gNodeB)
to provide radio access to 5G-enabled UE (user equipment) via 4G EPC infrastructure,
as demonstrated in Figure 7a. The 5G core network complied with 3GPP release 16 [71]
and used an open source called Open5gs [72]. This platform implements both 5GC (5G
core) and EPC (evolved packet core) using the C language. Open5G has evolved from
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4G NextEPC and comes with a WebUI to manage network subscribers. The developed
5G core network was used to configure NR/LTE networks for a private cellular network
infrastructure. The core network was virtualised and deployed on a 64-bit Linux machine
using a VMWARE workstation. It is worth mentioning that at the time of writing this
paper, other projects such as OpenAirInterface [73] and free5GC [74] have been instigated.
However, these solutions are not stable yet. A detailed description of these three projects
can be found in [75].

(a) 5G lab setup (b) 5G modem gateway

(c) Bluetooth Low Energy 2 (d) 5G wireless access point 4

Figure 7. 5G IoT test environment.

4.2. eNodeB (4G)/gNodeB (5G)

The Evolved/E-UTRAN Node B is a component in the E-UTRA of 4G LTE11. This
component connects subscribers to service providers through the S1-AP protocol linked
to S1-MME from the mobility management entity side. The eNodeB has its own radio
control functionality that manages a USRP B210 SDR (software-defined radio), as shown
in Figure 7a. This component offers a radio service via the air interface. The operating
frequency of this radio unit for 4G is between 800 MHz and 2600 MHz, as per the OfCom
regulations. A duplexer was also used to reduce the number of antennas needed to keep
the transmitter (Tx) and receiver (Rx) synchronised for both radio units. The software
side of this solution was implemented on a custom-built PC powered by an i9 CPU with
a total memory of 32 GB. This unit was an implementation of 3GPP release 15 [70], as
previously highlighted. This meant that it used dual connectivity to offer the service to
the user equipment. The 5G-capable device had to first connect to the MME through the
eNodeB to attach to a gNodeB. This is why it is called the NSA mode. This unit used the
X2AP protocol to communicate with the eNodeB nearby. The dedicated hardware for this
base station was similar to the eNodeB. In order to reduce the clock drifting, a 5G radio
was offered through a USRP B210 attached to a 5G band 7 cavity duplexer.
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4.3. 5G IoT Modem

The 5G gateway implemented in this testbed consisted of a Raspberry Pi 4 model B
and a Quectel 5G Quectel RM500Q-GL modem [76], as shown in Figure 7b. This gateway
linked the 5G cellular network to the WLAN and BLE networks used to extract fingerprints.

4.4. Wireless Local Area Networks

During the experimental design, five IEEE 802.11ac [77] wireless access points were
considered for deployment at the assigned site. Figure 7d depicts one of the access points
used in this setup. In this configuration, each transmitter operated at 2.4 Ghz and a coverage
range of 45 m, although dual band was possible, as this technology also supports 5 Ghz.

4.5. Bluetooth Low Energy

As a secondary source for information fusion, we considered using the IEEE 802.15.1
standard, which is BLE version 5.0 [78]. The devices used in this experiment operated at 2.4
Ghz and 350 m. Figure 7c illustrates one of the BLE units used in this setup. The following
section covers the simulated environment of this architecture.

5. Test Environment

The K-DNN algorithm was tested by combining actual and simulated measurements.
The experiment took place in two teaching laboratories at London South Bank University
of approximately 126 m2 (6 m wide by 21 m long by 3 m high), as shown in Figure 8.

Figure 8. Floor plan with access points and BLE position.

To achieve this task, a 5G IoT network was deployed in the two laboratories. The
network consisted of five IEEE 802.11 access points and four IEEE 802.15 BLE units that
were randomly placed based on Table 1. Two radiomaps were constructed: the first was
generated using an actual measurement campaign, and the second using TruNet wireless,
a 3D ray-tracing deterministic simulator [79].
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Table 1. The 5G IoT setup location and antenna orientation.

Device X Y Z Antenna Orientation

AP1 0 0 2 Vertical

AP2 6 6.5 1.5 Horizontal

AP3 0 11 1.5 Vertical

AP4 0 13 1 Horizontal

AP5 3 15 0.5 Horizontal

BLE01 4 0 1 N/A

BLE02 1 9 1.5 N/A

BLE03 6 13 2 N/A

BLE04 3 21 0.5 N/A

5.1. Radiomap from Actual 5G IoT Measurements

During data collection, fingerprints were collected in 2236 equally spaced locations
(0.5 m spacing) at 0.5 m, 1 m, 1.5 m, and 2.5 m heights, as shown in Figure 9a. At each
measurement location, 30 distinct measurements were recorded at an interval of 1 sec-
ond using the iFused fingerprint data collector developed for Android-based devices, as
shown in Figure 9b. The RSS values stored in the radiomap ranged from −103 dBm to
−28 dBm. During the measurement campaign, the application recorded data from 5 APs
and 4 BLE devices.

(a) FW-208 classroom grid setup (b) iFused fingerprint data collector

Figure 9. Physical environment and fingerprint data collector.

5.2. 5G IoT Simulated Radiomap
5.2.1. TruNet Tool

As previously highlighted, we considered using a 3D ray-tracing (RT) deterministic
tool called Trunet [79]. This application constructs 3D radiomaps in conjunction with
calibration techniques. The main advantage is that the tool generates efficient radiomaps
while saving the time and cost incurred by a measurement campaign. Figure 10a,b illustrate
the building simulated using the Trunet software along with a layer of the multi-layered
simulated radiomap generated for both WLAN and BLE, respectively.
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(a) Simulated radiomap for BLE 1 (b) Simulated radiomap for access point 2

Figure 10. 5G IoT simulated environment radiomap example.

5.2.2. Simulated Radiomap

The second radiomap was constructed using the TruNet simulator. RSS fingerprints
were collected according to the procedure used by the authors of [13,80]. To ensure that
the measurement recorded by the iFuse application matched the simulated measurements,
5 APs and 4 BLE units were configured according to the antenna radio propagation char-
acteristics in Table 2. Furthermore, the building structure and furniture were configured
based on the calibration procedure in [81]. As a result, the same 2236 measurement points
were generated and defined as receiver cells. At the end of this process, two layers of
fingerprints (2 m and 1.5 m high) were merged with the actual measurement radiomap.

Table 2. The BLE and WLAN radio propagation parameters.

Parameter BLE WLAN

Rx sensitivity (dBm) −70 −120

Tx power (dBm) 8 12

Antenna type Omnidirectional Omnidirectional

Max refractions 5 12

Max reflections 5 12

Max diffractions 1 1

5.2.3. The physical Network Behaviour

It was evident that the obtained RSS signal could be affected by various types of
noise from the environment. We needed to ensure that the radiomap constructed by the
simulation matched with the results of the measurement campaign. Figure 11 shows a
strong correlation between the real RSS values and the Trunet values measured for access
points and BLE units.

(a) Measured vs. simulated fingerprints for AP 01 (b) Measured vs. simulated fingerprints for BLE 02

Figure 11. BLE 02 and AP 01 simulated vs. real measurement comparison.
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5.3. Preprocessing
5.3.1. Multi-Layered Radiomap Hybridisation

The hybridisation of a radiomap refers to the process of merging simulated and real
measurements of the same environment at different height levels. This preprocessing
technique merges multiple 3D layers from various available sources. In this experiment,
we combined two simulated measurements (2 m and 1.5 m heights) with two layers of real
measurements (0.5 m and 1m heights). This technique is novel as far as we know and has
not been implemented in previous papers. It could be beneficial for scenarios involving
complex buildings where extensive human resources and time are allocated. To ensure that
there was a correlation between the simulated and real measurements, we compared the
location IDs of the same layer belonging to the same BLE and access point. As demonstrated
in Figure 12, there was a strong correlation between the measurements obtained in the
simulation and the actual measurements. Furthermore, to prove the feasibility of this
technique, we compared the non-fused and fused models, as presented at a later stage in
this paper.

(a) Access point 03 hybrid radiomap (b) Access point 03 simulated radiomap

Figure 12. Simulated Authors. No need to move it. vs. hybrid radiomap.

5.3.2. Feature Selection

During the feature selection process, a Pearson correlation test was performed between
the BLE units and APs, as this was necessary to ensure that there was no redundancy in the
information provided to the K-DNN models. Figure 13 clearly shows that there was no
substantially positive or negative correlation between the selected BLE unit and AP used in
this experiment.

Figure 13. Pearson correlation matrix for the radiomap.

5.3.3. Outlier Elimination

Outliers are generally values that lie an abnormal distance from other values in a
normal distribution. In the case of RSS-based positioning, these types of values find their
way into a radiomap during the measurement campaign when a signal fluctuation occurs or
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when there is interference, such as human activity. To deal with this data quality problem,
we applied the interquartile method introduced by Upton and Cook in [82], as shown in
Figure 14.

In this work, we implemented this method to prevent K-DNN from learning extreme
RSS values that were picked up by the receiver during the data collection process. After
treating the outliers, 2031 observations were left to train the K-DNN model. Table 3 shows
a summary of the considered features and their minimum and maximum values.

Figure 14. Outlier removal using IQR technique.

Table 3. The features used to construct the fingerprint database.

Variable Min. Value Max. Value Type

X 0 6 Coordinates

Y 0 21 Coordinates

Z 0.5 2 Coordinates

AP1 −84 dBm −28 dBm RSS value

AP2 −86 dBm −30 dBm RSS value

AP3 −84 dBm −35 dBm RSS value

AP4 −87 dBm −32 dBm RSS value

AP5 −109 dBm −37 dBm RSS value

BLE01 −105 dBm −32 dBm RSS value

BLE02 −86 dBm −32 dBm RSS value

BLE03 −97 dBm −35 dBm RSS value

BLE04 −120 dBm −42 dBm RSS value

5.3.4. Data Normalisation

To preserve the relationship between the original data values while speeding up the
learning process, a min–max normalisation technique was implemented to scale the original
values between 0 and 1. Since the scaled values were negative, we extracted the absolute
value. The equation used was ∣∣∣∣ RSSi −min(RSS)

min(RSS)−max(RSS)

∣∣∣∣ (15)
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where min(RSS) refers to the minimum value of the threshold signal in the training sig-
nal, that is, −120 dBm, and max(RSS) represents the maximum measured value, that is,
−28 dBm. Each measurement of the signal that we needed to convert is denoted by RSSi,
where i is the ith row on the N BLE unit or access point transmitter. For a different scenario,
it would be preferable to rely on the receiver sensitivity level as the minimum value while
choosing the strongest measured signal value during the offline phase as the maximum
value. This process was important for both the KNN and DNN models, as it changed
the values of each access point and BLE unit to a common scale, without affecting the
differences in the range of values.

5.3.5. One-Hot Encoding

One-hot encoding is the process of converting a column of continuous ordinal numeric
values to binary columns based on the distinctive values [13], as shown in Algorithm 2.
This process was applied in this experiment to the 1D (Z) values. Mapping the distinctive
values 0.5 m, 1.0 m, 1.5 m, and 2.0 m to four binary columns was the result of this process.

Algorithm 2: One-Hot Encoding

Input : Column Z . get Z columns
Output : Result matrix of N binary vectors unique values from Z
Dictionary D = [];
Results R = {[],[],[],[]};
for i in Z.length do

if i 6∈ D:. If value not in dictionary add it
key = D[i]
D[i] = Z[i]

end
return D
Map D into results R columns as binary vector {[Z1], [Z2], . . . , [Zn]}

6. Performance Evaluation

Testing the performance of K-DNN involved training the DNN using the ADAM
(adaptive momentum) algorithm [83] and KNN using the elbow method [84]. The former is
useful for learning highly sparse datasets, while the latter is a technique used to cross-check
the model performance against the number of K chosen. Figure 15a reveals how the DNN
converged in the 1000th training iteration. The KNN model achieved the lowest error rate
at K = 6, as illustrated in Figure 15b.

(a) DNN Epochs vs. model accuracy (b) KNN MSE vs. the number of K selected

Figure 15. 5G IoT simulated environment radiomap example.

Additionally, it is worth noting that the DNNs were trained using the hyperparameters
in Table 4. In the following section, we evaluate and compare the performance of this
model on different radiomaps.
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Table 4. DNN hyperparameters.

Hyperparameter Value

Learning algorithm ADAM

Learning rate 0.001

β 1 0.9

β 2 0.999

Dropout 0.35

Momentum 0.99

Batch size 64

ε 1e-07

Number of hidden layers 3

Number of hidden layers in each neuron 128

7. Results Analysis
7.1. DNN Scoring

To assess the impact of the proposed approach, we trained four models using different
combinations of radiomaps to draw comparisons with the concept suggested in this paper.
The four models were trained as follows:

• Model 1: hybrid radiomap (proposed approach).
• Model 2: hybrid radiomap without information fusion.
• Model 3: simulated radiomap.
• Model 4: simulated radiomap without information fusion.

Using 180 random samples, as suggested by the authors in [85], we tested the misclas-
sification performance of each DNN model at various heights: 0.5 m, 1 m, 1.5 m, and 2 m, as
illustrated in Figure 16. In the graph, it is clear that the hybrid approach with information
fusion achieved the lowest misclassification count out of the four models. As can be seen
in Table 5, 91% of the samples—circa 164—were accurately classified. The model trained
using the proposed hybrid approach without information fusion came second, with a classi-
fication rate of 87% (152 out of 180 samples). The third model was trained with information
fusion and a simulated radiomap, and it performed badly compared to the two previous
models. This model achieved a classification rate of 73% (132 out of 180 samples). The
fourth model, which was trained using a simulated radiomap without information fusion,
performed worse, with a classification score of 56 out of 180. These results demonstrate
how the proposed hybrid approach outperformed the rest of the training scenarios. Given
this, it could be concluded that the hybrid information fusion technique could drastically
improve localisation in a 1D environment. Detailed misclassification counts for each height
are provided in Table 5. The model with the poorest performance is indicated in red, while
the model with the best performance is denoted in blue.

Table 5. Detailed results of DNN misclassification count.

Hybrid Hybrid No Fusion Simulated Simulated No Fusion

0.5 m 0 9 17 18

1 m 8 8 14 17

1.5 m 3 5 10 11

2 m 5 6 7 10

Total 16 28 48 56
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Figure 16. DNN misclassification count results by height.

7.2. KNN Scoring

As in the previous subsection, to assess the feasibility of our proposed technique in
2D localisation, four KNN models were evaluated using 180 samples. The trained models
were as follows:

• KNN 1: hybrid radiomap with information fusion.
• KNN 2: hybrid radiomap without information fusion.
• KNN 3: simulated radiomap with information fusion.
• KNN 4: simulated radiomap without information fusion.

Figure 17 shows the cumulative distribution function (CDF) of the error in metres for
each KNN model. For the 75th percentile, it is demonstrated that the hybrid with fusion,
simulated with fusion, hybrid, and simulated models achieved 90 cm, 1 m, 1.10 m, and
1.20 m errors, respectively. Using the CDF as a metric, the proposed 3D multi-layered hybrid
approach achieved a submetre accuracy, in contrast to the rest of the models. Therefore,
given the results for KNN and the DNN, it can be strongly argued that the proposed
K-DNN method drastically reduced the localisation error.

Figure 17. KNN CDF results.

8. Conclusions and Future Work

In this work, we proposed a novel algorithm for improved indoor positioning in
5G IoT networks. The proposed approach used IQR to deal with outliers and a hybrid
radiomap to reduce the labour cost incurred during the data collection phase. Additionally,
we demonstrated how cooperative machine learning localisation can be implemented on
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top of this technique. Using this approach, we showed how information fusion imple-
mented on 3D multi-layered radiomaps can be used to reduce the localisation error to
the submetre level in 2D and attain a 91% classification rate in 1D. This result could be
achieved in a similar environment if the steps in Figure 4 are followed. This concept has
the potential for expansion into more intricate indoor positioning scenarios, encompassing
diverse radio data sources from a heterogeneous network like 5G micro-infrastructure
(including microcells, femtocells, and picocells). Additionally, our proposed K-DNN model
demonstrated strong performance with RSS-based IoT and wireless sensor networks. As
a result, our future endeavours will focus on enhancing the model by integrating data
from different azimuth angles (45◦, 90◦, 180◦, and 360◦). Another avenue of research could
involve incorporating floor-level detection for buildings with multiple stories.
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