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Abstract: Aiming at the problem of strong subjectivity and insufficient data utilisation in the traditional ship formation combat
effectiveness analysis method, this study proposes a performance analysis fitting model based on deep belief network (DBN),
which effectively reconstructs the combat model and improves the accuracy of the effectiveness analysis of the combat system.
Firstly, the ship formation air defence effectiveness analysis index system is constructed, and then the structure and training
method of the performance analysis fitting model are introduced. Finally, based on the formation of air defence combat, the
performance analysis fitting model based on DBN and its comparative experiments are simulated and analysed. Simulation

results verify the applicability and effectiveness of the model and method.

1 Introduction

As countries shift the focus of military development to the ocean,
ship formations, as an important combat force in modern naval
warfare, are receiving more and more attention from all countries
[1]. The operational effectiveness of surface warship formations is
a measure of warship formations' various tasks, and the analysis of
its effectiveness is a hot issue.

On the one hand, the operational effectiveness analysis of
surface warship formations is a complex problem that requires
comprehensive consideration of integrated qualitative and
quantitative information, as well as subjective and objective
information [2].The analysis of its effectiveness is not only to
examine the operational effectiveness values that can be achieved
based on current combat equipment, but also to be able to assess
which factors have an impact on the operational effectiveness and
how much impact it has; On the other hand, ship formation air
defence operations have complex properties such as non-linear,
multi-dimensional, non-monotonic, and will generate a large
number of high-dimensional combat data in actual combat
exercises or operational simulations. However, in a lot of practical
work, it is found that the application of these data is still at a simple
statistical level and is not fully utilised [3]. Therefore, how to use
data to evaluate the effectiveness of combat systems is a very
valuable issue.

The traditional combat system effectiveness evaluation mainly
adopts methods based on experts, intuition, knowledge and logic,
such as analytic hierarchy process (AHP) method [4], cloud model
[5], etc. These methods are subjective in the evaluation process,
resulting in great uncertainty and it is difficult to obtain effective
results stably.

In view of the above problems, this paper introduces the
relevant knowledge of deep learning into the ship formation air
defence combat system. A performance evaluation fitting model
based on deep belief network (DBN) is constructed by using deep
learning's superior feature learning ability. The model is able to
learn the appropriate and effective features from a large number of
complex operational data, and then reconstruct the operational
model. It solves the problem that the traditional method is
insufficient for the utilisation of combat data and the subjectivity of
the evaluation process is strong.
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2 Formation air defence effectiveness evaluation
index system

The construction of the performance analysis index system is the
prerequisite for the performance analysis of the warship formation
combat system. The system performance indicators of the warship
formation air defence combat system can be obtained from the
combination of subsystem performance indicators of the system,
and the performance indicators of these subsystems are closely
related to the equipment performance indicators. The meanings of
the ship formation performance indicators, subsystem performance
indicators, and equipment performance indicators are described
below.

Equipment performance indicators are inherent characteristics
of the physical components of the system equipment, which
essentially reflect the capabilities of the system. This paper mainly
refers to the equipment performance indicators of information
detection system, command and control system and weapon strike
system, such as missile quantity, kill radius, radar detection
accuracy, radar detection range, information processing speed,
information processing accuracy and so on. The sub-system
performance indicator refers to the measure of the degree to which
the different subsystems of the ship formation complete the
relevant subtasks. It mainly includes the formation probability of
the ship formation, the timeliness of the command, and the
probability of damage to the target. The system performance
indicator is a measure of the overall operational mission of the ship
formation. There are different ways to choose depending on the
angle of assessment. It mainly includes the interception probability
of the incoming target, the probability of missile penetration, and
SO on.

From the above analysis, it can be seen that the equipment
performance index, subsystem operational efficiency index and
system operational efficiency index of the warship formation air
defence combat system are numerous, and the complete
construction and analysis work is extremely large. This paper
mainly uses the system to verify the performance analysis fitting
model. Therefore, the interception probability of the incoming
target is selected as the system operational performance index from
the interception angle of the incoming target. Analysis of its
relationship with performance indicators is shown in Fig. 1.

Then the input of the system can be obtained through the design
of the experimental scheme, and the output data is obtained
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through the simulation system. The performance of the system can
be analysed using the obtained input and output data.

3 Performance analysis fitting model based on
DBN

Standard-restricted Boltzmann machine is commonly used for the
first layer of restricted Boltzmann machine (RBM), and also
known as Bernoulli-Bernoulli restricted Boltzmann machine
(BRBM). However, all of its nerve units can only take 0 or 1,
which affects its application. Although some methods can be used
to model a continuous distribution with a standard constrained
Boltzmann machine, it is generally not sufficient to construct a
good model for complex real data [6].

In order to extract the characteristics of real-valued data better,
this paper will change the first layer (input layer) of the restricted
Boltzmann machine that constitutes the DBN network from BRBM
to Gauss—Bernoulli restricted Boltzmann machine (GRBM). The
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Boltzmann machine is changed from BRBM to GRBM (Gaussian
RBM, GRBM) [7], the remaining layers are still composed of
BRBM.

Based on the excellent ability of DBN in extracting data
features, a performance fitting analysis model is constructed [8].
Next, the structure and training methods of the performance
analysis fitting model are mainly analysed.

3.1 Structure of the performance analysis fitting model

The performance analysis fitting model based on the DBN consists
of a fully connected neural network and a DBN structure consisting
of several layers of RBMs. The performance analysis fit model
structure is shown in Fig. 2.

The hidden layer of the last layer of the restricted Boltzmann
machine that forms the DBN and the fully connected back
propagation (BP) neural network constitute the deep neural
network (DNN), which serves as the regression layer for the entire
performance analysis fitting network. The output feature vector of
the last layer of the hidden layer of DBN is used as the input vector
of the neural network. The pre-training process of DBN can be
regarded as the process of parameter initialisation of the whole
neural network. The output of the model is mainly the value of the
system performance indicator, and the input data is the value of
each key performance indicator that affects the final system
performance indicator value. Each of the influencing factors can be
divided again to form an input vector x, which forms a training
sample with the output vector y.

3.2 Pre-training and tuning of performance analysis fitting
models

DBN [9] is composed of multiple RBMs. The hidden layer of the
first layer RBM is used as the display layer of the second RBM.
After layer-by-layer superposition, a DBN structure is formed. The
RBM training method can be applied to the DBN layer by layer
training. The specific training process is as follows: firstly, the
layer-by-layer unsupervised pre-training is performed by the
restricted Boltzmann machine according to the layer-by-layer
greedy method, and then the back-propagation algorithm is used
for tuning. The network structure of the RBM is shown in Fig. 3.

It consists of a visible layer v and an implicit layer 7. An RBM
is an energy-based model that defines its energy function as

E(V,h,e) = — ZV,-bi— Zh]cj— Zvihjw,-j (1)
i 7 iJ
where v = (v),h = (hj) represent the vector of the visible layer and
the corresponding unit of the hidden layer, respectively;
6= {W,b,c} represents the set of all connection weights and
parameters of the RBM; w;; represents the symmetric connection

weight between the visible layer and the corresponding unit of the
hidden layer; b;, c; are the offset of the visible unit v; and the hidden

unit v;, respectively.
Based on the energy function, the joint probability distribution
of the visible and hidden layers is

P, h) = e @)

where Z is the normalisation coefficient, which makes the sum of
all probability distributions equal to 1, which can be expressed as

Z= Ze‘a"‘h)‘
v,h

The probability when the visual unit 2; = 1 is

p(hj=1|v) = a( > wivi + c_,—) 3)

i=1

395

This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



where o(x) represents a sigmoid activation function whose
expression is related to the selected function.
The probability when the implicit unit v; = 1 is

pv;=1]lh) = 0’( z wijihj + b; “4)

J=1

For the RBM model introduced above, the training process is
mainly to find a probability distribution that can generate training
samples with maximum probability, that is, to find a weight vector
W that satisfies the requirements. In 2002, Hinton et al. [10]
proposed the contrast divergence (CD) algorithm for the rapid
training of RBM networks. It obtains the optimal value of the
parameter by solving the negative gradient of the log-likelihood
function. The process is shown in Fig. 4.

It should be noted that the visual layer structure constituting the
DBN is different. The first layer of RBM that is commonly used to
form a DBN is the standard-restricted Boltzmann machine, also
known as the BRBM. However, because all its visible nodes and
hidden nodes can only take 0 and 1 values, it is greatly limited in
application. Although some methods can be used to model a
continuous distribution with a standard constrained Boltzmann
machine, it is generally not sufficient to construct a good model for
complex real data [11].

In order to better extract the characteristics of real-valued data,
this paper will replace the first-layer (visual layer) restricted
Boltzmann machine that constitutes the DBN network from a
standard RBM to a GRBM (Gaussian RBM, GRBM) [7], the
remaining layers are still composed of standard RBM. The GRBM
energy function is

1 (i— by’ vihjwi;
Ew.h.0)= 5 = - D el 2 ()
i J

L]

where ¢ represents the variance of the input value of the visual
node.

In the unsupervised pre-training phase, from the visible layer to
the last hidden layer, each adjacent two layers of the DBN is
treated as a restricted Boltzmann machine. First, the first RBM is
trained using the CD algorithm to obtain the corresponding weight
parameters. The RBM parameters are then fixed and used as input
to continue training the next RBM of the construction until the end
of the last restricted Boltzmann training.

Each layer of RBM constructed through the above process can
only ensure that the weights in the layer are optimised for the
feature extraction of the layer, and the error of the RBM of the
previous layer is not corrected during the training process, and will
gradually pass to the next layer. Therefore, in order to ensure the
optimality of the overall result, it is necessary to further optimise
the weight of the network.

The DBN is usually regarded as a DNN, and the parameters
derived from the previous training are used as initial parameters of
the entire network. Then use the backpropagation method to
supervise the overall weight of this network. Specific steps are as
follows:

(1) The minimum mean square error criterion is used to measure the
update effect of the parameter. When the cost function is minimum,
the parameter update is completed. The cost function is defined as
follows:

N
E= %; (v{(w'.b') - v (6)

where E represents the mean squared error, Y, Y; represent the
actual output and ideal output of the output layer, respectively, and
W, b represents the weight and offset parameters of the I-layer to
be learned.

(i1) The backpropagation algorithm is used to solve the gradient
values of each layer of the network, and the weights and offset
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parameters of the network are updated by using the solved gradient
values. The update process is as follows:

oE
(W('), b(’)) - (W(”, b(’)) . W 7

where ¢ represents the learning efficiency.

(iii) Through the above weight update rule, the weight is gradually
adjusted to minimise the cost function value, thereby obtaining an
optimal weight combination.

4 Simulation experiment
4.1 Simulation environment

The ship formation air defence effectiveness evaluation model of
this paper is completed by using C++ programming language in
VC++ 6.0 compilation environment. The performance analysis
fitting model based on the DBN and the simulation analysis of the
comparative experiment were completed using MATLAB 2015b.

The ship formation combat model considers the 16 performance
indicators in Table 1 as input factors to the system, and the values
of other factors are fixed. The output factor of the ship formation
air defence combat model selects the intercept probability of the
incoming target. The output factor value can be obtained by
simulation after determining the input factors of the warship
formation combat model. The value space and initial value of the
system input factors are shown in Table 1.

4.2 Construction and analysis of the performance analysis
fitting model

Next, we first focus on the number of layers of the network hidden
layer and the number of neurons in each layer of the performance
analysis fitting model, and analyse the influence of different
structural parameters on the performance analysis fitting model.

4.2.1 Influence of model parameters and structure on
performance fitting effect: The system input indicators are
randomly sampled, and 15,000 sets of experimental schemes are
generated as the combat model input. The corresponding output
factor values are obtained by using the warship formation combat
model simulation. The 15,000 sets of data containing input factors
and output factor values constitute experimental data. In the
experiment, the evaluation index of the performance analysis
fitting model is mainly selected from the perspective of error. The
selected indicators are mainly the mean absolute percentage error:

Ynh — Ysj

Ysj (8)

N
1
MAPE = Ni;
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and the root mean square error:

)

The other parameters of the model are set as shown in Table 2.

In order to obtain the best model structure, first set the number
of hidden cells in the first layer, and find the optimal number
according to the evaluation index and fix it; Then add a hidden
layer and determine the optimal number of hidden nodes in the new
layer according to the above method; Add next hidden layers until
the accuracy of the evaluation index is no longer improved.

Table 3 gives the evaluation index values for the model when
selecting the number of different hidden layers and different nodes
for each layer. There are three choices for hidden layers, which are
1, 2 and 3; there are six choices for each layer, which are 5, 10, 20,
30, 40, and 50. The data used is 16,000 sets of experimental data,
which are divided into 14,000 sets of training data and 2000 sets of
test data. These data are used to train the model and calculate the
value of the evaluation index. In order to reduce the error caused
by random sampling of the experimental samples, the model is
trained 10 times according to the selected data amount, and then
the values of the evaluation indexes are, respectively, calculated,
and finally the average value is taken. The results are shown in
Table 3 and Fig. 5:

Analysis of the above results can lead to the following
conclusions:

(1) As the number of hidden layers and the number of nodes
increase, the accuracy of the fitting data of the model will increase
within a certain range, and the time spent on training the network
also increases. When the model is particularly complicated, there
may be problems such as over-fitting, training parameters need to
be dynamically adjusted, and the fitting effect is not so good.
Therefore, factors such as model complexity, training difficulty,
and training time need to be considered when constructing the
model.

Table 1 Value space and initial value of the input indicator

(i1)) When the network structure contains two hidden layers, the
RMSE of the fitted data is relatively large, indicating that the
results have large fluctuations, possibly due to changes in the type
of restricted Boltzmann machine.

(iii) For the data set selected in this paper, the performance fitting
model selects three hidden layer structures, and the first hidden
layer selects 20 nodes, the second hidden layer selects 30 nodes,
and the third hidden layer. When the 30 nodes are selected, the
fitting effect of the model is better. At this time, the model has a 5-
layer structure.

4.2.2 Comparison between DBN fitting method and neural
network method: The effects of modelling accuracy of the two
methods are analysed under the condition of training samples with
different data amounts. The data samples were set to 300, 500,
1000, 3000, 5000, 10,000, and 30,000 groups by random
extraction, and the data was used to train the model. In order to
reduce the error of the evaluation parameters caused by the random
extraction of data, the data of the selected data amount is extracted
multiple times in the experiment, and the obtained errors are
averaged. In addition, in order to verify the effectiveness of the
method, a BP neural network of the same structure was selected for
comparison. From the previous analysis, the number of hidden
layers of the model and the number of nodes in each layer have a
relatively large impact on the final effect of the model. Therefore,
in order to reduce the influence of the number of hidden layers and
the number of nodes in each layer on the fitting effect, Use the
method in the previous section to find the optimal network
structure and then compare.

The other parameters of the neural network are set as shown in
Table 4.

The experimental results are shown in Table 5. The three data
from left to right in the table refer to MAPE (%), RMSE (%), and
model runtime 7 (s).

From the above results, it can be seen that the fitting deviation
(MAPE) and accuracy (RMSE) of the two methods will be
improved with the increase of the data amount; When the amount
of data is small, the neural network has a slightly better fitting

Parameter Meaning Value space Initial value
x1 radar transmitting pulse power 160—200 kW 180
x2 radar antenna gain 105-115dB 109
x3 radar working wavelength 15-30 cm 24
x4 effective scattering cross-sectional area of the target 0.1-0.5 0.3
x5 radar loss factor 16-26 dB 22
X6 radar receiver noise figure 3-8dB 6
x7 accumulation efficiency 15-20 18
x8 weather constant 0.8-1 0.9
x9 radar maximum detection distance 150-350 km 250
x10 radar minimum detection distance 5-30 km 20
x11 the time from discovering the enemy's situation to the command receives the information 10-30s 40
x12 the time from receiving the information to complete the preparation 10-90 s 50
x13 the time from the force receive the task to the task is completed 30-90 s 60
x14 missile damage radius 50-100 m 70
x15 missile shooting error 10-50 m 30
x16 number of missile shots 1-3 1
Table 2 Performance analysis fitting model other parameter settings

Parameter Value

input dimension of GRBM 16

learning rate of GRNM/BRBM 0.01/0.1

the variance of GRBM 0.01

initialisation weight/offset of GRBM and 0.01

BRBM Vecto 0.1r* randn(numvis,numhid)/Vector 0
maximum number of iterations in the pre-training and tuning phase 1000

tuning stage error function target value 0.0001
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Table 3 Values of model evaluation indicators under

different parameters

Table 4 Neural network parameter settings

Parameter

Value

number of hidden layers

oneof1,2,3,4
number of neuron neuron nodes one of 5 10, 20, 30, 40, 50, 100,

200
network input/output dimension 16/1
training function traingd
learning rate 0.1

Table 5 Comparison of DBN fitting method and neural

network method

The amount of DBN fitting (M/R/T)

BP neural network

data (M/R/T)

100 6.015/5.405/1.74 4.738/3.359/0.75
300 3.514/3.056/1.95 3.487/3.598/0.74
500 2.383/1.401/2.15 2.939/2.383/0.71
1000 2.236/1.474/2.42 2.847/1.980/0.72
3000 2.013/1.151/2.68 2.740/1.589/0.71
5000 1.234/1.465/4.81 2.766/1.416/0.75
10,000 1.192/1.416/7.15 2.527/1.219/0.76
30,000 1.010/1.087/9.30 2.487/1.135/0.79

Number of hidden  Number of MAPE, % RMSE, % Time, s
layers hidden layer
units
1 (GRBM) 5 6.066 7.692 10.13
10 4.977 3.651 10.38
20 3.796 2.636 10.97
30 3.878 2.645 11.30
40 3.851 2.656 11.71
50 3.824 2.658 12.72
2 (1GRBM, 1BRBM) 5 4.858 2.265 25.97
10 3.727 3.670 26.17
20 2.953 2.618 26.84
30 2.207 3.587 27.75
40 2.208 3.581 28.64
50 2.217 2.588 29.65
3 (1GRBM, 2BRBM) 5 2.391 2.786 34.19
10 1.923 2.061 34.55
20 1.519 1.988 35.50
30 1.117 1.260 36.99
40 1.366 1.436 36.89
50 1.381 1.457 37.71
15
I \IAPE/%
[ RMSE/%
| I— ) —
12 —
§ o 1
g
3r 4
0 5 10 20 30 40 50 o

Number of hidden layer units

Fig. 5 Effect of different node numbers on the system fitting effect when
the hidden layer is 1

result; when the amount of data increases, the deviation of the
fitting results (MAPE) is relatively close, and the model fitting
accuracy (RMSE) proposed in this paper is better. The result has
higher stability; When the amount of data is large, the proposed
fitting bias (MAPE) and accuracy (RMSE) of the model are better.
The model proposed in this paper takes longer than the neural
network fitting method. However, since the real-time requirements
are not high when using existing data for combat system
optimisation, it is acceptable to use a longer time.

5 Conclusion

Reasonable performance analysis methods can effectively improve
the effectiveness of warship formation air defence operations. This
paper proposes a performance analysis fitting model based on
DBN, which effectively reconstructs the combat model and
improves the effectiveness of the effectiveness analysis results of
the combat system. Firstly, the ship formation air defence
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effectiveness analysis index system is constructed, and then the
structure and training method of the performance analysis fitting
model are introduced. Finally, based on the formation of air
defence combat, the performance analysis fitting model based on
DBN and its comparative experiments are simulated and analysed.
The simulation results verify that the model has higher fitting
accuracy under the same conditions.
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