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ABSTRACT 

This paper presents an investigation into the development of parametric and non-parametric 

approaches for dynamic modelling of a flexible manipulator system. The least mean squares, 

recursive least squares and genetic algorithms are used to obtain linear parametric models of 

the system. Moreover, non-parametric models of the system are developed using a non-linear 

AutoRegressive process with eXogeneous input model structure with multi-layered 

perceptron and radial basis function neural networks. The system is in each case modelled 

from the input torque to hub-angle, hub-velocity and end-point acceleration outputs. The 

models are validated using several validation tests. Finally, a comparative assessment of the 

approaches used is presented and discussed in terms of accuracy, efficiency and estimation of 

the vibration modes of the system. 
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1 INTRODUCTION 

The increased utilization of robotic manipulators in various applications has been motivated 

by the requirements of industrial automation in recent years. Among the two types of 

manipulators, namely, rigid and flexible, attention is focused more on flexible manipulators, 
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as they are capable of being operated at high speeds and handling of larger payloads as 

compared to rigid manipulators with the same actuator capabilities. Moreover, flexible 

manipulators offer several other advantages. These include: light weight, lower energy 

consumption, safer operation due to reduced inertia, smaller actuator requirement, low 

mounting strength requirement, low rigidity requirement and less bulky design.1 Due to such 

advantages flexible manipulators are extensively used in various applications, including 

space exploration and nuclear plants. 

System identification is extensively used as a fundamental requirement in many 

engineering and scientific applications. The objective of system identification is to find exact 

or approximate models of dynamic systems based on observed inputs and outputs. Once a 

model of a physical system is obtained, it can be used for solving various problems; for 

example to control the physical system or to predict its behaviour under different operating 

conditions.2, 3 A number of techniques have been devised by researchers to determine models 

that best describe input-output behaviour of a system. Parametric and non-parametric 

identification are two major classes of system modelling techniques. 

Parametric identification of a system comprises two main steps. The first step is 

qualitative operation, which defines the structure of the system for example, type and order of 

the (differential/difference) equation relating the input to the output. This is known as 

characterization, which means selection of a suitable model structure, for example, 

AutoRegressive with eXogeneous inputs (ARX), AutoRegressive Moving Average with 

eXogeneous inputs (ARMAX), Box- Jenkins etc. The second step namely identification, 

consists of determination of the numerical values of the structural parameters which minimize 

the distance between the system to be identified and its model. Common estimation methods 

are least mean squares (LMS), recursive least squares (RLS), instrumental-variables, 

maximum-likelihood and prediction-error. In simple terms, this is a curve fitting exercise. 

Recently, genetic algorithm (GA) based parametric identification techniques have been 

utilised in many applications. Kristinsson and Dumont used a GA for purposes of system 

identification and control.4 The GA has been used for non-linear model term selection by 

Fonseca et al.,5 where, the GA has been employed as an alternative to orthogonal least-square 
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regression  to find a smaller set of non-linear model terms from a broader set of possible 

terms. Caponetto et al.6 have utilised GAs to determine the parameters of the Chua’s 

oscillator. However, it is evident from the literature that little has been reported on the use of 

GA-based optimisation in modelling flexible robot arms. 

In the case of (non-linear) non-parametric models, neural networks (NNs) and fuzzy 

logic are commonly utilised. Neural networks possess various attractive features such as 

massive parallelism, distributed representation and computation, generalization ability, 

adaptability and inherent contextual information processing.7 Due to the efficient nature of 

their working principles and other attractive characteristics, attempts are now made to use 

neural networks extensively in various identification and control applications, including 

robotics. 

Among the various types of NNs, the multi-layered perceptron (MLP) and radial basis 

function (RBF) are commonly utilised in identification and control of dynamic systems. 

Narendra and Parthasarathy have addressed system identification using the globally 

approximating characteristics of NNs, and have suggested a number of identification 

structures using NNs for the adaptive control of unknown non-linear dynamic systems.8 A 

comparative study of four NN learning methods for dynamic system identification has been 

reported by Qin et al.9 Backpropagation through adjoints for the identification of non-linear 

dynamic systems using recurrent neural models has been addressed by Srinivasan et al.10 

They re-investigated the backpropagation for an efficient evaluation of the gradient with 

arbitrary interconnections of recurrent systems. They also proposed the accelerated 

backpropagation to eliminate the delay in obtaining the gradient. Training methodologies of 

recurrent NNs for dynamical process modelling have been addressed by Nerrand et al.11 

Olurotimi has addressed recurrent network training methodologies with feedforward 

complexity to learn Bessel’s difference equation, thereby generating Bessel functions within 

as well as outside the training set.12 Hagan and Menhaj have proposed modification of the 

backpropagation algorithm with the Marquardt algorithm to train feedforward networks. 13 

The successful application of RBF networks for modelling dynamical systems has also 

been widely addressed in the literature.14-16 Chen et al.17 proposed the orthogonal least 
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squares (OLS) learning algorithm for RBF networks to model non-linear dynamic systems. 

Elanayar and Yung18 have addressed the use of RBF networks to approximate the dynamic 

and state equations of stochastic systems and to estimate state variables. Identification of 

robotic manipulators with NNs has also been reported in the literature.19 However, the 

literature is very limited in the application of NNs to the identification of flexible manipulator 

systems. 

In this investigation dynamic modelling of a single-link flexible manipulator is 

considered using parametric and non-parametric identification techniques. The resulting 

models are subjected to several validation methods, and a comparative assessment of the 

results is presented and discussed. 

2 THE FLEXIBLE MANIPULATOR SYSTEM 

A schematic diagram of the experimental manipulator rig used in this study is shown in 

Figure 1. The main parts of the rig include: the flexible arm, the driving motor with amplifier, 

measuring devices and a computer with interfacing system. The measuring devices used to 

record the various responses of the manipulator are shaft encoder, tachometer and 

accelerometer.20 The shaft encoder is used for measuring the hub angle of the manipulator. A 

tachometer is used for measurement of the hub velocity. An accelerometer is located at the 

end-point of the flexible arm measuring the end-point acceleration. An IBM compatible PC 

based on 486DX2-50MHz CPU, with 20 Mbytes of dynamic and 540 Mbytes of static 

memory is used with this experimental rig. Data acquisition and control are accomplished 

through an RTI-815 I/O board. This board can provide a direct interface between the 

microcomputer, the actuator and transducers, through AM9513A counter/timer chip for a 

variety of data acquisition, analog output, digital I/O and time related digital I/O applications. 

3 PARAMETRIC IDENTIFICATION TECHNIQUES 

The characteristics of flexible structure systems are generally of distributed nature, 

amounting to resonance modes of vibration. The primary interest in this work lies in locating 

frequencies of these resonance modes, which ultimately dictate the behaviour of the system. 
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With a view to find an accurate model of the system a comparative assessment of the LMS, 

RLS and GA methods is carried out in the parametric dynamic modelling of the flexible 

manipulator. 

3.1 Least mean squares algorithm 

The LMS algorithm is based on the steepest descent method.21 The computational procedure 

of the LMS algorithm can be summarized as follows: 

Initially, set each weight )(kwi ; 1,...,1,0 −= Ni , to an arbitrary fixed value, such as 0. 

For each subsequent sampling instants , 2, ,1 L=k execute the relations below in the order 

given. 

 ( ) ( )∑
−
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−=
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1)(ˆ
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 ( ) ( ) ( )kykyke ˆ−=  (2) 
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where ( )kx  is the observation vector at time step k , ( )ke  is the error between the actual 

output ( )ky  and the predicted output )(ˆ ky  and µ  represents the learning rate and is a 

constant. 

3.2 Recursive least squares algorithm 

The standard RLS estimation process at a time step k is described by22 
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where, )(kΨ  represents the observation matrix, )(ky  is the system output, )(kΘ  is the model 

parameter vector, P k( )  is the covariance matrix and λ  represents the forgetting factor. Thus, 
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the RLS estimation process is to implement and execute the relations in equations (4)-(6) in 

the order given. The convergence of the algorithm is determined by the magnitude of the 

modeling error ε( )k reaching a minimum or by the estimated set of parameters reaching a 

steady level. The purpose with using forgetting factor is to help the algorithm converge to the 

global minimum. However, the use of a forgetting factor could cause the predicted values of 

parameters tend to fluctuate rather than to converge to a certain value. The level of 

fluctuation depends on the value of λ ; the smaller the value of λ the larger the fluctuation in 

the parameter values. 

3.3 Genetic algorithms 

Genetic algorithms form one of the prominent members of the broader class of evolutionary 

algorithms, inspired by the mechanism of natural biological evolution, i.e., the principles of 

survival of the fittest.23 From an operational perspective, a GA comprises two basic elements-

a set of individuals, i.e., potential solutions (the population) and a set of biologically inspired 

operators active over the population. A new set of approximations/solutions is created at each 

generation, by the process of selecting individuals according to their level of fitness in the 

problem domain and breeding them together using the operators. This process leads to the 

evolution of populations of individuals that are better suited to their environment than the 

individuals that they were created from, just as in natural adaptation.24 In fact, individuals or 

current approximations are encoded as strings (typically represented in binary), 

chromosomes, and then the most promising strings are manipulated using the GA operators 

for better and better approximation to a solution. The operating mechanism of a GA can be 

described through the stages shown in Figure 2. These comprise the following: 
 

1. Creation of initial set of potential solutions (population) as strings: An initial population 

of potential solutions is created. Each element of the population is mapped onto a set of 

strings (the chromosome) to be manipulated by the genetic operators. 

2. Evaluation of each solution and selection of the best ones: The performance of each 

member of the population is assessed through an objective function imposed by the 
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problem. This establishes the basis for selection of pairs of individuals that will mate 

during reproduction. For reproduction, each individual is assigned a fitness value derived 

from its raw performance measure, given by the objective function. This value is used in 

the selection to bias towards more fit individuals. Highly fit individuals, relative to the 

whole population, have a high probability of being selected for mating, whereas less fit 

individuals have a correspondingly low probability of being selected.25 

3. Genetic manipulation to create new population: In this phase, genetic operators such as 

crossover and mutation are used to produce a new population of individuals (offspring) 

by manipulating the “genetic information” usually called genes, possessed by the 

members (parents) of the current population. The crossover operator is used to exchange 

genetic information between pairs, or larger groups, of individuals. Mutation is generally 

considered to be a background operator, which ensures that the search process is not 

trapped at a local minimum, by introducing new genetic structures. 
 

After manipulation by the crossover and mutation operators, the individual strings are 

then, if necessary, decoded, the objective function evaluated, a fitness value assigned to each 

individual and individuals selected for mating according to their fitness, and so the process 

continues through subsequent generations. In this way, the average performance of 

individuals in a population is expected to increase, as good individuals are preserved and 

breed with one another and the less fit individuals die out. The GA is terminated when some 

criteria are satisfied, e.g., a certain number of generations completed or when a particular 

point in the search space is reached. 

In this investigation, randomly selected parameters are optimized for different, arbitrarily 

chosen order to fit to the system by applying the working mechanism of GAs as described 

above. The fitness function utilized is the sum-squared error between the actual output, y n( ) , 

of the system and the predicted output, $( )y n ; 

 ( )f e y n y n
i

n

( ) ( ) $( )= −
=
∑ 2

1

 (7) 
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where n  is the number of input/output samples. With the fitness function given above, the 

global search technique of the GA is utilised to obtain the best set of parameters among all 

the attempted orders for the system. 

4 NON-PARAMETRIC IDENTIFICATION TECHNIQUES 

Various modelling techniques can be used with NNs to identify non-linear dynamical 

systems. These include state-output model, recurrent state model and Non-linear 

AutoRegressive Moving Average process with eXogeneous input (NARMAX) model. It is 

evident from the literature that if the input and output data of the plant are available, the 

NARMAX model is a suitable choice for modelling nonlinear systems with suitable neuro-

learning algorithms. Mathematically the model is given by 26  
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 (8)  

where )(ˆ ty is the output vector determined by the past values of the system input vector, 

output vector and noise with maximum lags yn , un  and en  respectively, )(⋅f  is the system 

mapping constructed through MLP or RBF neural networks with an appropriate learning 

algorithm. The model is also known as NARMAX equation error model. However, if the 

model is good enough to identify the system without incorporating the noise term or 

considering the noise as additive at the output the model can be represented in a NARX form 

as 16, 26 
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u

y

+−−−

−−−=

L

L
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This is described in Figure 3. 

4.1 Multi-layered perceptron neural networks and the backpropagation 
learning algorithm 

Multi-layered perceptron NNs are extensively used in numerous applications including 

pattern recognition, function approximation, system identification, prediction and control, 
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speech and natural language processing. An MLP-NN is capable of forming arbitrary 

decision boundaries and representing Boolean functions. 27 The network can be made up of 

any number of layers with reasonable number of neurons in each layer, based on the nature of 

the application. The layer to which the input data is supplied, is called the input layer and the 

layer from which the output is taken is known as the output layer. All other intermediate 

layers are called hidden layers. The layers are fully interconnected which means that each 

processing unit (neuron) is connected to every neuron in the previous and succeeding layers. 

However, the neurons in the same layer are not connected to each other. A neuron performs 

two functions, namely, combining and activation. Different types of function such as 

threshold, piecewise linear, sigmoid, tansigmoid and Gaussian are used for activation. 

The backpropagation learning algorithm is commonly used with MLP neural networks. 

According to the backpropagation algorithm the connection weights between the layers of the 

multilayered NN are adapted in accordance with the following rules: 

 jOkkjw ηδ=∆  (10) 

 iOjjiw ηδ=∆  (11) 

where, for tansigmoid function, 

 δ τk k k k kO O O= − −( )( )1 2  (12) 

 δ δj j j k
k

kjO O w= − ∑( )1 2  (13) 

O O Ok j i, ,   and    are output values at the output, hidden and input layers respectively. wkj  is a 

connection weight from neuron j  in the hidden layer to neuron k  in the output layer. 

Similarly, wji  is a connection weight from neuron i at the input layer to neuron j  in the 

hidden layer. Derivation of the algorithm can be found in a number of books.26, 28  

The NN training may get stuck in a shallow local minimum with standard 

backpropagation. In order to avoid entering the local minimum, the learning parameters, 

number of hidden neurons, or initial values of the connecting weights could be changed. The 

learning rate η  is a proportionality constant. The larger this constant, the larger the changes 
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in the connection weights. Usually, a learning rate η  is selected as large as possible without 

leading to oscillations. It is noted that increasing the learning rate could solve the problem of 

shallow local minimum associated with the standard backpropagation algorithm. In order to 

increase the learning rate, without leading to oscillation in the output response, equations (10) 

and (11) can be modified to include a momentum term. This can be accomplished by the rule 

28 

 ∆ ∆w t O w tkj k j kj( ) ( )+ = +1 ηδ α  (14) 

 ∆ ∆w t O w tji j i ji( ) ( )+ = +1 ηδ α  (15) 

where t  indexes the presentation time, η  is the learning rate, and α is a constant which 

determines the effect of past connection weight changes on the current direction of movement 

in the connection weights space.  

The shallow local minimum problem associated with standard backpropagation can 

alternatively be solved by using the Marquardt-Levenberg29 modified version of the 

backpropagation. While backpropagation is a steepest descent algorithm, the Marquardt-

Levenberg algorithm is an approximation to Newton’s method.30  

4.2 Radial basis function neural networks 

The RBF-NN is a special class of multilayer feed-forward networks, widely studied and 

applied with supervised learning to solve engineering problems. The hidden neurons of this 

network provide a set of “functions” that constitute an arbitrary “basis” for the input vectors 

when they are expanded into the hidden-neuron space. These functions are called “radial 

basis” functions. The distance between the input vector and a prototype vector (centre vector) 

determines the activation of the hidden neuron. In contrast to the MLP network, the RBF 

network has one hidden layer. The input layer has neurons with a linear function that simply 

feeds the input signals to the hidden layer. Moreover, the connections between the input layer 

and the hidden layer are not weighted, that is, each hidden neuron receives each 

corresponding input value unaltered. The hidden neurons are processing units that perform 

the RBF. The transfer function of the hidden neurons in the RBF network can be local or 
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global. Local RBFs that are widely studied include Gaussian and inverse multiquardric. 

Among the global RBFs, thin plate spline, linear and multiquardric functions are widely used. 

Consider an RBF neural network with the input at time t  denoted by 
T

n tututut )]( , ),(  ),([)( 21 L=u and let the connection vector (centre) of each hidden neuron be 

denoted by ) , ,2 ,1for  ( hj nj L=c , where nh  represents the number of neurons in the hidden 

layer. Then, the output of each neuron in the hidden layer is given as 

 ) , ,2 ,1(      ))(()( hjjj njtfth L=−= cu  (16) 

The connection between the output layer and the hidden layer are weighted. Each neuron of 

the output layer has a linear input-output relationship so that they perform simple 

summations; that is, the output of the k th neuron in the output layer at time t is 

 $ ( ) ( ) ( ( ) )y t w h t w f tk jk
j

n

j jk
j

n

j j

h h

= = −
= =
∑ ∑

1 1

u c ) , ,2 ,1( Mk L=  (17) 

where M  represents the number of neurons in the output layer and wjk  is the connection 

weight between the j th neuron in the hidden layer and k th neuron in the output layer. 

Including the bias parameter wk 0  in the linear sum, equation (17) becomes, 

 $ ( ) ( ) ( ( ) )y t w w h t w w f tk k jk
j

n

j ko jk
j

n

j j

h h

= + = + −
= =
∑ ∑0

1 1

u c  (18) 

The bias parameter compensates for the difference between the average value over the data 

set of the basis function activation and the corresponding average value of the targets. 

It follows from equations (16) and (18) that, in general an RBF-NN is specified by two 

sets of parameters: the connection weights and the vector of centres. These parameters can in 

principle be determined from the available sample vectors (training data) by solving the 

optimisation problem,26 

 
2

1
)(ˆ)(∑

=

−=
S

t
ttE yy  (19) 
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where S  is the number of available sample vectors, T
M tytytyt )]ˆ , ),(ˆ ),(ˆ[)(ˆ 21 L=y  is the 

output vector computed from the sample input vector using equations (16) and (18), and 

y( )t is the corresponding desired output vector.  

Since an RBF-NN has only one layer of weighted connections and the output neurons are 

simple summation units, equation (19) will become a linear least-squares problem once the 

vector of centres and the scaling parameters have been determined. That is, 

 min ( ) $ ( ) min $ ,
w w

y y wF yt t
t

S

− = −
=
∑

1

2
2  (20) 

where, }{ ijw=w  is an hnM ×  matrix of connection weights, F  is an n Sh ×  matrix 

consisting of the outputs of the hidden neurons and whose elements are computed with 

 ) , ,2 ,1  ; , ,2 ,1(   ))(( StnjtfF hjjjt LL ==−= cu  (21) 

and SMS ×=   theis )](ˆ , ),2(ˆ ),1(ˆ[ˆ yyyy L matrix of desired outputs. The connection weight 

matrix w in equation (16) can be found in an explicit form as 

 += Fyw ˆ  (22) 

where F +  is the pseudo-inverse of F .26 

The task of a learning algorithm (optimisation scheme) for the RBF network is to select 

the centres and find a set of weights that makes the network perform the desired mapping. A 

number of learning algorithms are commonly used for this purpose including, 
 

♦ Non-linear optimisation of all the parameters (centres and output weights, or other free 

parameters). 

♦ Random centre selection and a least square algorithm. 

♦ Clustering and a least square algorithm. 

♦ The OLS algorithm. 
 

Among these the OLS algorithm17 is commonly used, and adopted in this work. 
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5 MODEL VALIDATION 

Once a model of the system is obtained, it is required to validate whether the model is good 

enough to represent the system. A number of such validation tests are available in the 

literature, some of which are described below:31 

A common measure of predictive accuracy used in control and system identification is to 

compute the one step-ahead (OSA) prediction of the system output. This is expressed as 

 ))( ...., ),1( ),( ...., ),1( ),(()(ˆ yu ntytyntututufty −−−−=  (23) 

where )(⋅f  is a non-linear function, u and y are the inputs and outputs respectively. The 

residual or prediction is given by 

 )(ˆ)()( tytyt −=ε  (24) 

Often )(ˆ ty  will be a relatively good prediction of y(t) over the estimation set, even if the 

model is biased, because the model was estimated by minimising the prediction errors. 

Another method to evaluate the predictive capability of the fitted model is to compute 

the model predicted output (MPO). This is defined by 

 ))(ˆ ...., ),1(ˆ ),( ...., ),1( ),(()(ˆ yddud ntytyntututufty −−−−=  (25) 

and the deterministic error or deterministic residual is 

 )(ˆ)()( tytyt dd −=ε  (26) 

If only lagged inputs are used to assign network input nodes, then 

 )(ˆ)(ˆ tyty d=  (27) 

If the fitted model behaves well for the OSA and MPO, this does not necessarily imply 

that the model is unbiased.  The prediction over a different set of data often reveals that the 

model could be significantly biased. One way to overcome this problem is by splitting the 

data set into two sets, estimation set and test set (prediction set).  Normally, the data set is 

divided into two halves. The first half is used to train the NN and the output computed. The 

NN usually tracks the system output well and converges to a suitable error minimum. New 
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inputs are presented to the trained NN and the predicted output is observed. If the fitted 

model is correct, i.e., correct assignment of lagged u’s and y’s then the network will predict 

well for the prediction set.  

A more convincing method of model validation is to use correlation tests. If a model of a 

system is adequate, then the residuals or prediction errors ε( )t  should be unpredictable from 

all linear and non-linear combinations of past inputs and outputs. The derivation of simple 

tests, which can detect these conditions is complex, but it can be shown that the following 

conditions should hold 32.  

φ τ ε τ ε δ τεε ( ) [ ( ) ( )] ( )= − =E t t  

φ τ τ εεu E u t t( ) [ ( ) ( )]= − = ∀τ0       

 φ τ τ ε
εu

E u t u t t2
2 2 0( ) [( ( ) ( )) ( )]= − − = ∀τ           (28) 

φ τ τ ε
εu

E u t u t t2 2
2 2 2 0( ) [( ( ) ( )) ( )]= − − = ∀τ         

φ τ ε ε τ τ τε ε( ) ( ) [ ( ) ( ) ( )]u E t t u t= − − − − = ≥1 1 0         0  

where φ τεu ( )  indicates the cross-correlation function between u t( )  and ε( )t , 

ε εu t t u t( ) ( ) ( )= + +1 1 , and δ τ( )  is an impulse function.  

Ideally the model validity tests should detect all the deficiencies in the performance of 

the NN including bias due to internal noise. In practice normalised correlations are computed. 

The sampled correlation function between two sequences ψ 1 ( )t  and ψ 2 ( )t  is given by, 

 φ τ
ψ ψ τ

ψ ψ
ψ ψ

τ

∧
=

−

==

=
+∑

∑∑
1 2

1 2
1

1
2

2
2

11

( )
( ) ( )

( ) ( )

t t

t t

t

N

t

N

t

N
 (29) 

Normalisation ensures that all the correlation functions lie in the range − ≤ ≤
∧

1 1
1 2

φ τψ ψ ( )  

irrespective of the signal strengths. The correlations will never be exactly zero for all lags and 

the 95% confidence bands defined as 196. / N  are used to indicate if the estimated 

correlations are significant or not, where N is the data length.  Therefore, if the correlation 

functions are within the confidence intervals the model is regarded as adequate.  
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The OSA prediction and MPO tests are normally used to determine the model validity in 

the case of non-linear modelling. Estimation set and test set could be used in the cases of both 

linear and non-linear modelling. Among the five correlation tests, the first two in equation 

(28) are generally used to determine model validity in the case of linear modelling whereas 

all five are used in the case of non-linear modelling. 

6 DATA PRE-PROCESSING 

It is nearly always advantageous to apply pre-processing transformations to the input data 

before it is presented to the model. It is required to reduce the difference of magnitude of 

input variables used to fit to the model. This leads to faster convergence. One of the widely 

used form of pre-processing is linear rescaling of the input variables. Naturally, input 

variables presented to the model might have values, which differ by several orders of 

magnitude. Linear transformation is applied to arrange for all the inputs to have similar 

values. This is usually done by treating each of the input variables independently and 

calculating the mean xi  and variance σ i
2  for each variable with respect to the presented data 

set;33 

 x
N

xi i
n

n

N

=
=
∑1

1

 (30)  

 σ i i
n

i
n

N

N
x x2 2

1

1
1

=
−

−
=
∑ ( )  (31)  

where n N= 1, ,L labels the patterns. Thus, a set of re-scaled variables is defined by 

 ~x x x
i
n i

n
i

i

=
−
σ

  (32) 

The transformed variables given by the ~xi
n  have zero mean and unit standard deviation over 

the transformed data set. 
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7 EXPERIMENTATION AND RESULTS 

7.1 Parametric modelling 

For identification with the LMS and RLS algorithms the ARMAX structure was considered. 

This is given as: 

 
)(....)1()(

)(.....)1()(......)1()(

1

11

cn

bnan

ntectecte

ntubtubntyatyaty

c

ba

−++−+

+−++−=−++−+
  (33)  

where, ai ,  bi ,  ci ,  are the parameters to be identified. This accounts for both the true system 

and noise models. 

For the input to be persistently exciting, a combination of bang-bang and pseudo-random 

binary sequence (PRBS) signal was utilised to excite the system in the range of 0-100 Hz 

covering the rigid body motion and the first three resonance modes. The level of the bang-

bang torque was chosen as ± 0.065 Nm, which is enough to deliver the required amount of 

energy to excite the rigid-body mode of the system without driving it beyond its maximum 

angular displacement. A PRBS signal with a level of ± 0.0325 Nm was used to excite the 

plant at higher modes. Figure 4 shows the combined bang-bang and PRBS signal, referred to 

as the composite PRBS signal. The system response was observed over a duration of 7.5 

seconds with no payload. It was noted with the hub-angle, hub-velocity and end-point 

acceleration responses that the composite PRBS sufficiently excited the first three vibration 

modes of the system. The first three resonance modes found from these results are shown in 

Table 1. 

The manipulator was modelled with the LMS algorithm from torque input to the hub-

angle, hub-velocity and end-point acceleration output with model orders 8, 7 and 6 

respectively. The simulated outputs of hub-angle, hub-velocity and end-point acceleration 

models with the actual system output are shown in Figure 5. It was noted with the 

corresponding correlation tests of the hub-angle model that none of the correlation functions 

were within the 95% confidence interval indicating that the model was inadequate to 

represent the system, and as noted all the three cases the first mode was not identified. 
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In modelling the system with the RLS algorithm model orders of 8, 7 and 6 were chosen 

for the hub-angle, hub-velocity and end-point acceleration respectively. Figure 6 shows the 

responses of the hub-angle, hub-velocity and end-point acceleration models. It was noted 

with the corresponding correlation tests of the hub-angle model that all the correlation 

functions were within the 95% confidence interval indicating an adequate model fit. 

In modelling the manipulator with the GA different initial values and operator rates were 

investigated, and satisfactory results were achieved with the following set of parameters: 
 

Generation gap : 0.9 

Crossover rate : 0.7 

Mutation rate (hub angle model) : 0.00313 

Mutation rate (hub velocity model) : 0.00357 

Mutation rate (end-point acceleration model) : 0.00417 
 

The GA was designed with 100 individuals in each generation. The maximum number of 

generations was set to 500. Different model orders were investigated, and the best results 

were achieved with orders 8, 7 and 6 with the sum-squared error levels of 0.000163, 0.10482 

and 0.18944 in the 500th generation for the hub-angle, hub-velocity and end-point 

acceleration models respectively. It was noted that a reasonable level of accuracy was 

achieved with as smaller number as 50 generations. Figure 7 shows the responses of the hub-

angle, hub-velocity and end-point acceleration models with the best parameter set resulting in 

the 500th generation. It was noted with the corresponding correlation tests of the hub-angle 

model that all the correlation functions were within the 95% confidence interval indicating an 

adequate model fit. 

7.2 Non-parametric modelling 

The composite PRBS signal described earlier has four points in its amplitude, which might 

not be sufficient to capture the nonlinearity present in the system. In the experiments to 

follow a uniformly distributed white noise signal in the range of 0-100 Hz, which covers the 

first three vibration modes of the system, was used to excite the system. The level of the 
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signal was chosen within ± 0.3 Nm. Figure 8 shows the noise input in the time and frequency 

domains thus used. The corresponding hub-angle, hub-velocity, end-point acceleration 

responses of the system are shown in Figure 9. The first three vibration modes of the system 

found from these results are listed in Table 2. It is noted that the value of the first resonance 

frequency is consistent with the three responses. This is also reflected in a single resonance 

peak in each as noted in Figure 9. The discrepancy in the frequency of each of the second and 

third modes is due to multiple resonance peaks appearing about these modes as noted in 

Figure 9. In obtaining the frequencies in Table 2 for the second and third modes, an average 

of the frequencies corresponding to these peaks was taken in each case. 

In this section results of modelling the manipulator from input torque to hub-angle, hub-

velocity and end-point acceleration outputs with MLP and RBF NNs are presented. In these 

investigations both the OSA prediction and the MPO models were obtained. The data set, in 

each case, comprised 1500 data points. This was divided into two sets of 750 data points 

each. The first set was used to train the network and the whole 1500 points, including the 750 

points that were not used in the training process, were used to test the model.  

7.2.1 Modelling with MLP-NN 

Figure 10 shows the OSA prediction of hub-angle of the flexible manipulator using a three 
layered MLP-NN with 5 neurons in the hidden layer and 8== yu nn . The model reached a 

sum-squared error level of 0.0025 with 100 training passes. It is noted with the corresponding 

correlation tests performed on the predicted data set that all the tests were largely within the 

95% confidence interval indicating acceptable performance of the model in characterising the 

hub-angle behaviour of the manipulator. 

For the OSA prediction hub-velocity model an NN with 3 neurons in the input layer and 

15 neurons in the hidden layer was constructed. Figure 11 shows the performance of the 

model with the training set and the test set. It is evident from the point to point error graph 

that the model performed very well in approximating the hub-velocity. The model reached a 

sum-squared error level of 0.023 with 50 training passes. It was also noted that all the 
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correlation functions were within the 95% confidence interval indicating adequate 

performance of the model. 

A model constructed with 3 neurons in the input layer and 15 in the hidden layer was 

also used for the MPO hub-velocity model. The results are presented in Figure 12, which 

show that an adequate level of performance was achieved. However, the performance of the 

model is not as good as in the case of OSA prediction. The model reached a sum-squared 

error level of 0.015 with 1300 training passes. 

A neuro-model constructed with 5 neurons in the input layer and 15 in the hidden layer 

was realized fit for the OSA prediction end-point acceleration model of the manipulator. The 

model reached a sum-squared error level of 0.0135 with 500 training passes. Figure 13 shows 

the performance of the model. It was noted in the corresponding correlation tests that all the 

test results were within the 95% confidence interval indicating good performance of the 

model. 

The model predicted end-point acceleration output with an MLP network, consisting of 5 

neurons in the input layer and 15 neurons in the hidden layer, is shown in Figure 14. The 

model reached a sum-squared error level of 0.0097 with 5000 training passes. The results of 

all the corresponding correlation tests were largely within the 95% confidence interval 

indicating acceptable performance of the model. 

7.2.2 Modelling with RBF-NN 

Figure 15 shows the results of OSA hub-angle prediction of the manipulator using 5 RBF 

terms with a spread constant of unity and lag of 8. As noted the network has predicted the 

system output very well. The model reached a sum squared error level of 0.0034 within only 

4 training passes. It was noted that the corresponding correlation test functions were within 

the 95% confidence interval indicating an adequate hub-angle model fit. 

An OSA hub-velocity prediction model of the manipulator was constructed with an RBF 

network incorporating 200 RBF terms and a spread constant of unity. Figure 16 shows the 

results of the OSA prediction achieved. The model reached a sum-squared error level of 

0.014 after 199 training passes. It is evident from point to point error curve that the error is 
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comparatively larger for the data points that were not used for training the network. However, 

The error as a whole is not large. Moreover, it was noted that the corresponding correlation 

test functions were all within the 95% confidence interval indicating adequate performance of 

the model. 

The model predicted hub velocity output with an RBF-NN comprising 200 RBF terms is 

shown in Figure 17. The model reached a sum-squared error level of 0.02 after 199 training 

passes. 
An NN designed with 250 RBF terms, spread constant of unity and 6== yu nn  was 

found fit for the OSA prediction of end-point acceleration. The model reached a sum-squared 

error level of 0.0115 with 249 training passes, as shown in Figure 18. It was noted that the 

corresponding correlation test results were all within the 95% confidence interval indicating 

adequate performance of the model. 

Figure 19 shows the training and test set validation of the model predicted end-point 
acceleration output of the network constructed with 250 RBF terms, 6== yu nn  and spread 

constant of unity. The model reached a sum squared error level of 0.0115 with 249 training 

passes. It was noted that the corresponding correlation test results were all within the 95% 

confidence interval indicating an adequate model fit. 

8 COMPARATIVE ASSESSMENT 

Table 3 shows a comparative assessment of the three parametric modelling approaches in 

terms of estimation of the resonance modes of the system. It is noted that the performances 

with the GA and RLS-based modelling approaches were better than that with the LMS based 

modelling. The LMS failed to detect the first vibration mode of the system in all the three 

modelling domains namely hub-angle, hub-velocity and end-point acceleration. Among the 

GA and RLS based modelling the performance was better with the GA, as the GA uses a 

global search process in finding the parameters. It was also noted in the correlation tests 

results that the GA and RLS performed better than the LMS. However, a major advantage of 

the LMS is that the algorithm is very simple. The LMS is faster as compared to the RLS and 
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the GA. The GA is extremely slower than the LMS and the RLS and thus, with the current 

computing technology it is not easy to utilise a GA based identification process in real-time. 

It is noted from the input/output mappings presented above that the NN-based models 

have performed well. All the models were validated through the steps of training and test. It 

was noted from the results of the correlation tests that the NN-based modelling techniques 

considered in this study performed adequately well.  

Comparative performance of the NN-based modelling of the manipulator is summarised 

in Table 4. It is noted that with all the techniques the vibration modes of the system were 

successfully determined with minor or no error except in very few cases. It was also noted 

that the RBF NNs were faster in convergence as compared to MLP networks. Comparing the 

results between OSA prediction and MPO, it is noted that the OSA prediction performed well 

in approximating the system responses. This agrees with the theory as the OSA prediction 

uses actual data for prediction whereas the MPO uses the predicted value for the same 

purpose. However, the MPO is more reliable as compared to the OSA prediction and in this 

investigation the results of the MPO were good enough to be relied upon. 

9 CONCLUSION 

Parametric and non-parametric modelling of a flexible manipulator have been carried out in 

this investigation. Among the parametric modelling approaches, the LMS is extensively used 

in many real-time applications. However, its performance in this case was worse as compared 

to the RLS and the GA. These algorithms are suitable to different applications, but a closer 

match depends on the nature of the application. In this particular application the RLS and the 

GA performed very well in detecting the vibration modes of the system and their 

performances were comparable.  

Investigations in the case of non-parametric modelling of the manipulator reveal that 

both MLP and RBF NNs are suitable for modelling such systems. Results of non-linear 

modelling techniques adopted have been validated through various tests including 

input/output mapping, training and test validation and correlation tests. It has been noted that 

all the neuro-modelling techniques have performed well in approximating the system 
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response; where in the time-domain the developed models have predicted the system output 

closely and in the frequency-domain the resonance frequencies of the model have matched 

those of the actual system very well. 
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Table 1: Modes found from system responses to the composite PRBS input 

Response 1st mode 
(Hz) 

2nd mode 
(Hz) 

3rd mode 
(Hz) 

Hub-angle 11.112 34.26 63.89 

Hub-velocity 11.112 34.26 63.89 

End-point acceleration 11.112 36.11 63.89 

 

 

Table 2: Resonance frequencies found from the responses to the white noise input. 

Response 1st mode 
(Hz) 

2nd mode 
(Hz) 

3rd mode 
(Hz) 

Hub-angle 11.112 34.03 64.58 

Hub-velocity 11.112 36.11 64.58 

End-point acceleration 11.112 36.11 62.5 
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Table 3. Performance of parametric models in characterising the system. 

Modelling 
Inputs Modelling domains 

 

1st mode 
error 
(%) 

2nd mode 
error 
(%) 

3rd mode 
error 
(%) 

LMS-based hub-angle model  * 5.40 0.93 

LMS-based hub-velocity model  * 5.40 0 

LMS-based end-point acceleration model * 0 0 

RLS-based hub-angle model  0.93 0 0 

RLS-based hub-velocity model  0 5.40 0 

RLS-based end-point acceleration model 7.99 0 0 

GA-based hub-angle model  0 0 0 

GA-based hub-velocity model  0 5.40 0 

C-PRBS 
input 

GA-based end-point acceleration model 0 0 0 

* Mode did not appear 
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Table.4: Performance of non-parametric models in characterising the system. 

Model type 
Number 

of 

epochs 

Sum-
squared 

error 

% error 
in first 
mode 

% error 
in second 

mode 

% error 
in third 
mode 

MLP-NN one-step-ahead hub-angle 
prediction 

100 0.0025 0 0.68 4 

MLP-NN one-step-ahead hub-velocity 
prediction 

50 0.023 0 2.56 0.36 

MLP-NN model predicted hub-velocity 
output 

1300 0.015 0 2.56 0.36 

MLP-NN one-step-ahead end-point 
acceleration prediction 

500 0.0135 0 2.56 3.70 

MLP-NN model predicted end-point 
acceleration output 

5000 0.0097 0 2.56 3.70 

RBF-NN one-step-ahead hub-angle 
prediction 

4 0.0034 0 0.68 0.36 

RBF-NN one-step-ahead hub-velocity 
prediction 

199 0.014 0 2.56 0.36 

RBF-NN model predicted hub-velocity 
output 

199 0.02 0 2.56 0.36 

RBF-NN one-step-ahead end-point 
acceleration prediction 

249 0.0115 0 2.56 3.70 

RBF-NN model predicted end-point 
acceleration output 

249 0.0115 0 2.56 3.70 
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Figure 1: The flexible manipulator experimental rig. 
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Figure 2: Genetic algorithm-simple working principles. 
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Figure 3: NARX model identification with MLP/RBF neural networks. 
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Figure 4: The composite PRBS torque input. 
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(a) Actual and predicted hub-angle output. 
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(b) Spectral density of the hub-angle output. 
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(c) Spectral density of the hub-velocity 

output. 
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(d) Spectral density of the end-point 

acceleration output. 

Figure 5: System model with the LMS algorithm. 
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(a) Actual and predicted hub-angle output. 
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(b) Spectral density of the hub-angle output. 
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(a) Spectral density of the hub-velocity 

output. 
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(d) Spectral density of the end-point 

acceleration output. 

Figure 6: System model with the RLS algorithm. 
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(a) Actual and predicted hub-angle output. 
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(b) Spectral density of the hub-angle output. 
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(c) Spectral density of the hub-velocity 

output. 

 Actual    
 Predicted 

0 10 20 30 40 50 60 70 80 90
10

−4

10
−3

10
−2

10
−1

10
0

Frequency (Hz)

N
om

al
iz

ed
 M

ag
ni

tu
de

 (
E

nd
−

po
in

t a
cc

el
er

at
io

n)

 
(d) Spectral density of the end-point 

acceleration output. 

Figure 7: System model with the GA. 
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(a) Time domain. 

0 10 20 30 40 50 60 70 80 90
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Frequency (Hz)

M
ag

ni
tu

de
 (

N
m

/H
z)

 
(b) Spectral density. 

Figure 8: The white noise input to the system. 
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(a) Hub-angle. 
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(b) Spectral density of hub-angle. 
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(c) Spectral density of hub-velocity. 
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(b) Spectral density of end-point acceleration.

Figure 9: The system response to the white noise input. 
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(a) Actual and predicted output. 
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(b) Spectral density of the output. 

Figure 10: One-step-ahead hub-angle prediction MLP-NN. 
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(a) Error between the actual and predicted 
output. 
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(b) Spectral density of the output. 

Figure 11: One-step-ahead hub-velocity prediction with MLP-NN. 
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(a) Error between the actual and predicted 

output. 
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(b) Spectral density of the output. 

Figure 12: Model predicted hub-velocity output with MLP-NN. 
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(a) Error between the actual and predicted 

output. 
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(b) Spectral density of the output. 

Figure 13: One-step-ahead end-point acceleration prediction with MLP-NN. 
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(a) Error between the actual and predicted 

output. 
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(b) Spectral density of the output. 

Figure 14: Model predicted end-point acceleration output with MLP-NN. 
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(a) Actual and predicted output. 
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(b) Spectral density of the output. 

Figure 15: One-step-ahead hub-angle prediction with RBF-NN. 
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(a) Error between the actual and predicted 

output. 
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(b) Spectral density of the output. 

Figure 16: One-step-ahead hub-velocity prediction with RBF-NN. 
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(a) Error between the actual and predicted 

output. 
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(b) Spectral density of the output. 

Figure 17: Model predicted hub-velocity output with RBF-NN. 
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(b) Spectral density of the output. 

Figure 18: One-step-ahead end-point acceleration prediction with RBF-NN. 
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(b) Spectral density of the output. 

Figure 19: Model predicted end-point acceleration output with RBF-NN. 

 
 


