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Summary 
A model of the thermo-elastic behaviour of saline ice is formulated, and model solutions describing thermo-elastic waves 
propagating into a half-space of the ice are investigated. The model is based on a proposal that saline ice is a matrix 
which encompasses both closed brine pockets and permeable channels filled with brine. Experiments on the thermal 
expansion of saline ice samples, and on thermo-elastic waves in saline ice, have been performed in the cold laboratories 
of the University Centre in Svalbard and in University College London. The experimental data are compared with 
theoretical conclusions. The experimental data support our hypothesis that the brine in saline ice is divided between 
closed pockets and open, permeable channels.  
 

Introduction 
 
Sea ice expands and contracts when its temperature changes. These volume changes can cause structural loads, and can 
induce thermal cracking, which makes the sea ice more fragile [1], and so understanding this behaviour can be important 
to a range of engineering and geophysical problems. Saline ice is a composite material – a solid ice matrix containing 
liquid and gas inclusions – and so understanding its thermal properties requires an understanding of the behaviour of the 
ice, brine, and air, and their interactions. The ice matrix itself is made up of pure ice grains (columns or platelets), and 
pockets and channels which contain brine and air. The ice is permeable, and the brine is able to migrate through the 
matrix under the influence of pressure gradients [2]. The permeability may be affected by thermal changes in the ice, as 
brine pockets separate and merge during freezing and melting cycles. Variations in permeability mean that sea ice may 
have material memory of thermal expansion and contraction, i.e. the current state may depend on previous conditions as 
well as current conditions.   
 
Sea ice also exhibits unusual thermal expansion due to phase changes which occur in the matrix. Both fresh ice and brine 
exhibit typical thermal behaviour: they expand when heated and contract when cooled (i.e. their density decreases with 
increasing temperature). However, when brine freezes to form ice, this leads to a density reduction, since ice is less dense 
than water. When cooling leads to the freezing of brine, therefore, this can lead to a net density reduction: cooling in 
saline ice can cause expansion of the ice. The inverse can also occur, when warming of the saline ice causes brine to 
replace ice, leading to a reduction in volume. This behaviour was first discussed by Pettersson [3] and later studied 
experimentally and modelled by Malmgren [4].   
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Malmgren assumed that all brine remained confined within the ice sample [4]. This is equivalent, within his formulation, 
to saying that the ice is impermeable. In his experiments, he immersed a sea ice sample in fluid and measured changes in 
fluid volume with temperature. He then used these total fluid volume changes to calculate thermal expansion coefficients. 
This experimental setup makes no allowance for the possibility that brine and air may be expelled into the confining fluid, 
and the confining fluid may be impelled into the ice [1]. In Malmgren’s model, the volumetric effects of phase changes 
are entirely accommodated within the ice matrix, and therefore saline ice shows the atypical thermal properties discussed 
in the previous paragraph. In-situ observations [5] show that the average salinity of ice sheets remains virtually constant 
for the period of observations despite the prevalence of brine drainage networks and brine corrosion tubes that develop 
when the sheet warms.   
 
Cox [6] revisited Malmgren’s assumptions, and proposed that ice and brine are in fact free to expand and contract 
independently (this is equivalent to assuming that the ice is infinitely permeable). In Cox’s formulation, phase changes 
are accommodated by brine drainage (or by brine being impelled into the ice) and so have no effect on the thermal 
expansion coefficient. He therefore proposes that the volumetric thermal expansion of saline ice is the same as that of 
fresh ice: around 1.5×10-4 K-1. Cox’s model and Malmgren’s model therefore represent two ends of a spectrum which 
depends on sea ice permeability. 
 
Later experiments give further insight. Johnson and Metzner [1] conducted a series of experiments on the linear thermal 
expansion of cylindrical ice samples taken from a sheet of first year congelation sea ice in Harrison Bay, Alaska. They 
used a Michelson Interferometer type Laser Dilatometer, along with a temperature control unit and computer-controlled 
data acquisition. They worked on two sets of samples, both with 38mm diameter: (a) 2ppt saline ice samples, 71.25mm 
long, and (b) 4ppt saline ice samples, 69.33mm long. To measure the samples with the dilatometer, they froze optically 
flat mirrors to microtomed sample surfaces. Their displacement resolution was 316.4nm, which corresponds to a strain 
resolution of 5×10-5. They measured the thermal expansion coefficient to be very similar to the fresh ice thermal 
expansion coefficient of 1.5×10-4 K-1. They concluded that their results supported the analysis of Cox [6]. 
 
Further systematic investigations were performed in the cold laboratories of the University Centre in Svalbard, Norway, 
and University College London, UK, from 2012-2015 [7-9]. These experiments used strain and temperature sensors based 
on fiber optics with Fiber Bragg Gratings (FBG). Fiber Bragg Gratings reflect light of certain wavelength, dependent on 
the extension of the grating. By measuring the wavelength of the reflected light, experimenters can determine the strain in 
the grating, and ultimately the temperature and strain in the ice sample. Thermal strains were measured with a sampling 
rate of 1Hz. The FBG system was designed by Advance Optic Solutions GmbH (Germany). In these experiments, the 
volumetric coefficient of thermal expansion was found to be close to 1.5×10-4 K-1 for fresh ice and ice with 2ppt salt. 
However, with 6ppt or higher salinity, negative values of thermal expansion were observed in several experiments. 
 
The experiments show that the mean thermal expansion coefficient depends on temperature and salinity. They also show 
that thermal expansion coefficients vary around a mean, for a given temperature and salinity. The thermal expansion is 
observed to be a non-quasi-static process, where we assume that individual small deformations occur over time within the 
ice matrix, and these lead to changes in the thermal expansion over time. This suggests that modelling of thermal 
expansion should take into account temperature diffusion and liquid brine migration through the sample. A thermo-
mechanical model of saline ice, accounting for migration of liquid brine through ice of finite, non-zero permeability, was 
proposed by Marchenko and Lishman [10]. The paper gave a theoretical model of the propagation of thermo-elastic 
waves, caused by temperature fluctuations at the ice surface, through an infinite half-space of saline ice. One conclusion 
was that temperature fluctuations and ice deformation are concentrated in a layer around 1cm from the surface when the 
period of the temperature fluctuations is around 10 minutes.  
 
In the first part of the present paper we describe a thermo-mechanical model of saline ice incorporating both (a) closed 
pockets of liquid brine, and (b) permeable channels of liquid brine. We derive model solutions which describe the 
evolution of thermo-elastic waves in this ice. In the second part of the paper we describe experiments on the thermal 
expansion of saline ice samples, and on the propagation of thermo-elastic waves through these samples. In the 
conclusions we compare theoretical predictions to experimental results. 
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Model Equations 
 
A model of sea ice brine distribution 
 
In this paper, we assume that the brine contained in sea ice can be characterised in two ways: some fraction of the brine is 
contained in closed pockets, entirely surrounded by ice, while the remainder of the brine is in permeable channels. We 
assume that the amount of precipitated salt is very small and can be ignored. For sea ice, this is true when the ice 
temperature is higher than -8.2oC [11]. We can then divide the sea ice matrix into two components: 
 
- Ice with Closed brine Pockets (abbreviated to ICP). This fraction of the sea ice incorporates both the pure ice, and the 
brine held in impermeable pockets. 
- liquid Brine in Permeable Channels (abbreviated to BPC).  
 
This division is illustrated schematically in figure 1. This view allows us to describe observed Malmgren-like behaviour 
whilst simultaneously understanding sea ice as a permeable material. 
 

   
Figure 1. Model structures of saline ice (including brine in permeable channels BPC) (a) and the ice with closed brine 
pockets (ICP) (b).  
 
In this section we explore the properties of this ice: how the mass and salt are distributed in the ice; how brine flows 
through the permeable channels; and how heat flows through the bulk ice. We then use this understanding to develop a 
model of thermo-elastic waves in sea ice: as the temperature at the surface of an ice sheet changes, how does the heat 
propagate through the ice, and how does the ice then deform? This model can then be directly compared to experimental 
results in the next section.  
 
The proposed structural model of saline ice is similar to models describing the flow of partially molten rock through the 
Earth’s convecting mantle, assuming viscous deformations of the permeable matrix (see, e.g., [12]). The details of the 
assumptions make a difference, with traditional models describing the flow of a low-viscosity fluid through a solid matrix 
(see, e.g., [13]). In case of saline ice the permeable matrix, the ICP, has strain-rate-dependent rheology (see, e.g., [14]). 
Within our approach the mass balance equations include a source term equal to the rate of mass transfer from matrix to 
melt (melting rate), and the permeability of the matrix changes with porosity depending on thermo-mechanical processes. 
 
Mass Balance 
We begin by defining the volumetric concentrations (or volume fractions) of each component in a unit volume of sea ice. 
The volumetric concentration of BPC (νb) in the volume of saline ice Vsi shown in Fig. 1a is equal to Vbpc/Vsi, where Vbpc is 
the BPC volume. The volumetric concentration of ICP (νicp) is equal to the ratio (Vsi-Vbpc)/Vsi, where Vsi-Vbpc is the volume 
of ICP in the saline ice volume Vsi, and therefore 
 
νicp + νb = 1          (1) 
 
which is the same as saying that the entire volume of sea ice is composed of either ICP or BPC. The ratio of ICP to BPC 
may change with temperature.  
 
ICP is made up of ice and brine only: we denote the volume fractions of ice and brine in ICP as νi and νbi respectively 
(Fig. 1b), such that 
 
νi + νbi = 1          (2) 
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ICP is not permeable by brine. Temperature changes will affect the ratio of νi and νbi. The quantity νbi – the brine fraction 
in ICP – will never fall to zero since the increasing brine salinity will eventually prevent freezing. A decrease in νb may 
lead to a transformation from BPC to a chain of closed pockets if the temperature is sufficiently low. 
 
The sea ice density can be determined from the densities and volume fractions of its constituent parts: 
 

bbicpicpsi νρνρρ +=          (3) 
 
Salt Balance 
 
The salinity of sea ice can be determined using the formula 
 

bbbicpicpicpsisi sνρsνρsρ +=        (4) 
 
where σ represents salinity (this equation states that the mass of salt per unit volume of sea ice is equal to the mass of salt 
in ICP in that unit volume plus the mass of salt in BPC in that volume).  
 
We assume that the liquid brine and pure ice are in thermodynamic equilibrium, and therefore the salinities (and hence 
densities) of the brine in closed pockets and of brine in permeable channels are the same. Therefore the ICP salinity can 
be determined as follows 
 

bbibicpicp sνρsρ = .                                                                             (5) 
 
Shwerdtfeger [11] gives the density of ice containing brine as equation 2.3.1. Adapting this for ICP, we find 
 

)( icpbbicpi

bib
icp ssρsρ

sρρρ
−+

=         (6) 

 
Pure ice density depends on the temperature, and is given by the formula [15] 
 

)(kg/m
1

8.916 3

Ti
i α

ρ
+

≈          (7) 

 
The volumetric coefficient of thermal expansion αi=1.53·10-4K-1. The density of brine (and hence of BPC) is also given 
by Schwerdtfeger [11]: 
 

)1( Swb += ρρ          (8) 
 
where ρw is the density of pure water and S is the fractional salt content of the brine,  
 

TS ⋅−= 0182.0 ,    C 2.8 −>T                                                            (9) 
)2.8(01.0149.0 +⋅−= TS ,  C)2.8,C23(  −−∈T      

 
(The fractional salt content is related to the salinity by σ = S/(1+S), and hence σb can also be calculated as a function of 
temperature).  
 
To recap: given the temperature, we can find from formulas (8) and (9) the density and salinity of the brine everywhere in 
the ice, as well as the pure ice density from formula (7). If we then knew the ICP salinity we could calculate the density 
of ICP from (6) and the volume fraction of brine in ICP from (5). This would allow us to calculate the ice density and the 
volumetric concentration of ICP from (3) and (4) 
 

1)( −∆−= icpbicpsi ssρρ , 1)( −∆−= sibicp ssν , bicpsiicpsib ρssρss /)( −+−=∆   (10)   
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Overall, then, in our formulation, the bulk temperature, and ice and ICP salinities are sufficient to define all densities and 
volume fractions. 
 
 
Thermal expansion of ICP 
 
A change of ICP mass may occur due to brine transfer between ICP and BPC, and can be related to a change of the ICP 
salinity by the formula 
 

icpicpicpicpicp Vm δssρδ )/( ∂∂=                                     (11) 
 
where micp=ρicpVicp is the mass of an ICP particle with volume Vicp. In the case when mass change is caused by 
temperature change, from (11), it follows that 
 

T
T

VT
dT

Vd icp

icp

icp
icp

icpicp δ
s

s
ρ

δ
ρ

∂

∂

∂

∂
=

)(
      (12) 

 
The volumetric coefficient of thermal expansion of ICP is determined by the formula  
 

dT
dV

V
icp

icp
icp

1
=α                                         (13) 

 
From (12) and (13) we find the standard formula for the calculation of the volumetric coefficient of thermal expansion of 
ICP: 
 

const

icp

icp
icp

icp
dT

d

=

−=
s

ρ
ρ

α 1
         (14) 

 
System dynamics 
 
The mass balance of the BPC is formulated as  
 

( ) ( )
tt
b

bbicpbb
bb

∂
∂

=+⋅∇+
∂

∂ νρνρνρ )( vv , 







∂
∂

∂
∂

∂
∂

=∇
zyx

,,                                   (15)                                                                                         

 
where t is the time, x, y, and z are the spatial coordinates, vb is the BPC velocity relatively the ICP and vicp is the ICP 
velocity in an absolute frame reference. The term ρb∂νb/∂t is the source or sink of the brine due to the ice melting, brine 
refreezing and brine exchange with the ICP.  
 
The momentum balance, and hence velocity, of BPC is given by Darcy’s law: 
 

 1
, pk bbsibb ∇−= −µν v                   (16) 

 
where ksi,b is the permeability of sea ice by brine, µb=1.8⋅10-3 Pa⋅s is the dynamic viscosity of water, and p is the pressure 
in the brine channels. The permeability of saline ice by brine is determined by the formula 
 

 15
0,,

bekk bsibsi
ν=          (17) 
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where the coefficient ksi,b0=10-13 m2 characterizes ice permeability at low values of the liquid brine content. Formula (17) 
approximates the data of the laboratory and numerical simulations shown in Fig. 2 in [16]. 
 
We assume that ice deformations are sufficiently slow and inertial effects can be ignored. The equations of static 
equilibrium based on Hooke’s law can then be used, assuming an elastic model for the ice (i.e. for small displacements 
and short term effects) [17]: 
 

icpd p∇=⋅∇ σ           (18) 

dd Gεσ 2= , )( 0TTp icpicpicp −Κ−Κ=− αε       (19) 
 
where picp is the ICP pressure, sd and εd  are the deviators of stresses and strains, εicp is the volumetric strain, G = 3.5 GPa 
and Κ = 8.9 GPa are the shear modulus and the bulk modulus of ice [18], αicp is the volumetric coefficient of thermal 
expansion of the ICP, and T0 is a reference temperature. Equation (18) describes a static momentum balance in ICP, and 
formulas (19) describe Hooke’s law for thermo-elastic materials. Formulas (19) would need to be modified to describe ice 
creep and delayed elasticity if long-term processes are considered. The strain rate deviator is related to the ICP velocity 
by standard formulas specifying strain rates in continuum mechanics (see, e.g., [17]).  
 
The energy balance is given by the heat transfer equation [19, 20] 
 

( ) bbbbiicpicpsi
biicpb

iisi
TTT

t
L

dt
dTc eev ⋅+⋅∇−Κ∇⋅∇=

∂

+∂
+ µνανλ

ννν
ρρ 2)(- 

)(
0 ,  (20) 

 
where the material derivative is expressed by the formula d/dt=¶/¶t+νbvb⋅∇, and the coefficients of specific heat capacity 
and thermal conductivity are calculated by the formulas 
 

)( icpbibbbicpiiisi
vvvccc ++= ρννρρ , )( icpbibbicpiisi νννλννλλ ++= .   (21) 

 
Here ci and cb are the specific heat capacities, and λi and λb are the thermal conductivities of ice and brine, Li=333.4 kJ/kg 
is the latent heat of ice, eb represents the strain rates of the brine. The second term on the left hand side of equation (20) 
describes the latent heat rate due to the brine freezing or ice melting. The last two terms on the right hand side of equation 
(20) are related to the heat produced due to the thermal expansion of ice and due to viscous energy dissipation in the 
brine. 
 
Further it is assumed that the specific heat capacity and thermal conductivity of brine are equal to the specific heat 
capacity and thermal conductivity of water. The specific heat capacities and thermal conductivities of ice and water are 
given by the formulas [11] 
 

C)kJ/(kg 23.4 =wc , C)kJ/(kg 12.2 =ic , C) W/(m58.0 =wλ , C) W/(m24.2 =iλ             (22) 
 
The time-varying salt balance in the ice is written in the form 
 

( ) ( ) 0)(/ =++⋅∇+∂∂ icpicpicpicpbicpbbbsisi t νsρνsρsρ vvv                    (23)      
                                                                                                      

The term ρbsbνb  is equal to the mass of salt in BPC per unit volume of sea ice, and the term ρbsbνbvb is equal to the salt 
flux.  
 
Three scalar equations describing balance of mass (15), energy (20) and salts (23), and two vector equations describing 
momentum balance in PBC (16) and ICP (18) form a system for the calculation of three scalar variables (p, T and ssi) and 
two velocity vectors (vb and vicp). The model is not complete since equations describing brine exchange between ICP and 
BPC are not formulated. We assume that the brine exchange can be described by an empirical dependence 
 

),( Tsiicpicp sss =                                                        (24) 
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Further we investigate this dependence using data from laboratory experiments on the thermal expansion of saline ice and 
on measurement of thermo-elastic waves in saline ice. 
 
Thermo-elastic waves in saline ice 
 
In experiments described later in this paper, we measure the thermal expansion of sea ice as temperature changes 
propagate through the ice. In order to describe these experiments, we develop our model of saline ice to describe thermo-
elastic waves propagating into an ice half-space. 
 
If the temperature of the upper surface of an ice sheet changes, then these temperature changes propagate down into the 
ice sheet, over time and with damping. Stresses due to these temperature changes also propagate, and, in the case of saline 
ice, may cause brine migration. This complicated interplay is modelled in this section of the paper. It is assumed that the 
steady state of a saline-ice-filled half space 0>x  is described by the following characteristics: 
 

0=p ,  0TT = , 0sisi ss = , 0icpicp ss = , 0== bicp vv     (25) 
 
We are then interested in the fluctuations around this steady state. Let us consider deformations of a saline ice half-space 
(x>0) initiated by small temperature variations around T=T0 at x=0 
 

TTT δ+= 0 , tAT T ωδ cos= , 0=x        (26) 
 
where AT is the amplitude and ω is the frequency of the temperature wave at the ice surface. 
 
We investigate the evolution of saline ice characteristics caused by periodical variations of the temperature at the surface 
described by formulas (26) and assume that the saline ice characteristics depend on the time t and spatial variable x, and 
are represented as follows 
 

XXX δ+= 0           (27) 
 
Each component of vector X represents some characteristic of the saline ice, and each component of vector δX represents 
a perturbation of the ice characteristic near its value at the steady state specified by vector X0, according to the formulas 
 

)0,0,,,,0( 0000 ==== bixicpsi vvTp ssX , ),,,,,( bixicpsi vTp δδνδsδsδδδ =X   (28) 
 
where vix and vb are the velocities of ICP and BPC in the x direction. Components of the vector X0 are background 
characteristics of ice. In this paper we use the subscript “0” to denote variables calculated using the background 
characteristics of ice.  
 
A set of equations used for the investigation of the temporal and spatial evolution of δX is specified further in the case 
when all variables depend only on the time t and spatial coordinate x. In this case nonzero components of the ICP strain 
rate and vertical displacement are determined by the formulas 
 

x
ve ix

icp ∂
∂

=
δδ , 

t
uv ix

ix ∂
∂

=
δδ                                               (29) 

 
From Darcy’s law (16) it follows 
 

x
pk

v
b

bosi
bb ∂

∂
−=

δ
µ

δν ,
0 ,                                                         (30) 

 
Substitution of (30) into equations (15) and (23) – the mass balance of BPC and the salt balance - and linearization leads 
to the equations 
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where the ice density perturbation δρsi is, according to the first part of formula (10), a linear function of δT, δssi and δsicp 
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The heat transfer equation (20) is written after linearization as follows 
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where according to formulas (1,5,6,10) the perturbations δνb and δνbi are linear functions of δT, δssi and δsicp. 
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Equations (18) and (19) are differentiated with respect to time and reduced to one equation 
 

t
TeG

icpicp ∂
∂

Κ=





 Κ+

δαδ
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4
      (36) 

 
The perturbation of the ICP salinity is described according to equations (24) as follows 
 

si
si

icpicp
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T
δs
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δ
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∂

∂
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Six equations (30-32), (34), (36) and (37) form a closed system describing the evolution of the vector δX specified by the 
second formula (28). We consider the solution in the form 
 

[ ])(Re kxtie += ωδ AX , ( )bvixicpsipT aaaaaA νss ,,,,1,=A      (38) 
 
where the products of the temperature amplitude AT on the coefficients   ap, assi, asicp, avix and avb are the perturbation 
amplitudes of the BPS pressure, ice salinity, ICP salinity, ICP velocity and BPC velocity. Substitution of (37) in 
equations (31)-(36) leads to a system of five linear algebraic equations with respect to five components of the vector A. 
This homogeneous system has a nontrivial solution when the determinant is equal to zero. The last condition is called the 
dispersion equation of thermo-elastic waves (TEW): 
 

TXik /2=ω ,                         (39) 
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where XT is given in formulas (42) in the section Additional information. The dispersion equation is a rule for the 
calculation of the wave number k corresponding to a given wave frequency ω. If ω and k satisfy the dispersion equation, 
then all numbers ap, assi ,avix and avb are calculated from equations (30-32), (34) and (36), while the amplitude AT remains 
an arbitrary quantity. From equation (39) it follows that the wave number is a complex quantity, i.e. it is the sum of a real 
part describing periodical oscillations of ice characteristics in the direction of wave propagation and an imaginary part 
describing the damping of wave amplitude. Similar dispersion equations describe pure thermal waves caused by 
temperature oscillations at the surface of materials, and Stokes waves in viscous fluids caused by the oscillations of shear 
displacements at the surface (see, e.g., [20]).  
 
Numerical estimates using formulas (42) show very little dependence of XT from ∂sicp/∂T, when ssi< 10 ppt, sicp< ssi, 
TÎ (-8,-2)oC, and ∂sicp/∂T is approximated by the linear dependence ∂sicp/∂T≈-sicp/6 constructed according to the 
temperature range. Therefore we neglect all terms proportional to ∂sicp/∂T when processing experimental data. In our 
experiments (described below) we didn’t observe significant changes of the ice salinity. Therefore in the analysis of the 
experimental results we also neglect all terms proportional to ∂ssi/∂T.  
  
The amplitude of vertical displacement of the ice surface is then equal to 
 

T
icp

u A
Gk

iA
Κ+

Κ
−=

3/4
0α

          (40) 

 
The amplitudes Au and AT can be measured in experiments. Their absolute ratio | Au/AT | ( hereafter named the DT ratio, or 
displacement-temperature ratio) depends on the ice characteristics and wave frequency. The model given can be adapted 
to describe experimental data by varying the background characteristics νb0, νbi0 or sicp. From equations (31) and (32) it 
follows that only pore pressure amplitude ap depends on the ice permeability ksi,b0. According to formula (40) the 
amplitude of vertical displacement of the ice surface Au is proportional to the amplitude of surface temperature AT, the 
square root of the period of the temperature oscillations √(2π/ω) and other characteristics of saline ice excluding the ice 
permeability. Experimental data can therefore be used to test the validity of the structural model above, using equation 
(40), and also to infer parameters which are not well known: for example the ICP salinity sicp.  
 
 
    

Experimental Investigations 
 
Thermal expansion of unconfined saline ice 
Experiments on thermal expansion of unconfined samples of fresh and saline ice were performed in the cold laboratory of 
the University Centre in Svalbard (UNIS) [7,8]. The ice samples had a rectangular shape, with the long dimension around 
20cm and the shorter dimensions 5-10cm. The optical fibers with FBG strain sensors had an integrative working length of 
20cm that was defined by two brass anchor bolts with nuts and washers. The optical fibers were placed into 2mm-wide 
cuts that were sawn in the ice samples, and were fastened at the edges of the ice samples with nuts and washers (Fig.2a). 
The ice block’s thermal expansion or shrinkage is therefore transferred to the optical fiber with the FBG inside (this fiber 
is prestrained to around 0.3% by adjusting the nuts accordingly). The FBG fiber was not frozen into place, since this 
would allow localized shear around the FBG itself to distort the measurements. The FBG temperature sensor (thermistor 
string) was encapsulated in a 1mm stainless steel capillary tube and inserted into a drilled hole in the ice sample, next to 
the FBG strain sensor.  
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a)                                                                          b) 

 
Figure 2. Installation of FBG strain sensor and thermistor string in ice sample (a). Ice sample inside plastic housing (b).  
 
The equipment used in our measurement setup includes a broadband LED light source with a central wavelength of 
1550nm and a bandwidth (FWHM) or ~90nm (AOS GmbH, Germany), a NIR spectrometer ‘I-MON 512E-USB 2.0 
interrogation monitor’ with a detectable spectral width of 1510-1595nm (Ibsen Photonics S/A, Denmark), a PC, and two 
FBG sensors, one for strain measurement and one for temperature measurement (both AOS GmbH, Germany). The Ibsen 
monitor is distributed with operating software, including a LabView source code. The experimental schematic is shown in 
Fig.3a. All electronic devices – the LED source, the spectrometer, and the PC – were installed outside the cold laboratory. 
Regular optical single-mode cables were used to connect the equipment to the FBG sensors embedded into the ice sample 
in the cold laboratory. 
 

               
a)                                          b) 

    
Figure 3. Schematic of experiment for measuring of thermal expansion (a), and thin vertical section of laboratory ice used 
in the tests (b). 
 
The ice sample was covered by a plastic housing to avoid evaporation (Fig.2b). The temperature in the cold laboratory 
(2.5x2.5x1.8m) was changed in increments of 2oC from -20o C to a nominal 0o C, programmed and displayed on the 
laboratory’s control system. Measurements of actual temperature in the cold laboratory show temperature oscillations 
with amplitude about 1.8°C across a range of mean temperature. The period of this temperature oscillation (when the 
room temperature was programmed to be constant) was 12 min. During the experiment, we realized that the actual air 
temperature close to the ice samples was lower than the displayed temperature by several degrees. Temperature and 
extension are measured at 1 sample/s. 
 
A representative time of temperature equilibration over a sample is estimated by the formula t*=ρsicsil0

2/λsi, where ρsi=920 
kg/m3 is typical value of sea ice density, λsi= 2 W/(m∙K) is a typical value of the thermal conductivity of sea ice, l0=0.1 m 
is representative length of the sample, and csi is the specific heat capacity of saline ice. The time taken for temperature to 
equilibrate in fresh ice samples is estimated at 2.5 hours when csi is equal to the specific heat capacity of fresh ice: 2 
kJ/(kg∙K). Because of the phase changes around brine pockets the specific heat capacity of saline ice can be much greater 
than the specific heat capacity of fresh ice [11]. Therefore time intervals for the temperature increments were set to 2-3 
hours or greater.  
 
A mixture of sea water, pumped from a nearby fjord, and fresh water was used to prepare saline ice samples. The salt 
water was added to a rectangular vessel and allowed to freeze layer by layer. The thickness of each layer was about 1 cm. 
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pleS t re s s  s e n s o r

T h e r m is to r
s tr in g



11 
 
 
 
 

Phil. Trans. R. Soc. A. 
 
 
 

Fresh ice samples were frozen by the same method from fresh water. The lab-grown saline ice had a columnar structure in 
each horizontal layer with clear boundaries between the layers (Fig.3b). The salinity of the ice samples was measured 
before and after the experiments with a Mettler Toledo Seven Pro conductivity meter SG7, with resolution 0.01ppt. 
Multiple ‘dummy’ samples were kept under the same conditions as the strain-gauged sample: these samples were then 
used to measure changes in salinity and density during the experiments. To measure ice density we measure sample 
weight and sample volume. The volume measurement was performed by submerging the ice sample in a graded tube 
filled with oil with a density smaller the ice density. The sample volume is taken as equivalent to the volume of oil 
displaced.  Table 1 shows the salinity and density variations, measured twice per day, when the room temperature 
changed between -5oC and -15oC with one closed cycle per day. One can see that the laboratory ice salinity remained 
similar over the four day experiment. The mean value of the ice density is 904 kg/m3. The gas content, estimated with air 
temperature -8oC and ice salinity 6 ppt, is about 2.4 % [14].     
 
Table 1. Temporal variations of the salinity of ice samples under cyclic temperature change.   
 

Day Time Ice salinity, ppt Ice density, kg/m3 

1 19:00 6.1 867 
2 10:00 6.2 889 
2 14:00 6.6 960 
3 10:00 6.2 914 
3 14:00 6.1 884 
4 13:00 6.0 912 

 
From the experimental data we calculate the effective coefficient of linear thermal expansion (ECTE) with the formula 
 

 
T
L

L
Tlsi ∆

∆
=

1)(α ,                                                                                                                                              (41) 

 
where ∆L/L is the lengthening or shortening of ice samples measured with the FBG strain sensor when the ice 
temperature changes from T to T+∆Τ. The ECTE describes measured properties of ice samples. 
 
The coefficient of linear thermal expansion (CTE) is a material property, while ECTE is a characteristic of thermal 
expansion measured in the experiment. We consider saline ice as an isotropic material and assume that the coefficient of 
linear thermal expansion is one third of the coefficient of volumetric thermal expansion. The linear coefficient of thermal 
expansion of fresh ice (CTEFI) is equal αli=αi/3=5.1×10-5K-1. Results of the tests with fresh ice samples are shown in Fig. 
4. Figure 4a shows temperature variations in the ice samples as measured with the FBG thermistor string. The insert 
graph in Fig. 4a shows temporal variations induced by the cooling cycle of the fans. The data are averaged over 15 min 
intervals to minimize the influence of the fan cycle. Calculated values for the ECTE for fresh ice are shown in Fig. 4b, 
and these are close to the CTEFI, shown by the dashed line.   
 

 
Figure 4. Temperature (a) and the coefficient of thermal expansion versus the time (b), for fresh ice sample in long-term 
test. 
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Figure 5. Dependencies of ice sample extension versus the ice temperature measured in the experiment (blue lines) and 
their polynomial interpolations (black lines) (a). ECTE versus the ice temperature calculated from the polynomial 
interpolations of the experimental data (thick lines) and theoretical dependencies of CTE on temperature, calculated with 
adjusted values of the ice salinity sicp . 
    
Figure 5 shows the results of a test with ice sample salinity 6ppt. Blues lines in Fig. 6a correspond to the values of the ice 
sample extension and temperature measured in the experiment. Black lines in Fig. 5a show polynomial interpolations of 
the experimental data. Thick lines in Fig. 5b show ECTE versus the temperature calculated using the polynomial 
interpolation of the experimental data. Thin lines in Fig. 5b show theoretical dependencies of CTE on temperature, 
calculated with adjusted values of the ice salinity sicp are calculated from formula (14) with using formulas (6-10). The 
test shows thermal expansion similar to that described by Malmgren [4], with a negative ECTE, when the ice temperature 
is higher than -8oC. Formula (11) gives a good approximation of the experimental results with sicp=3.7 ppt when the ice 
temperature is less than -14 oC, and with sicp=1.2 ppt when the ice temperature is higher than -8 oC. We explain the 
observed decrease of the ECTE in warm ice the variation in the amount of brine trapped in closed pockets. This amount is 
estimated about 60% of total brine content when the ice temperature is below -14 oC, and about 20% of total brine content 
when the ice temperature is above -8 oC.     
 
Thermal expansion of constrained saline ice 
A series of experiments were undertaken in the cold rooms of University College London [9]. The FBG strain sensor was 
used to measure the linear strain in ice samples of cylindrical shape constrained between two steel pipes. The initial intent 
of this experiment was to investigate slip between ice and steel during thermal expansion and contraction. The ice was 
formed between two steel pipes: an outer pipe with inside diameter 11cm, and an inner pipe with outside diameter 2cm 
(see figure 6). Fresh ice was made from London tap water; saline ice from the same, with 8ppt NaCl added. The samples 
were formed in layers, so that up to 1cm depth of water was added and allowed to freeze before the next layer was 
formed. No evidence was seen of supercooled water or large bubbles within these layers. The outer pipe has length 
180mm, and the samples are milled 5mm from either end of the pipe, such that the initial ice sample has two flat parallel 
ends 190mm apart. On these flat ends we place an aluminium spacer of width 4mm which supports the FBG strain sensor 
such that expansion in the ice in the along-pipe direction stretches the sensor.  
 
Temperatures are measured using the FBG 12-thermistor string inserted through a drilled hole in the ice (or ice and pipe), 
such that temperatures are recorded through the sample in the horizontal direction. The temperature used for calibration 
of the strain sensor is that closest to the sensor. For calculation of thermal expansion, we use the average of thermistors 
located inside the ice sample, which gives a mean value through the ice, but eliminates the thermistors in the air, which 
respond much faster to temperature changes in the room. Temperature and extension are measured at 1 sample/s. The 
entire apparatus is shown in a photograph and schematic in Fig. 6.  
 
Figure 7a shows strain, as a function of temperature, measured at two different stages of a single experiment. Figure 7b 
shows this strain-temperature relationship expressed as ECTE. Measurements of thermal expansion are taken during 
periods when the temperature variation in the ice is greater than 0.1°Cs-1 (i.e. only when the temperature gradient is 
sufficiently large). Two clusters of results are visible in Fig. 7, and marked as 1 and 2. This split set of results is derived 
from one single experiment. The two clusters represent two different stages of the experiment, around 24h apart, and 
separated by cooling the ice to -16°C: the more negative values of ECTE (i.e. cluster 1) come from the first stage of the 
experiment, and the values close to zero (cluster 2) from a later stage of the experiment. In both clusters the ice was 
warming as measurements were taken. In cluster 1 the ice clearly contracts with increasing temperature, whereas in 
cluster 2 the ice expands with increasing temperature up to around -7°C, then contracts. It is surprising that the same ice, 
during the same experiment, shows such variation in ECTE against temperature. We note that the constrainment of the ice 
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means the ECTE could take values between the volumetric and linear coefficients of thermal expansion, but this 
switching between the volumetric and linear expansion doesn’t explain the two regions of ECTE in the temperature range 
from -10o C to -6 o C. It is possible that the constraining pipes cause some brine regions to switch over time between BPC 
and ICP, but this effect needs further investigation. 
 

 
 

Figure 6. Full constrained-sample experiment photo, schematic and exploded schematic. 
 

 
Figure 7. Dependencies of ice sample strain versus ice temperature measured experimentally (blue dots) and their 
polynomial interpolations (black lines) (a). ECTE versus the ice temperature calculated from the polynomial 
interpolations of the experimental data.  
 
Experiment on thermo-elastic waves 
Experiments to measure thermo-elastic waves were undertaken in the UNIS cold laboratory in 2015. Saline ice samples 
were prepared from a mixture of sea water and fresh water. Cylindrical samples with inner vertical hole were frozen by 
adding saline water, layer by layer, into a cylindrical plastic vessel with a fixed coaxial vertical pipe inside. The FBG was 
fixed by steel plates and bolts on the top and the bottom of the ice sensor, as shown in Fig. 8. The FBG thermistor was 
placed near the FBG strain sensor. The ice sample was insulated from the environment by foam plastic (Fig 8a).  
 
The upper surface of the sample was subjected to periodical variations of air temperature, caused by the cycle of the fans 
in the cold laboratory. The period of the air temperature variations was 12 minutes. The inverse wavenumber k-1, 
calculated from formula (39) and with a wave period of 12 minutes, is around 1cm. This quantity characterizes the depth 
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of penetration of the air temperature fluctuations into the ice. The FBG strain sensor recorded the vertical deformation of 
the ice sample created by the temperature oscillations with sampling interval 1s. The air temperature was measured less 
than 1cm from the ice surface with a Testo 176T4 rod-probe, and on the ice surface with a Testo 176T4 wire-probe (Fig. 
9). 
 

      
         

a)                                                                                b) 
Figure 8. Schematic of experiment for detection of TEW (a). Ice sample with optical fiber (b). 
 
 

       
                                         a)                                                                    b) 
Figure 9. Photos of full experiment (a) and sensor installed on the sample (b). 
 
The mean air temperature was kept the same for 5-6 hours to get stable ice temperatures several centimeters below the ice 
surface, and stable amplitude of thermo-elastic waves at constant mean air temperature. The amplitude of the temperature 
oscillations measured in the air was 1.8°C, across a range of mean temperatures. Figure 10 shows an example of the 
temperature and strain record. The general trend of the strain record, and the temperature induced oscillations of strain, 
are clearly visible. The amplitude of oscillations around 1 µstrain corresponds to the resolution of the FBG strain sensors. 
A moving average was applied to extract the trend of the strain. The difference between this averaged data and the actual 
data gives a periodic signal with amplitude proportional to the amplitude Au of vertical displacements of the ice surface 
(i.e. the TEW amplitude).  
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Figure 10. Example of temperature (a) and strain (b) oscillations in ice sample versus the time. 
 
The amplitudes of the temperature oscillations measured with the wire-probe on the ice surface were smaller than the 
amplitudes measured with the rod-probe in air, and were highly dependent on the nature of the freezing between probe 
and ice surface. Actual amplitudes of the ice surface temperature are assumed to be between the wire-probe and rod-probe 
measurements. Therefore we include a calibration coefficient to compare the shape of the experimental and theoretical 
dependencies of the DT ratio on the mean surface temperature. The theoretical dependence of the DT ratio on the mean 
surface temperature was calculated using formula (40). 
 
These theoretical dependencies of the DT ratio on the mean ice temperature are shown in Fig. 11a when closed brine 
pockets are absent (σicp=0). The values of ice salinity σsi are shown near the lines. Figure 11b shows the theoretical 
dependencies of the DT ratio on the mean ice temperature when σsi = 5 ppt. The values of ICP salinity σicp are shown near 
the lines. One can see that the DT ratios shown in Fig.11a are much smaller than those shown in Fig. 11b. The DT ratios 
decrease when the mean temperature increases in Fig. 11a, and the DT ratios increase when the mean temperature 
increases in Fig. 11b. Examples of the DT ratios (as a function of mean temperature) reconstructed from experiments are 
shown in Fig. 12a for σsi=9ppt by blue dots and for σsi=5ppt by pink dots. These results show increasing DT ratios when 
the mean temperature increases. This type of behavior is similar to that shown in Fig. 11b. The values of the DT ratios in 
Fig. 12 are smaller than the values shown in Fig. 11b because only a fraction of the liquid brine is trapped in closed brine 
pockets of saline ice in the laboratory experiment. The solid lines in Fig. 12a show a (second order) polynomial fit of the 
DT ratios. Figure 12b shows the dependencies of the ICP salinity on the temperature found from formula (40) after the 
substitution of the polynomial fits of the DT ratios shown in Fig. 12a. Both of the dependencies demonstrate a decrease of 
the ICP salinity with increasing temperature.  
 
 

  
Figure 11. Theoretical dependencies of the DT ratio on temperature, calculated for saline ice of different salinity without 
closed brine pockets (a) and for saline ice of 5 ppt salinity with closed brine pockets with different ICP salinities (b). 
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Figure 12. Dependencies of the DT ratio on temperature, found from experiments on thermo-elastic waves (markers show 
experimental data points and lines show polynomial fits) (a). Solid lines show the dependencies of ICP salinity on 
temperature, calculated with the polynomial fit of the DT ratios from formula (39) (b). Blue dots and lines correspond to 
ssi= 9 ppt and pink dots and lines correspond to ssi= 5 ppt.    
 
 

Conclusions and Discussion 
 
A thermodynamic model of saline ice, accounting for phase changes and liquid brine migration in the porous space, has 
been formulated, and basic equations derived. It is assumed that sea ice is composed of two intermingled parts: ice with 
closed brine pockets (ICP), and liquid brine in permeable channels (BPC). The liquid brine content of the ICP is 
characterized by the ICE salinity σicp which is lower than the total ice salinity σsi. The brine migration through the 
permeable channels is described by Darcy’s law in the model. The ICP salinity σicp can be determined from the 
temperature T and the total ice salinity σsi through an empirical equation. It has been shown that the coefficient of thermal 
expansion of sea ice, as given by the model, is similar to the coefficient of thermal expansion derived by Malmgren [4] 
when the sea ice salinity is equal to the ICP salinity.  
 
We have conducted theoretical investigations of the thermal deformations of a sea ice half space caused by periodical 
changes of the surface temperature. These temperature oscillations penetrate into the ice and cause ice deformations. 
These are thermo-elastic waves (TEW). We analyzed the dependence of the amplitude of vertical displacements of the ice 
surface (i.e. TEW amplitude) on the mean ice temperature when the amplitude of the surface temperature oscillations is 
fixed. It was shown that the TEW amplitude is expected to decrease with increasing mean ice temperature when all the 
liquid brine is located in permeable brine channels, and σicp=0. The TEW amplitude increases with increasing mean ice 
temperature when the ICP salinity is greater than zero (σicp>0). 
 
We investigated the dependency of the effective coefficient of linear thermal expansion (ECTE) on temperature, in 
laboratory experiments. Values of ECTE around 5×10-5K-1 were found for fresh ice, and these are close to the widely 
accepted value. Negative values of ECTE were found in samples with salinity of 6ppt and higher. Atypical thermal 
behavior – contraction with increasing temperature – was observed across several experiments at temperatures higher 
than -8°C.  
 
The absolute values of the ECTE were lower than those given by Malmgren [4] but can be modelled by assuming that 
only a part of the liquid brine exists in closed brine pockets. The experimental dependency of ECTE on temperature was 
compared with theoretical predictions, and a reasonable match was achieved by tuning the ICP salinity σicp. We find that 
the ICP salinity (which tells us, effectively, how much brine is in closed pockets and how much in open channels) should 
be lower than total ice salinity. The amount of salt trapped in closed pockets decreases with the temperature increase. In 
our experiments it takes of about 60% of total ice salinity when the ice temperature was below -14oC and drops below 
20% of total ice salinity when the ice temperature was above -8oC.  
 
In the experiment with a constrained ice sample of 8 ppt salinity, we discovered that the ECTE varies within the same 
experiment, so that two distinct clusters of strain (and hence trends of ECTE) are visible. Such behavior could be 
explained by temporal locking and unlocking of BPC, perhaps due to the influence of the constraining pipes. Therefore 
we think that thermal expansion of saline ice is a highly dynamic process, accompanied by temporal variations of the 
fraction of closed brine pockets, depending on spatial sizes and confinement of the ice. Numerical simulations of the 
experiment [9] shown that the maximum value of thermally induced axial displacement of the confined ice sample, 
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calculated with an elastic model, is similar to the axial displacement of an unconfined sample. If creep is incorporated, the 
maximum displacement is modelled to increase around 20% (assuming no slip between ice and steel). Frictional sliding 
between ice and steel may influence the measured thermal expansion in our experiments. This effect should be further 
studied.         
 
Theoretically derived thermo-elastic waves have been validated in laboratory experiments with saline ice samples. In the 
experiments we registered periodic elongation and shortening of ice samples, caused by periodic cycles of the air 
temperature around some mean value. The amplitudes of these thermo-elastic waves increase with increasing room 
temperature. Within our model, this occurs only when the ice includes some amount of brine in closed pockets (σicp>0).   
 
We have managed to reproduce the main trends of the ECTE dependency on temperature, and the dependency of TEW 
amplitudes on temperature by adjusting ICP salinity σicp. Phase changes occur at the boundaries of the closed brine 
pockets, and these phase changes are accompanied by changes of local pressure and deformations due to the 10% 
difference between ice and brine densities. These stresses are not accounted in the model. The gas content of saline ice 
[21, 22] may play a role in damping this effect, and the presence of gas content could be incorporated into later models.  
 
Measurements of strain and temperature were performed with Fiber Bragg Grating sensors, which can be recommended 
as a productive tool for laboratory measurements of the thermo-mechanical properties of saline ice. We were able to 
perform experiments with samples of various sizes, geometries and configurations; sampling at 1Hz; and with high 
accuracy and resolution across a temperature range from 0°C to -20°C. The sensors, and their associated hardware and 
software, were stable and robust. The main experimental complication was in developing techniques to mount the FBG 
sensors onto the ice samples. 
 
The results in this paper suggest that the some brine within sea ice may be contained in closed pockets, and unable to 
permeate through the ice under typical pressure differences. This in turn may influence the thermal expansion of sea ice. 
This work may be of interest to those modelling sea ice thickness and salinity distribution on both local scales and large 
scales [23, 24].  
 
 

Additional Information 
Dispersion equation 
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Instrumentation 
Experiments on thermal expansion and measurements of thermo-elastic waves in saline ice were performed with Fiber 
Bragg Grating (FBG) sensors manufactured in AOS GMBH (Dresden). A Fiber Bragg grating is a periodical index 
change in the refractive index n along an optical silica fiber’s core, formed by an interference pattern of two UV laser 
beams that the fiber is exposed to. With a period of less than 10-6mm, areas of higher n alternate with areas of lower n 
while ∆n is relatively small (∆n < 0.001 at n = 1.45). Due to the index change, each “grating line” reflects a very small 
portion of the light wave propagating along the fiber, back to the light source. Although a single reflected portion is 
negligible compared to the transmitted power, the effect becomes noticeable because the amount of “grating lines” in a 
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conventional FBG is about 4000/mm, and a typical FBG with 10 mm length consists of 40 thousands reflections. If the 
light’s wavelength matches the condition 
 

λBragg = 2·neff·Λ,                                                                                                                                                    (43) 
 
where neff is the fiber’s effective index, λBragg is the light’s wavelength, and Λ  is the index change’s period, then all 
reflected light wave portions are propagating “in-phase” and interfere constructively. It is easy to see that λBragg will 
change when the fiber is strained or compressed, whereas the effective refractive index is a material property and thus neff 
is sensitive to changes in temperature. This sensitivity of the peak wavelength with respect to thermal and mechanical 
loads allows the usage of FBG as strain and temperature sensors [25,26].  
 
In our experiment, FBG sensors are practical for measuring the thermal expansion of large samples because, in contrast to 
standard dilatometers, the fiber can be embedded directly inside the ice sample. FBG thermistor string and strain sensor 
are shown in Fig. 13. Typical strain resolution for FBG systems is 10-6 (1 µstrain) or better, and the accuracy is typically 

6105 −⋅ (5 µstrain). These characteristics are comparable to Michelson Interferometer Laser Dilatometers as used by 
Johnson and Metzner (1990) and discussed above.  
 
The variation (∆λBragg) of the peak wavelength caused by the extension (∆L/L) and the change of the temperature (∆T) of 
the sensor is described by the equation 
 

 TTK
L
LGF ∆⋅+

∆
⋅=

∆
λ
λ

,                                                                                                                   (44) 

 
where the gauge factor GF=0.719 and a linear temperature coefficient  TK=5.5∙10-6 are the constants obtained from a 
calibration cycle for our FBG sensors in standard SMF fiber, within a temperature range from -20o C to 0o C.  
 
The variation of the peak wavelength ∆λ is measured with a spectrometer that receives the reflected signal from the FBG 
sensor. For the calculation of the strain ((∆L/L) according to formula (40) it is necessary to measure the temperature 
change (∆T) at the strain sensor’s position in order to compensate TK. The temperature measurements can easily be 
performed with another FBG sensor protected from mechanical deformation, or alternatively with a thermometer. In our 
experiments, we used FBG strain sensors with a reference peak wavelength in the vicinity of around 1534 nm, and FBG 
temperature sensors with a reference peak wavelength in the vicinity of around 1565 nm. The strain and temperature 
sensors were cascaded in one optical fiber. The FBG measurement system’s nominal resolution and accuracy in our 
experiment was 0.08o C and 0.4o C, respectively.  
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Figure 13. An FBG thermistor string and strain sensor. 
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