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Abstract In this work we develop a bootstrap method based on the theory of Markov
chains. The method moves from the two competing objectives that a researcher pur-
sues when performing a bootstrap procedure: (i) to preserve the structural similarity
-in statistical sense- between the original and the bootstrapped sample; (ii) to assure
a diversification of the latter with respect to the former. The original sample is as-
sumed to be driven by a Markov chain. The approach we follow is to implement
an optimization problem to estimate the memory of a Markov chain (i.e. its order)
and to identify its relevant states. The basic ingredients of the model are the transi-
tion probabilities, whose distance is measured through a suitably defined functional.
We apply the method to the series of electricity prices in Spain. A comparison with
the Variable Length Markov Chain bootstrap, which is a well established bootstrap
method, shows the superiority of our proposal in reproducing the dependence among
data.

1 Introduction

The heart of the bootstrap -introduced by Efron (1979)- consists of resampling some
given observations with the purpose of obtaining a good estimation of the statisti-
cal properties of the original population. Among the different bootstrap methods,
a prominent role is played by those based on Markov chains (see e.g. Athreya and
Fuh, 1992; Biihlmann, 1997; Horowitz, 2003; Paroditis and Politis, 2001a, 2001b;
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Anatolyev and Vasnev, 2002; Bertail and Clémencon, 2007). The major advantage
of this approach is that it is entirely data driven, so that it can smoothly capture the
dependence structure of an observed time series, releasing a researcher from the risk
of wrongly specifying the model, and from the difficulties of estimating its parame-
ters.

In this paper we develop an original general approach to determine the relevant
states and the memory (i.e. the order) of a Markov chain. The bootstrap procedure
advanced here works similarly to that of Anatolyev and Vasnev (2002), who pro-
pose a Markov chain bootstrap where states correspond to the intervals resulting
from a partition of the state space (of an observed time series) into I quantiles.
However, differently from that work, our proposal places much greater care in iden-
tifying the states of the Markov chain. In particular, the approach we propose is
based on the joint estimation of the relevant states and of the order of a Markov
chain through an optimization problem. The solution identifies the partition which
groups the states with the most similar transition probabilities. In this way the re-
sulting groups emerge as the relevant states, that is the states which significantly
influence the conditional distribution of the process. In this work we also extend
theoretically the analysis in Cerqueti et al., (2010, 2012, 2013) by introducing L?
norm based distance measures. We also show that the minimization of the objective
function represented by the distance measure of the partitions, which is based on the
transition probabilities of the states, corresponds to the minimization of the informa-
tion loss function in the sense of Kolmogorov (1965). The optimization problem in-
cludes also a “multiplicity” constraint, which controls for a sufficient diversification
of the resampled trajectories. Our proposal exploits the powerful conditioning tool
provided by the transition probability matrix of Markov chains to model correctly
and efficiently random processes with arbitrary dependence structure. The results
shown in the application to the electricity prices of the Spanish market confirm the
better performances of the method proposed here with respect to a well established
bootstrap approach, such as the Variable Length Markov Chain (VLMC) bootstrap
of Biihlmann and Wyner (1999).

The paper is organized as follows. Section 2 introduces the settings of the model.
Section 3 clarifies the theoretical foundation of the optimization problem we deal
with. Section 4 formalizes the optimization problem. Section 5 provides a validation
of the theoretical results through numerical experiments based on real data. Section
6 offers some conclusive remarks.

2 Model

We suppose that we observe N realizations homogeneously spaced in time of a
phenomenon and we introduce the set of such time-ordered observations as E =
{y1,---,yn}. There exist Jy > 1 distinct states ay,...,ay, € E. The corresponding
subsets of E, denoted as E,. .., Ej, and defined as
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E.={yi€E|yi=a.}, z=1,....Jy,i=1,...,N,

constitute a partition of E. Moreover, fixed z = 1,...,Jy, then the frequency of state
a; in the observed time series E is the cardinality of E;. Let A = {ay,...,ay, } be the
range of the observed time series.

We now consider a time-homogeneous Markov chain of order k > 1, denoted as
X ={X(¢t),t > 0}, with state space A. To ease the notation, in the following we will
simply write Markov chain instead of time-homogeneous Markov chain. The k-lag
memory of the Markov chain implies that the transition probability matrix should
account for conditioning to trajectories of length k. Therefore, we refer hereafter to
a k-path transition probability matrix.

Let us consider a, € A and a;, = (apk,...,an1) € AK. The row vector a, is the
ordered set of k states ay,, € A, w=1,...,k, listed, in a natural way, from the furthest
to the closest realization of the chain. The row vector a;, will be called k-path. This
ordering of the realizations will be maintained throughout the paper. The Markov
chain has transition probability from k-path a;, to state a, given by

P(asan) = P(X(t) = a;|X(t = 1) = ap,1,...,X(t —k) = app). (D

According to Ching et al. (2008), we estimate P(a.|a;) with the empirical frequen-
cies f(a;|ay) related to N realizations of the phenomenon. For the sake of simplicity,
we avoid introducing throughout the paper a specific notation for the estimates of
the probabilities, therefore we estimate P(a;|ay,) by

flazlay) ; . .
P(az|ah) = { Zj:ajEAf(aj‘ah)’ lf Zj:ajEAf(a]|ah) ;é 0 .

0, otherwise

Let us now introduce the set A of the partitions of A. A generic element A € A can
be writtenas A = {Ay,. .. 7AW}, where |A| is the cardinality of A, with 1 <|A| <Jy,
and {Aq}qzl,...,\ a| 1s a partition of nonempty subsets of A. The cardinality of A is
B(Jy), i.e. the Bell number of the Jy elements in set A.

Extending our notation to a multidimensional context, we consider the set Ay of
k-dimensional partitions. The set A; contains the partitions we will focus on in the
present paper. A k-dimensional partition of Ay is denoted as A and is defined as

A={Agix ... xAgwx. ... xXAglgwe{l,... .| M|}, w=1,... k},

where A, is a class of the partition A,, and A,, is a partition of A at time lag w. A
k-dimensional partition of A; can also be (more easily) represented by the k-tuple
of the partitions A, w = 1,...,k, which the classes A, ,, belong to. So the partition
A can also be identified with the notation A = (A,...,A,,...,A;). Such notation
describes the fact that A is a time-dependent partition of A, i.e. A is partitioned in
different ways for each time lag w, w = 1,...,k. The cardinality of Ay is [B(Jw)]%,
the cardinality of the partition A is [1]| = [T5_; |4
We refer to the probability law P introduced in (1) and define

Pla;]Ay) =P(X(t) = a|X(t—1) €Ag1,....X(t —k) €Ay 1), 2)



4 Roy Cerqueti, Paolo Falbo, Gianfranco Guastaroba and Cristian Pelizzari

where Ay =Ag i X ... XAg,w X ... XAy 1 C Ak, and a; € A. The quantity in (2) is
the transition probability to reach state a, at time ¢ after the process has been in the
classes Ay, «,...,Aq,,1 in the previous k times. The transition probabilities P(a.|A,)
in (2) are estimated, as usual, through the empirical frequencies:

Zi:aieAq flazla;)

P(az|Aq) _ Zi:aieAq Zj:ajeAf(aj\ai)’ if Zi:aieAq Zj:ajeA f(aj|ai) 7é 0 .

0, otherwise

The quantities P(a;|A,) estimate a new transition probability matrix. To keep the
notation as simple as possible, we continue to refer to this matrix as to the k-path
transition probability matrix.

We deal in our paper with a couple of questions related to finding the Markov
chain which best describes the observed time series E:

e Which is the optimal k?
e Which is the optimal clustering of A for each time lag w, withw =1,..., k?

3 Theoretical foundation of the optimization problem

In the context of bootstrapping, the conflicting scopes of a resampling procedure
are two: on the one side, to maintain the statistical properties of the original sam-
ple (similarity); on the other side, to allow for a sufficient level of diversification
between the original and the bootstrapped sample (multiplicity). In our model an
optimal clustering procedure of the state space of a Markov chain -based on the ful-
fillment of similarity and multiplicity requirements- is implemented, to gain mathe-
matical tractability when resampling.

The theoretical framework closer to our proposal is the field of information the-
ory, with specific reference to information loss. We can, in general, define a func-
tional space ¥ whose elements g act on the Markov chain X by defining a new
Markov chain X. The states of X are the elements of a partition of AX. There is a
clear bijection between the g of ¢ and the partitions A, of A, and they are associ-
ated to a specific amount of information. Let us write X = X|A, to formalize that the
new Markov chain is X conditioned to the information generated by the partition A,.

Since merging two k-paths cancels part of the information on the transition prob-
abilities available letting them distinct, we can say that the partitions A, imply in
general information loss. This argument is in line with Kolmogorov (1965).

In order to measure such an information loss, a nonnegative functional ny € [0, 1]
can be introduced, such that nx ()? ) represents a distance measure between X and X,
which increases as the loss of information does. If 1)(X) = 0, no information is lost,
while 1x (X) = 7] means that X is generated by a partition providing the maximum
level of information loss (no information left in passing from X to X). The consis-
tency requirements in the boundary situations of 0 and 7] lead to specific situations
in our setting. We list them below, along with a brief explanation.
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1. nx(X) = 0. This is the case of full information and occurs when X = X. In this
case the partition A, of the state space is the finest one: A, is the partition keeping
separate all the states of the Markov chain (singleton partition).

2. If 2, = {0,2} -where Q represents the sample space of the probability space
where the Markov chain is defined-, then 1y (X) attains its maximum. In this case
the maximum level of information is lost. In fact, the corresponding partition A,
collects all the elements of the state space in a unique set (all-comprehensive
partition).

In the following section we will introduce a distance indicator, d,, and a mul-
tiplicity measure, m,, which will be used to measure similarity and multiplicity,
respectively. They are two specific (information loss) distance measures 1, which
indeed satisfy conditions 1. and 2..

It can be expected that a partition of states of a Markov chain minimizing, in a
controlled way, an information loss distance measure, will condition the evolution
of the bootstrapped samples more consistently than it would occur if that partition
had been organized otherwise.

4 Optimization problem: A formalization

The concept of optimality must be intended as satisfying the requirements of the
bootstrap procedures of statistical closeness between the original and the boot-
strapped sample -minimization of a distance indicator- and a certain degree of di-
versification -constraint on the level of a multiplicity measure-. A constrained min-
imization problem can be defined following this line. We enter into its details.

4.1 LP-type distance indicator

We define an LP-type measure of the multidimensional class A, as follows:

qu = max dw’, (3)

i,j:a,',ajGAq

where
N
dij=Y |P(a;|a;)—P(a;|a;)|”,  p>0.
z=1

In this case, we preserve the similarity by imposing that the classes of a suitable
partition have a low value of the indicator defined in (3). We can finally characterize
the distance d; of partition A with the average value of its classes distances:

L
dl = E Zlqu '|A(1|7
q:
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where |A,| is the cardinality of partition class A, and C = Zl;i] |A,].

4.2 L’-type multiplicity measure

The multiplicity measures we propose are based on the size of the partition classes.
Let us define [; an absolute multiplicity measure of the partition A:
2]

L=Y AL, r>o0.
g=1

We define the relative multiplicity measure my,, related to the partition A, by
normalizing [, as follows:

e
P e—ve

4.3 Optimization problem

We now present the optimization problem based on the similarity and multiplicity
criteria developed so far.

Definition 1. Consider y € [0,1], k" € {1,...,N},and A* = (A4}%,...,A]") € Ap-. The
couple (k*,A*) is said to be d-y-optimal when it is the solution of the following
minimization problem:

i d .t >y A
et a2 Sty @)

In Definition 1 we have that k* is the optimal order of a Markov chain describ-
ing the evolutive phenomenon. Moreover, A* provides the optimal time-dependent
clustering of the state space A, in order to have an approximation of the k*-path
transition probability matrix.

According to the definitions of d; and m, , we can briefly discuss the optimization
problem. Letting the multiplicity measure reach its minimum (Y = 0) is equivalent to
allow for the singleton partition, which ensures the minimum distance (d; = 0). Let-
ting Y = 1 corresponds to forcing the maximum level of multiplicity. This boundary
in our case is satisfied only by the all-comprehensive partition, when the distance
indicator takes its maximum value.
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5 Empirical validation of the model

This section aims at comparing the proposed method with another well established
bootstrap procedure, namely the Variable Length Markov Chain (VLMC) bootstrap
(Biihlmann and Wyner, 1999). Only the case of p = 1 and r = 2 is discussed, to fur-
ther support the strength of the method. Moreover, our method is bounded to order
k =7, while VLMC self-calibrates k. The original sample is the daily Mibel Span-
ish Electric System Arithmetic Average Price (euros per MWh) from January 2nd,
1998 to December 31st, 2003.

To assess the quality of the method, we analyze the statistical properties of
the bootstrapped samples and compare them with the ones of the original sam-
ple. To this goal, we calculate the following statistics: average, standard devia-
tion, skewness, kurtosis, minimum, maximum, and autocorrelations at lag k (where
k=1,...,8).

The comparison focuses on the percentile rank that the original sample takes with
respect to the bootstrap distribution. A package written in R named “VLMC” (avail-
able at the web page http://cran.r-project.org/) was used to generate the bootstrapped
samples for VLMC. For what concerns our method, the optimization problem (4)
was solved heuristically by means of a Tabu Search algorithm in order to control
for its computational complexity (see Cerqueti et al., 2013). The number of boot-
strapped samples is 5000.

The results of the comparison in Table 1 show that VLMC regularly generates
narrower ranges between the 5th and the 95th percentiles than our method. How-
ever, they are only seldom consistent. In particular, autocorrelations at all lags are
severely under-replicated in the VLMC bootstrapped samples. Such results confirm
the expectation that the method proposed here, thanks to the minimum information
loss pursued in our optimization problem, generates bootstrapped samples reproduc-
ing more carefully the original dependence among the data of an original sample.

6 Conclusive remarks

This paper proposes an optimization problem to the goal of estimating the dimen-
sions of the transition probability matrix of a Markov chain for simulation and boot-
strap purposes. The optimization problem here formalized extends that presented
in Cerqueti et al. (2010), in that it introduces distance measures of L” (L") type.
The satisfactorily results obtained in the above-mentioned paper are theoretically
further improved. The model is grounded on information theory, and it has been
numerically validated through an experiment based on real data.
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Table 1 Percentiles and percentile ranks of the original daily Spanish electricity prices. Compari-
son between the VLMC bootstrap and the bootstrap method proposed here (case p = 1 and r = 2).

VLMC bootstrap Our bootstrap
Statistics Value® 5" pctl® 957 pctl” Pctl rank® 57 petl” 957 petl”  Petl rank®
Average 29.692  28.707 30.704 53  26.574 32.074 57
Standard dev. 9.570 8.157 10.581 72 7.113 10.979 68
Skewness 1.381 0.414 1.953 68 0.114 2.033 66
Kurtosis 5.081 0.293 9.352 59  -0.571 9.327 63
Minimum 5.469 5.726 9.311 0 4.546 11.754 58
Maximum 103.758 66.604 110.968 73 50971 111.382 71
Aut. at lag 1 0.818 0.737 0.817 95 0.737 0.859 62
Aut. at lag 2 0.706 0.579 0.702 95 0.579 0.772 61
Aut. at lag 3 0.706 0.463 0.615 99 0.547 0.745 63
Aut. at lag 4 0.667 0.371 0.540 99 0.529 0.733 63
Aut. at lag 5 0.661 0.297 0.476 99 0.52 0.73 62
Aut. at lag 6 0.721 0.236 0.423 99 0.614 0.764 65
Aut. at lag 7 0.802 0.187 0.378 99 0.728 0.829 68
Aut. at lag 8 0.683 0.148 0.338 99 0.581 0.727 64

“¢: value is the actual value of the statistic observed in the original sample
b: petl stands for percentile
¢: petl rank stands for the percentile rank of the original sample value
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