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Abstract. The 1911 Griinwald - Blaschke mapping is reviewed from the
point of view of a particular Clifford algebra. This is a mapping between
the group of proper Euclidean displacements of the plane and an open
set in 3-dimensional real projective space. The image of the set of group
elements which displace an arbitrary point to another fixed point is a
line in the projective space. In this way, a correspondence is established
between point-pairs in the plane and lines in 3-dimensional projective
space. The space of lines in 3 dimensions is an object of classical study
usually called the Klein quadric. The action of the group of planar rigid-
body displacements on the Klein quadric is different from the usually
considered action of the spatial group. The quadratic invariants with
respect to this representation are found and interpretations in terms of
point-pairs are given. Some subspaces of lines, including line complexes
and congruences, are investigated and their interpretation as sets of
point-pairs in the plane are given.
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In some recent work in Computational geometry, the Erdds distinct
distances problem was considered. This asks: given n distinct points in the
plane, what is the minimum number of distinct distances we can have be-
tween the pairs of points, see [4,11]. A key observation there was to identify
pairs of points in the plane with lines in 3-dimensional space. More pre-
cisely, the group of planar rigid-body displacements can be identified with a
3-dimensional space. Then the set of group elements that transform a given
point in the plane to another given point form a line in the 3-space. How-
ever, the mapping used was rather crude, a more sophisticated version was
given by Tao [14] a little later. One aim of this work is to show that the 1911
mapping due to Griinwald and, independently the same year, by Blaschke
see [1, chapter XIJ, is much neater and also leads to interesting geometry.
It should be noted that this map was used in [8] to look at closely related
problems.

The other aim here is to explore some of this geometry. The paper by
Griinwald [3], in fact explicitly looks at the connection between point-pairs
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in the plane and lines in space and the mapping arises in this context. In this
work, a different approach is taken. A Clifford algebra naturally associated to
the group of planar rigid-body displacements is introduced. Elements of this
algebra can be used to represent elements of the group, points in the plane,
and also lines in the plane. The Griinwald - Blaschke mapping is then easily
expressed in terms of the coefficients of the elements of the Clifford algebra.
The map takes group elements to points in a 3-dimensional projective space
away from a particular line. It is then shown that the set of group elements
that transform a given point in the plane to another fixed point, form a line
in the 3-dimensional projective space. This gives a correspondence between
point-pairs in the plane and lines in space.

The action of the group of planar rigid-body displacements lifts to an
action on the lines. Quadratic invariants under this action are computed and
interpreted in terms of point-pairs.

The rest of the paper is then devoted to looking at the correspondences
between sets of lines in space and sets of point-pairs in the plane. In particu-
lar, line complexes and congruences are investigated. Several of these results
appear in [3] but without explicit proof, as was the style at the time.

1. Clifford Algebra

The appropriate Clifford algebra for 2-dimensional Euclidean geometry is
C1(0,2,1). This algebra has two generators which square to —1: e? = €3 = —1
and one which squares to zero e = 0. These generators also anti-commute.
The Clifford conjugation operation acts on any product of generators by
reversing their order and making each one negative,

(ere2e)™ = (—e)(—e2)(—e1) = ereze.

This is extended to the rest of the algebra by linearity.

In this algebra, a rigid displacement, or rather the double cover of a
rigid displacement, is represented by an element with even degree. Rotations
about the origin have the form,

T = coS — + ejegsin —
2 2’

where 6 is the angle of rotation. A translation with translation vector t =

(tz, t,)7T, is given by the element,

- t t
t=1+ 5:6616 + 5?!626.

Multiplication in the group is modelled by the Clifford product. A general
proper rigid-body displacement is a rotation followed by a translation and is
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thus given by,

X a 0+ . 9+
=1r = cos — + e1es8in —
g B 1€2 B

Lt cos 2 1, sin Dyere + Lty cos 2 — 1, sin D)
— COS — Sin —)eq e — COS — — Sl — Jege.
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The inverse of a group element is given by its Clifford conjugate,

~—1 ~— .
= = CoS — — eqeg8in ——
g g B 1€2 D)

1(t 9+t , 9) 1(t 0, 9)
— Uy COS — sl —)eje — — COS — — Uy S11l — )eq€.
2 DA A A ) 9772

Not every even grade element of the Clifford algebra represents a rigid dis-
placement. Only those elements that satisfy the equation §~'§ = 1 are ele-
ments of the group.

A point in the plane p = (x, y), can be represented by an algebra element
of the form, p = 1+ xeje + yese. Now, the action of the group element § on
the point is then given by,

14 2'ere + y'ese = §(1 + zeqe + yese)d',

where

T—cosg—e e sinf—&—l(t cosg—i—t Sing)e e—&—l(t cosg—t sing)e e
T I e TRy T R I g e T g e Ty

This is slightly different from the Clifford conjugate. Notice that g and — g will
give the same result for any point in the plane. So both § and —g represent
the same rigid displacement. This was referred to earlier, the group of unit
dual quaternions double covers the proper rigid-body displacements.

The Clifford algebra also contains elements which can represent lines in
the plane. These are elements of the form,

g

T = —dejese — nyer + nyes.

Here 77 = (ng, ny)7 is the normal unit vector to the line and d is the perpen-
dicular oriented distance from the origin to the line. The action of the rigid
displacements on these lines is the same as the action on points,

(—d'erese — n;el + nles) = g(—dejese — nyeq + nze2)g'. (1.1)

We can pass from this double cover group to SE(2); the group of rigid
displacements in the plane, by thinking of the parameters as homogeneous
coordinates in an RP?. Taking a ray through the origin in R* will identify §
and —g. So, a general rigid body displacement will be represented by elements
of the form,

g = ag + ageiea + ajeie + asese
where (ag : a1 : az : az) € RP?, are homogeneous coordinates. Now however,
the condition, gg~ = 1 has no meaning. The elements of SE(2) will lie in the
open set where gg~ # 0. That is, the points in RP® which satisfy gg— = 0,
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do not correspond to rigid displacements. They may be considered as ideal
elements. Expanding the equation gives,

g9~ =aj +a3 =0.

This has real solutions given by ag = ag = 0, that is a line in RP?. This line
will be denoted /., henceforth. Thus we can identify the group manifold of
SE(2) with the real projective space minus a single line, RP? \ oo

Notice that the ground field we are working in is crucially important
here. Over the complex numbers the solution to the above equation would
be a pair of complex 2-planes, meeting in £.

Now, the key observation in this work is given by the following theorem.

Theorem 1.1. The set of rigid displacements which move a point p to a point
q comprise a line in RP3.

Proof. The line can be expressed by the linear equation in the Clifford alge-
bra,

gp—alg")” =0.
Expanding this and comparing coefficient of the Clifford generators give the
two linear equations,

2a1 — ao(qz — pz) — a3(qy +py) =
2a9 — aO(Qy *py) + a3(q3: +pz) =

b

(1.2)

O

Remark 1.2. Another way to see this is as follows. Notice here that the
rotations about the origin are given by the line of elements satisfying a; =
az = 0. Now any rigid displacement taking the point p = 1 + preje + pyeae
to a point ¢ = 1 4 gze1e + gyeze can be decomposed into a translation 1 —
(1/2)pyere—(1/2)pyese which translates p to the origin, followed by a rotation
about the origin cos(0/2) + sin(f/2)e1e2 and then finally a translation which
moves the origin to ¢, 1 + (1/2)gzere + (1/2)gyeze,

1 1 0 .0 1 1
(1+ 5%616 + iqyege)(cos B 4+ sin 56162)(1 - ipxele — ipyege) =

6 .0 1 0 .0
cos 3 + sin €€ + 5 ((¢x — pa) cos 3 + (gy + py) sin 5)6164‘
1 0 .0
5((qy — py) COS 3~ (qz + pz) sin 5)626. (1.3)
It is simple to verify that the coefficients of the Clifford generators satisfy

the linear equations (1.2) found above.

It is well known that almost all rigid-body displacements in the plane
are rotations about a fixed centre in the plane. The exceptions being pure
translations. In the Clifford algebra a rotation about a point ¢ = (¢, ¢,) can
be found from a conjugation in the group. We can translate c to the origin,
rotate about the origin and then translate the origin back to c. In the Clifford
algebra this can be written as ¢r¢~ where 7 is a rotation about the origin,
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as above, and ¢ = 1+ (1/2)czere + (1/2)cyeqe. Performing the computation
gives,
Cré~ = cos 3 + sin 56162 + ¢y sin 5616 — ¢y sin 5626. (1.4)
Comparing equations (1.3) and (1.4) we can see that,

Theorem 1.3. The rotation centres of the set of group elements that displace
a point p to q lie along the perpendicular bisector line between p and q.

Proof. Comparing the coefficients of e;e and eze in the two equations gives,

A | 0 0
cysin - = - (qupm)cosf+(qy+py)sm§ ,

2 2 2
.0 1 .0 0
Casing =5 (ql—i—pw)smi—(qy—py)cosﬁ .

Multiplying the first equation by (g, —p, ), the second by (¢, —p,) and adding
the equations together gives,

1 1
(¢ — Pa)Ca + (¢y — Py)cy = 5((13 +q;) - 5(1?3 +12),

after cancelling the sin(6/2). This gives the equation of the line in RP?, on
which the rotation centres lie. The normal vector to this line is given by,

= ().

Although this vector is not unit length, we see that it is parallel to the line
from p to ¢ and hence normal to the perpendicular bisector between p and
q. When 6 = 7 radians we have the centre of rotation located at,

<Cw) _1 <Qx +pw)
Cy 2\qy+py)’
That is, midway between p and gq. O

Remark 1.4. This result is, of course, also easy to see by more geometrical
methods.

Next we look at sets of group elements that form 2-planes in RP?.

Theorem 1.5. A set of planar rigid displacements whose rotation centres lie
on a line in the plane correspond to group elements lying on a 2-plane in
RP?.

Proof. Suppose the rotation centres of the displacements lie on a line given

by,
Acy + Bey +C =0,

where A, B and C are constants. From equation (1.4) it is clear that the
group elements will satisfy the linear equation,

—Aas + Bay + Caz = 0.

In RP? a 2-plane consists of the set of points satisfying a linear equation. O
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Remark 1.6. In the group there are other 2-planes consisting of other sets
of displacements. For example, the set of pure translations comprise the so-
lutions to the linear equation az = 0 and the set of rotations with rotation
angle 7 satisfy ag = 0. Slightly more generally, rotations with fixed rotation
angle ¢ will lie on the 2-plane determined by as cosy — agsiny = 0.

The most general 2-plane of group elements is, however, given by the
following.

Theorem 1.7. A general 2-plane of displacements in RP® consists of rotations
about each point of the plane by an angle that depends on the position of the
point. The 2-plane will also determine a set of parallel lines in the plane such
that rotations about points lying on the same line have the same rotation
angle.

Proof. A general 2-plane is given by a linear equation of the form,

Agag + Arar + Asas + Azaz = 0, (15)
where the A;s are fixed coefficients. Using equation (1.4) to substitute for the
coordinates of RP? gives,

0 0 0 0
Ag cos 5 + Aszsin 3 + Ajcysin 3~ Asc, sin 3= 0.

Rearranging this gives the linear equation,

0
714201‘ —+ Alcy —+ (Ag —+ AO cot 5) = 0

Clearly, for a fixed value of the rotation angle the possible rotation centres

(€a, ¢y) will lie on a line with normal vector 7 = (_AA2 . On the other
1

hand. Given a point in the plane (¢, ¢,), we can use the equation to find the
rotation angle for the point,

Ao
0 = 2 arct .
arctan (Ach—Alcy—A;z,)

O

Remark 1.8. In the set of parallel lines determined by the 2-plane there will
be a line corresponding to a rotation angle of w. We can choose coordinates
so that the origin lies on this line and the z-axis of our coordinates are
parallel to the lines. With this choice of coordinates the coefficients will satisfy
Ay = Az = 0. In this way the z-axis becomes the line corresponding to
rotations by 7 and the parallel line a distance h above the 7-line corresponds

to rotations by,
A
0 = —2arctan (Afh) .
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2. The Griinwald - Blaschke Mapping

The Griinwald - Blaschke mapping is implicit in the Clifford algebra repre-
sentation of SE(2) discussed in the previous section. In this section it will
be made explicit. It is usual to represent proper rigid-body displacements in
the plane by 3 x 3 matrices of the form,

cosf —sinf t,
G=|sinf cos® t,]|. (2.1)
0 0 1

This is often referred to as the homogeneous representation of the group. The
action of such a displacement on a point p = (ps, py) in the plane can then
be conveniently represented by the matrix-vector product,

cosf —sinf t, D Py cos 0 — pysind + t, Pl
sinf cosf t, py | = [ pesind +pycosd+t, | =|p, |, (22
0 0 1 1 1 1

where p’ = (p}, pi,) is the transformed position of the point. Such a displace-
ment can be thought of as a rotation about the origin by angle 6 followed by
a translation given by the vector £ = (t,, t,)7.

A general point in the projective space RP? can be written using ho-
mogeneous coordinates as (ag : a1 : ag : ag), where not all ag, a1, aq, ag are
Zero.

The birational map from RP? to SE(2) is given explicitly as,

a2 —a% —2apaz 2(apa + azas)
(ap i a1 :ag:as) — ——— | 2a0as  af —a3 2(asay —agaz) | . (2.3)
@taz\ 0 a + a2
Clearly, multiplying the homogeneous coordinates of RP? by a non-zero con-
stant will produce the same rigid-body displacement. The exceptional set of
this mapping consists of the line in RP? given by ag = az = 0, that is {.
Away from /., the map is clearly differentiable, 1-to-1 and onto.
To write the inverse of this map it is best to think of the 3 x 3 matrix

as,
cC -S 7
S C
0o 0 A

where the entries C, 5,7, 7, and A are homogeneous coordinates in a 4-
dimensional projective space, RP*. Not every point in RP* corresponds to a
group elements though. It is not difficult to see that the group elements must
satisfy the homogeneous equation,

C?+ 5% —A?=0.
This is a singular quadric in RP*, where the singularity is the line C' = S =
A = 0. The matrices corresponding to points on this line are clearly not rigid-

body displacements. So, in this representation the rigid-body displacements
correspond to the points on the quadric minus its singular line.
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Definition 2.1. The Griinwald - Blaschke map is the inverse to the mapping
given in (2.3),
ag =2(C + A)A,
az = 2S5 A,
a1 = ((C+ A7y + S7y),
az = (875 — (C + A)7y).

(2.4)

As defined above, this is a quadratic map from RP* to RP?. The image
of the hyperplane A = 0 is clearly {.

Substituting the map in (2.3) into the above gives the identity map up
to an overall factor of 4ag(a3 + a3). Since the coordinates are homogeneous,
this common factor can be ignored.

The exceptional set of this map, the points where the map is undefined,
consist of the 2-plane C + A = S = 0 and the line 7, = 7, = A = 0.
The 2-plane contains all rotations by 7 radians and the singular line of the
quadric. The line, 7, = 7, = A = 0, doesn’t meet the quadric of rigid-body
displacements — unless we change the ground field to C. See [1, Ch. 11] and
also [7] for more details.

3. Lines in RP? - The Klein Quadric

Theorem 1.1 showed a connection between pairs of points in the plane and
lines in space. The study of lines in 3-dimensions is a subject with a long and
illustrious history. However, line geometry in 3-D is usually concerned with
the geometry of 3-dimensional space and hence the action of the group SE(3),
of rigid-body displacements in spaces is often important either explicitly or
implicitly. Here we are concerned with the geometry relative to the group of
planar motions SE(2). This does not seem to have been studied to any great
extent. Hence, the action of SE(2) on lines in RP* will be considered in a
following section. First, the geometry of the space of lines in space will be
revisited in order to set-up notation and make the connection with pairs of
points in the plane explicit.

Lines in RP? are usually written in terms of Pliicker coordinates. Con-
sider a pair of points in the projective space RP?, g = (ap : a1 : ag : a3) and
b= (bo : by : by : b3). The Pliicker coordinates of the line ¢ joining these two
points are given by,

a; b

Pij = det ( ) = aibj — ajbi7

a; b
where we assume 0 < i < 7 < 3. Notice that if a different pair of points on
the line are taken then the Pliicker coordinates are unchanged except that
they may be all multiplied by a non-zero constant. Hence, the six coordinates
can be taken as homogeneous coordinates in RP®. The Pliicker coordinates
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can be collected into a vector in the following order,

(3.1)

This order is, of course, arbitrary and the above choice is not the conventional
one used when studying the geometry of 3-dimensional space. The reason for
this order will become apparent in section 5 below. Also, note that Pyy =
— Pys has been used, this avoids a minus sign later.

As a first example, consider the line f,,. We can think of this as the
line passing through the two points (0: 1: 0: 0) and (0: 0: 1: 0) in RP?,
Hence the Pliicker coordinates of this line are given by,

0

S oo~ OoO

The main example of interest here is the line of group elements trans-
forming point p = (ps, py) to a point ¢ = (g, ¢y). A parameterisation of this
line was given in (1.3) above. Using ¢ and s as homogeneous parameters the
line can be parameterised as,

(ag: a1: as: az) =
(23 : C(Qac - px) + S(Qy +py) : C(‘]y - py) - S(Qx +p:c) : 25) (3-2)

Two points on the line can be found by settingc=1,s=0and ¢c=0,s=1
for example. These points are,

Ja = (2 D (qe —p2)t (@ —py) O)
and
go=(0: (ay +1py) s —(gz +ps): 2),
respectively. The Pliicker coordinates of this line are then,

2(q$ _px)
Q(qy _py)
P LR AR CFR )
P 2(qz + pa)
Q(Qy +py)
4

(3.3)

Notice that this gives a map from directed pairs of points in the plane to
lines in RP?. The pairs of points are directed since reversing the order of the
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points gives a different line,

2(pe — qz) -1 0 0 0 0 O
2(p, — qy) 0 -1 0 0 0 0
oo | @trag)—@i+p) [ _ |0 0 -100 0],
w 2(ps + qz) 10 0 0 1 0 of™"
2(py + ay) 0 0 0 010
4 0 0 0 00 1

That is, reversing the order of the points changes the sign of the Pliicker
coordinates, P13, Py3 and Pys.

From this it is clear that the line of group elements which move a point
p to itself, that is the pure rotations about p, correspond to the line,

0
0

l,, =
pp Da

Py

1
Recall that these are homogeneous coordinates so a non-zero overall factor
can be cancelled. Notice that a line representing rotations about a fixed point
will contain the identity in the group, that is the point (1 : 0 : 0 : 0).
Moreover, these lines are easily seen to be subgroups of SE(2).

Not all points in RP® correspond to lines in RP® since their coordinates

must satisfy the condition,

Po1Poz + Py Pi3 + Py3Pio = 0. (3.4)

Using Pyo rather than P5y would introduce a minus sign into the above equa-
tion. This condition can be found by expanding the following 4 x 4 determi-
nant identity,

ap by ag bo
ay b1 a1 b
az by az b
a3 bz az b3

det =0.

This equation defines a 4-dimensional variety of degree 2 in RP®, it is
usually known as the Klein quadric or sometimes Pliicker’s quadric. The lines
of RP? are in 1-to-1 correspondence with the points of this quadric.

Remark 3.1. It was shown here that the set of group elements taking a point p
to a point ¢ comprise a line in the RP? representing SE (2). How does this line
of displacements move other points in the plane? The line of displacements
{pq that move a point p in the plane to a point ¢ will also move any circle
centred on p to a circle centred on g with the same radius. Another way of
expressing this it to say that any point a distance r from p will be moved to a
point that is a distance r from ¢. This can be easily seen from the description
of £,4 given above.
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4. More on Lines in RP?

Not all lines in RP? correspond to point-pairs in the plane. To see this consider
how one might recover the points given a line. Suppose the line is given by
¢ as in equation (3.1). Comparing this to the Pliicker coordinates of the line
of displacements taking p to ¢, as given in equation (3.3), we can see that,

Pyy — Pi3 Po1 — Pa3
L LmLEY == 4.1
Pz s Py P (4.1)
and the second point is given by,
Py + Pi3 Po1 + Pa3
Qz = —p. qy = T P (4.2)
03 03

This gives a unique pair of finite points as long as Pys # 0. So, lines with
Pliicker coordinate Py3 = 0 do not correspond to point-pairs in the plane.
This leads to the following.

Theorem 4.1. The set of rigid displacements which move a line w to a line
7 is given by a line in RP® with Plicker coordinate Py = 0.

Proof. From (1.1), a rotation that moves the z-axis —ej, to the line,
T = —dejeze — nyey + nzes
is given by,

g = cos ? + sin ?6162 — g sin ?ele + g cos ?626
2 2 2 2 2 2777

where, the angle the line makes with the z-axis is ¢. So that, n, = —sin¢ =

—2sin £ COS% and ny, = cos ¢ = cos? % — sin® % Now, given two lines in the

2
plane,

T = —dejese —nye1 +nzez and w = —hejege — myeq + mgea,

we can think of the group elements that take w to 7 as consisting of a rotation
g5 , moving w into coincidence with the z-axis, followed by an arbitrary
translation s, in the x-direction and then finally a rotation g; taking the
x-axis into coincidence with 7. In the Clifford algebra this can be written as
915295 , which can be expanded to,
ds dc hs hc
(c1+ s1e1e9 — 71616 + 71626)(1 +vere)(ca — saereo + 72616 - 72626)
= (6102 + 8182) + (5162 — 6182)6182—|—

(v(cica — s152) — (s1c2 + c182))eret

(v(s1c2 + c152) + (cre2 — s182))eze,

with ¢; = cos % and s; = sin % and similar for ¢s and so, and where 7 is

an affine parameter. This is an affine parameterisation of a line in RP?. We
can get a homogeneous parameterisation of the line by substituting v = p/A
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and multiply through by A. Then we can look at the two points on the line
given by A =1, u =0,

Gu = <C08<¢1—¢2> , —d_hsin <¢1+¢2) )
“ 2 ' 2 2 '
d—h (¢1+¢2>. . <¢1—¢2)>
COS . sS1in
2 2 2

and when A =0 and g = 1 we have,

gy = (0: cos (W) : sin (W) : O).

Finally, the Pliicker coordinates for this line are then,

— sin ¢1 + sin ¢o Ng — My
COS 1 — COS P2 Ny — My
0 h—d _ h—d
T —singy —sings | | ng +my
COS (1 + €OS P2 Ny + My
0 0

Recall again that, Pliicker coordinates are homogeneous coordinates, so mul-
tiplying by an overall constant has no effect. (I

Remark 4.2. Note that any line parallel to w a distance say, r from it will be
displaced to a line parallel to 7 a distance r from 7. So, we cannot associate
a single pair of lines in the plane to such a line in RP?.

5. The action of SE(2) on Lines in RP*

Above, in equation (2.2), we saw the action of elements of the group of rigid-
body motions in the plane on points in the plane. This can be extended to
an action on lines in RP?.

Theorem 5.1. The action of SE(2) on lines in RP® is the direct sum of the
standard homogeneous representation of the group with its dual or inverse
transpose representation.

Proof. Suppose both points p and g are subject to a displacement,

Pz cos) —sinf t, Pa Dy cos O — pysinf + 1,
Dy | — | sinf cosO i, Dy | = | pasind +pycost+t, |,
1 0 0 1 1 1

and similar for q. Then we will have that,
P13 =2(qs — pz) — 2(qz — pz) cos 0 — 2(qy — py) siné
= COS ¢9P13 — sin 0P23,
Po3 = 2(qy — py) —2(gx — p2) sin @ + 2(qy — py) cos b
= sin 9P13 —+ cos 9P23.
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We also have that,

Py = 2(qy + pa) ¥ 2(qy + pa) cos 0 — 2(gy + py) sin 6 + 4t
= COS 9P20 — sin 9P01 + tmpog,

Po1 = 2(qy + py) = 2(qx + pz) sin @ + 2(q, + py) cos 0 + 4t
= sin Py + cos 0 Py1 + typog.

After a little algebra, we get that,
Pio = (03 +p,) — (6 +4qy)) =
Py — (tzcosf +t,sinh)Pi3 — (—t, sin@ + t, cos ) Pag

This can be written in matrix form as,

Pi3 cos —sinf O 0 0 0 Pi3
Pss sinf@ cosf O 0 0 0 Pys
Pro | P Py 10 0 0 Pro
P20 0 0 0 cosf —sinf tl- P20 ’
Py 0 0 0 sinf cosf t, Py
Py 0 0 0 0 0 1 Pys

where,
Pz = —(tg cos® + t,sinb),
py = —(—tzsinf +t, cosb).

Notice that we can write,

(pz; py) = —(te; ty) <

The 6 x 6 matrix above can be written in partitioned form as,
cosf —sinf 0 O 0 0
sinf cosf O 0 0 0
Pz py 1 0 0 of (G T o
0 0 0 cosf —sinf t,| ( 0 G)’
0 0 0 sinf cosf t
0 0 0 0 0

_ T
sin@ cos® ) t R

cosf) —sin 0)

<

—_

where 0 represents the 3 x 3 zero matrix here, and G is the 3 x 3 standard
representation of SF(2) as given in equation (2.1). The matrix G=7 is the
inverse, transpose of GG, that is,

. ) cosf) —sinf 0
G T = (Gil) = (GT)_ = | sinf cosf O
P Py 1

O

Remark 5.2. The six Pliicker coordinates can be partitioned into two sets of
3. The group action shows that the first three represent a line in the plane
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while the last three correspond to a point. This is the justification for the
unconventional order used for the Pliicker coordinates. The coordinates,

P20 %(pa: +qm)
Por | =4 i(py+aqy) | >
Pos 1

represent the midpoint of the pair of points in the plane and

P %(qw _px)
Pos | =4 %(qy —y) ;
Pz (2 +03) — (@2 +4q7))

represents the line in the plane perpendicular to the line determined by the
point-pair. The relation for the Klein quadric (3.4), shows that the perpen-
dicular line passes through the mid-point of the point-pair. That is, the line
is the perpendicular bisector of the line joining the points, see also theorem
1.3.

This gives us another interpretation of the lines in RP? as pointed lines in
the plane. In this interpretation the Klein quadric represents the flag manifold
of pointed lines.

Remark 5.3. Notice that, this 6 x 6 representation of the group SFE(2) is
different from the standard representation of the group of rigid-body dis-
placements in 3D. That is, the adjoint representation of SFE(3) restricted to
a planar subgroup SFE(2). Hence, we can expect that the invariants under
the two representations will be different.

So next we look at the possible quadratic invariants of these lines in
RP?. Suppose that £ is a line in RP?, then a quadratic invariant will have the
form,

rQe,
where @ is a 6 X 6 symmetric matrix.

Theorem 5.4. A general quadratic in the Plicker coordinates of a line in
RP?, invariant under the action of SE(2) is a linear combination of three
basis invariants,

Q= AQo + pQ1 +vQ2

where A\, p and v are arbitrary and the basic invariants are given by the 6 X 6
symmetric matrices,

000100 100000
00 0O0T10 01 0000
oo o0 o001 oo 0000

Q=11 00000 @ =|oo0oo0o00 0
01 0000 000000
001000 000000
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and

Q2

I
coocoo
coocoo
coocoo

coococoo
coocoo
—ooooo

0 0 O 0

Proof. The fact that a symmetric matrix @ is invariant under a rigid-body
displacement in the plane is expressed by the relation,

GT 0 TQ G 0Y g,
0 G 0 G) ™
That is, if £ is subject to a rigid displacement the invariant will not change.
This relation can be rewritten as,

aT 0\ aT 0\ "
(%0 &) ee(% &) -0

G711 o0 GT 0
(0 ar)e-a( an)-o
We can write the 6 x 6 symmetric matrix @, in partitiond form as,
K, Ks
o= (1 1)
Kg K,
where K, and K, are 3 x 3 symmetric matrices but Kz is an arbitrary

3 x 3 matrix. Substituting this into the equation for invariants gives 3 linear
equations for the K sub-matrices,

G 'K, - K,GT =0,
K3G — GKz =0,
G'K,-K,G™'=0.

These equations are simple to solve for arbitrary group elements G, and give
the solution stated. (]

that is,

Remark 5.5. The relation for the Klein quadric, equation (3.4), can be written
as,

T'Qot = 0.
Suppose we have two pairs of points in the plane, p, ¢ and p’, ¢’ and suppose
the corresponding lines are,

2(qy — py) 2(qy — ply)
(P2 +py) — (@2 +q)) v, +p,°) = (d,° + %)
2(¢z + Pa) 2(q; + p3)
2(qy + py) 2(qy, +py)
4 4

lpg = and £y g =
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After a little algebra we get,
lpgQolyq = 4((px = P2)* + (py — 1))° — (@x — 4)* = (ay — @)?).

This implies that quQoép/qr = 0 if and only if the distance between the points
p and p’ is the same as the distance between ¢ and ¢’. On the other hand,
if the distances between these points is the same then there is a rigid-body
displacement that simultaneously takes p to ¢ and p’ to ¢’. That is, the lines
lpq and £, share a common point. In this way we convert a question about
distances between points in the plane; a question in metric geometry, into a
question about lines meeting in projective 3-dimensional space; a question in
projective geometry.

Remark 5.6. Next we look at the interpretation of the invariant Q1. A simple
computation shows that,

log@ilyq = A((p2 — 42) (P, — 3) + (py — ay) (1), — 4))-
This quantity will vanish if and only if the two pairs of lines in the plane deter-

mine perpendicular directions. That is, the vectors from p to ¢ is orthogonal
to the vector from p’ to ¢'.

Remark 5.7. Finally here, it is easy to see that 7Q.f = 0 if and only if £
corresponds to pairs of lines in the plane rather than a pair of points. See
theorem 4.1.

6. a-Planes and ($-Planes

The Klein quadric is a 4-dimensional quadric in RP® and it has two ‘rulings’.
That is, there are two families of 2-planes which lie entirely in the quadric.
These are usually called a-planes and S-planes. To see how these occur let,

Pi3 Py
= | Py and p= | Po1
Py Py3

Now, consider the matrix equations,
(I—M)p+(I+M)x=0,

where M is a 3 x 3 orthogonal matrix, that is M7 M = I. It is not hard to
see that, for a fixed matrix M, the 2-planes determined by these equations lie
entirely in the Klein quadric. When det(M) = 1 the corresponding 2-plane
is called an a-plane and when det(M) = —1, it is a S-plane. The details of
this can be found in [12, §6.3].

The lines in an a-plane consist of all the lines passing through a point
in RP?, see [10, Lemma 2.1.9]. In 3D geometry, the a-planes correspond to
“point-stars”, the set of lines passing through a fixed point. Here, the lines
all contain a common group element. In terms of point-pairs in the plane
this corresponds to a set of point-pairs where there is a single displacement
that takes the first point to the second for each pair. In [1] points with this
property are referred to as homologous points.
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Theorem 6.1. The point-pairs in the plane corresponding to an a-plane in
the Klein quadric lie on circles centred on a point in the plane and each pair
of points subtends the same angle at the centre of the circle.

Proof. If the centre of the circles is ¢ and the angle subtended by the point-
pairs is 6, then the group element which moves the first point of each pair to
the second is a rotation about ¢ by the angle 6. O

Notice that the perpendicular bisectors of the point-pairs will all pass
through c.

Next we turn to the S-planes. In general, a S-plane in the Klein quadric
corresponds to a set of lines in RP? lying on a 2-plane, see [10, Lemma 2.1.9]
once more. We can say something about how [S-planes correspond to pairs
of points in the plane. First, recall from theorem 1.7 that a general 2-plane
in RP? corresponds to rotations about points in the plane where the angle
of rotation is constant along parallel lines in the plane. From this it is clear
that for a line of group elements to lie in a 2-plane in RP? the midpoint of
the corresponding point-pair must lie on the line with rotation angle 7.

Yy
6/2
7 "
< < 1
N ’

FIGURE 1. A Pair of points in the Plane.

Theorem 6.2. The midpoints of point-pairs corresponding to the lines com-
prising a B-plane lie on o fized line. The points of the point-pair lie on parallel
lines perpendicular to the line of midpoints.

Proof. Choose coordinates so that the x-axis coincides with the line of 7 ro-
tations determined by the 2-plane in RP? given by the S-plane. Consider a
pair of points whose midpoint lies at the origin of these coordinates. Remem-
ber that the line of group elements taking the first point of the pair to the
second have their rotation centres on the perpendicular bisector of the line
joining the points, see theorem 1.3. Suppose that this perpendicular bisector
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makes an angle ¢ with the z-axis and that the distance between the points
is 2d, see figure 1. From theorem 1.7 we have that,

; 0  Aih
cot o = A
where A and A; are the coefficients defining the S-plane in RP?. The dia-
gram, figure 1, shows that cot8/2 = r/d and that h = rsin ¢, where r is the
distance between the mid-point of the point-pair and the centre of rotation.
The z-coordinate of the lower point in the diagram is x = dsin ¢ and hence,
combining these results gives

dh Ag
—dsing = — = -2,
x sin ¢ " 1,
So this point lies on the line z = —Ay/A; and by symmetry the other point
lies on the line x = Ag/A;. ]

7. Linear Line Complexes

A complex of lines is a 3-dimensional family of lines in RP?. The simplest
complex is a linear complex, this consists of the set of lines formed by the
intersection of the Klein quadric and a 4-dimensional plane in RP°.

Several, sets of point-pairs correspond to linear line complexes. As a
first example consider the set of point-pairs where the initial point of the
pair lies on a line. If the line has normal vector @ = (n, n,)T and d is its
perpendicular oriented distance to the origin, then the condition for the first
point to lie on this line will be,

NgPz + NyDy — d = 0.

Then, using equation (4.1) to substitute for the coordinates of the point we
get,
nZ(PQO — P13) —|—ny(P01 — P23) — dP03 = 0

This is the equation of a 4-plane in RP°.
Similarly, if the final point of the pair lies on the line we get a linear
line complex determined by the 4-plane,

Nz (Pao + P13) + 1y (Po1 + Pa3) — dPy3 = 0.
If the midpoint of the pair lies on the line, the linear line complex is,
TLJ-PQO + nyP(n — dPO3 =0.

We also get a linear complex of lines from point-pairs whose perpendicular
bisectors pass through a fixed point. If the fixed point is (z, y), the linear
line complex is given by,

xPig + yPos + P2 = 0.
The equation for any linear line complex can be written as,
KTQOS = Oa



Points in the Plane, Lines in Space 19

that is, the line complex is the set of all lines £ satisfying the above equation.
The quantity s here is a point in RP?, not necessarily a point representing a
line in the group.

The four examples above are given respectively by,

Ng Ny Ny 0
Ny Ny Ny 0
—d —d —d 0
s = , S§= , s= and s=
—Ny Ny 0 x
—MNy Ny 0 Y
0 0 0 1

In the first two examples s is not a line in RP? but in the last two it is. A
linear line complex where s is itself a line is called a special linear complex.
Such a complex consists of all the lines in RP® meeting the line s.

A general linear line complex would have an arbitrary s, that is,

ai
by
C1
ao
bo
Co

where the entries here are arbitrary but fixed. The equation of the resulting
linear complex is then,

ao P13 + bo P23 + coPi2 + a1 Pog + b1 Py1 + ¢1 FPo3 = 0. (7.1)

This leads to,

Theorem 7.1. A general linear line complex determines a pair of points ¢ =
(cz, ¢y) and k = (kg ky). Fizing the initial point in a point-pair corresponding
to the complex, the final point will lie on a circle centred on k with radius
depending on the distance of the initial point from c. Alternatively, if the final
point of the pair is fixed, then the initial point must lie on a circle centred on
c with radius determined by the distance of the final point from k.

Proof. Using equation (3.3) to substitute for the Pliicker coordinates in (7.1)
gives the equation,

CO((pi +p12;) - (Q§ + qz)) + 2(0’0(QI 7pz) + al(qm +pm))+
2(b0(qy _py) + bl(Qy +py)) +4c; = 0.

Rearranging and completing the squares this can be written as,

CO(((paa - Cz)2 + (py - Cy)Z) - ((qﬂc - kw)Q + (Qy - ky)2)> =D.
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Where,
— bo — b
¢, = B0—a1) ¢, = Lo =)
Co Co
bo+b
k‘%:(ao-ﬁ-aﬂ7 ky=(0+ 1)
Co Co
and
D= 4 @0a1 +bobi + cocr)
Co
This shows how the coordinates of the points ¢ = (¢, ¢y) and k = (ks, ky)
are related to the parameters of the complex. [l

Remark 7.2. If s is a line, so that the line complex is a special line complex,
then aga; + bgb1 + cpcy = 0 and hence D = 0. This implies that, in such a
complex, the distance of p from ¢ will be the same as the distance of ¢ from
k.

Remark 7.3. Notice that the range of different linear line complexes is richer
than the spatial case of lines in RP?. In the standard case, line complexes are
classified up to the action of SE(3) by the pitch of the element s, with pitch
0 corresponding to the special linear complex. Since the action of the planar
group SFE(2) has different invariants, the classification of line complexes with
respect to this action will be different. In particular, notice that the first
two examples in this section satisfy the relation s7@Qys = 0. There is also
a very special linear complex; the set of lines meeting the line ¢,. In [3],
this complex is denoted ®. This is however, another way of expressing the
hyperplane P3y = 0 of lines that don’t correspond to any point-pairs, see
theorem 4.1.

8. Quadratic Line Complexes

A quadratic line complex is a 3-dimensional set of lines in RP? given by the
intersection of the Klein quadric with another 4-dimensional quadric.

Clearly, from the previous section, we will get a quadratic line complex
by considering the point-pairs in the plane where either the initial or final
point of the pair lies on a conic curve in the plane. For example, consider the
set of point-pairs in the plane where the initial point lies on a circle given by
the equation,

2?2 4y =12,
and where the radius r is constant. Substituting for x and y using equation
(4.1) gives,
(Pao — P13)* + (Po1 — Pas)? = r* P,

This is certainly a quadratic in the Pliicker coordinates and hence represents
a quadratic line complex. We can also write this as /7 Qf¢ = 0, were, as usual,
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{ is the vector of Pliicker coordinates and @ is the 6 x 6 symmetric matrix,

10 0 -1 0 O

0 1 0 0 -1 0
0o 0 0 0 O 0
@= -1 0 0 1 0 0
0 -1 0 O 1 0
0 0 0 0 0 —r?

In fact, this is a singular quadratic complex since det(Q) = 0. It is singular
on the 2-plane spanned by,

1 0 0
0 1 0
s1 = (1) . S9 = 8 and /(o = (1)
0 1 0
0 0 0

Clearly, we get a similar result if the final point of the pair is required to
lie on a circle, in fact, only a few signs are changed. We also get very similar
results if the initial or final points of the pair lie on any conic section.

As another example of a quadratic complex of lines, consider the set of
all pairs of points in the plane separated by a fixed distance 2§.

Theorem 8.1. The lines in RP? corresponding to point-pairs in the plane
separated by a distance 26 comprise a singular quadratic line complex.

Proof. The distance between the points p and ¢ is,
(Pe — 42)* + (py — qy)* = 46°.

From equation (3.3) we have that P13 = 2(¢z — pz), P23 = 2(¢y — py) and
Pys = 4. So, substituting in the above equation gives,

Py + Py = 8 Pgs.

Again, this is a quadratic in the Pliicker coordinates and hence a quadratic
line complex. The complex is given by the 6 x 6 symmetric matrix,

10000 0
01000 O
00000 O

LBG=10 0000 o0
00000 O
0000 0 -6

O

Remark 8.2. This quadratic equation can also be written in terms of the
invariants found in theorem 5.4 as,

(TQ10 — 6207 Qal = 0 = (T (Q1 — 6°Qs) .
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That is Qs = Q1 — 62Q,. This determines a singular quadric in RP®, it is
easy to see that the singular set of the quadric is the 2-plane determined by
P13 = P23 = Py3 = 0. Notice that, this 2-plane lies entirely within the Klein
quadric. In fact this is a S-plane given by the orthogonal matrix,

10 0
M=o 1 o],
00 -1

see section 6.

This gives us a way to determine when a pair of lines represent point-
pairs with the same separation.

Theorem 8.3. Two lines €,y and {4 represent point-pairs with the same
separation if,

(EZqQMPQ) (E;{/q’QQKP’q’) = (fg'q’ngp/q’) (quQﬂpq) :
Proof. This relation results from eliminating §2 between the relations,
0 (Q1=0%Q2) lyg =0 and (], (Q1—6°Q2) by =0.
d

Remark 8.4. Unlike the result in remark 5.5, this gives a direct way to com-
pare the separation of point-pairs.

To reconcile these two views we have,

Theorem 8.5. For two pairs of points in the plane, p, q and p', ¢ the two
conditions,

(EZququ) (gz?’q’Q%p’q’) - @Z’q’ngp’q/) (45]@2%(1) =0
and
(€h,Qolyy) =0
are equivalent. Both conditions are satisfied if and only if |p — q| = |p' — ¢'|.

Proof. Using equation (3.3) to substitute for the coordinates of the points
into the first condition gives, after a lengthy computation,

(ﬁqulepq) (Eg'q’Qﬂp’Q') - (Eg’q'Qlep’q’> (ZZqQ2£pq) =
64((pe — 42)* + (py — @y)° — Wl — 4.)* — V), — 4,,)?)

When the coordinates are real, this vanishes if and only if |p—q|? = |p’ —¢'|?.
A similar computation for the other condition then shows,

16 (EZP,QOEW) = (gqulgm) (ég,q,Qgﬁp/q,) - (gz?’q’ngp/q’) (KZqQﬂpq) :
O
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Remark 8.6. This quadratic complex gives another realisation of the group
of planar rigid displacements. Suppose we take a particular point-pair in the

plane, say the points,
—J )
p—(0> and q-<0>.

This will give a line in RP® with Pliicker coordinates, (%, = (4,0,0,0,0,1).
Now, acting on this line with every element of the group will produce,

(ag — a3)d
20,00,35
GT 0 B 1 —(apay + azaz)d
< 0 G) PE a2 + a2 apai — asas
apas + asay
a(Q) + ag

This can be thought of as a birational map from RP? to the quadratic line
complex in RP°. Explicitly, we have,

2 9

P13 = (ag — a3)d, Py = agay — azaz,

Py3 = 2apa39, Po1 = agaz + azay,
2, 2

Py = —(a0a1 + a3a2)(5, Pys = ap + as.

The exceptional set of this map, that is, the set where the map is undefined,
is just the ideal line £,. The inverse of the map is then given by,

ag = (0Py3 + Py3) Pas, a1 = (0P — P12)Po3,
as = Py, as = —(0Po3 + P13) (0P + Pi2).

Note that these are maps between projective spaces, so common factors can
be cancelled. The exceptional set of the inverse map consists of a pair of
3-planes: Po3 = (5P03 + P13) =0 and Py3 = (5P20 + P12) = 0.

9. Line Congruences

Line congruences are 2-dimensional families of lines. Often these are given
by the intersection of the Klein quadric with a 3-dimensional space in RP®.
Linear congruence are given by the intersection of the Klein quadric with
3-planes.

For example, consider the lines representing point-pairs in the plane
where the first point lies on a fixed line and the second point lies on another
fixed line. These conditions define a 3-plane in RP® given by the equations,

Ng(Pao — Pi3) + 1y (Po1 — Pag) —dPo3 =0

and
’n/z(PQO + P13) + TL;(P(H + P23) - d/P03 =0,
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where the normals to the lines for the first and second point are respectively,

/

. n . n’
n<w> and n’(i‘),

Ny Ty

and their perpendicular oriented distances from the origin are d and d’, see
section 7.

Notice that these linear equations can be written as sTQo¢ = 0 and
S;Qof = 0 with,

Ny n’,
/
Ny nyl
—d —d
s1 = and s9 = ,
—Ng ny,
i
—ny ny,
0 0

In [10, Chap. 7], linear line complexes are classified as: elliptic, hyper-
bolic or parabolic. If the line s = As; + pso in CP®, meets the Klein quadric
in two real points then the congruence is hyperbolic. If the intersections are
complex, the congruence is elliptic and if the line is tangent to the quadric
then the congruence is parabolic. That is, the classification depends on the
number of real roots of the quadratic, s”Qgs = 0.

Theorem 9.1. The example above gives a hyperbolic linear line congruence.
Proof. Using the values of s; and s, given above, the quadratic,
(As1 + 152)TQo(Asy + psa) =0
simplifies to,
p2 ()% + (n)?) = A ((n2)* + (ny)?) = 0.
This has two real roots. O

Next, consider the set of lines given by group elements taking p to every
other point in the plane. This construction was denoted £, in [4]. In [3] lines
corresponding to point-pairs with a common initial point were called “left-
paratactic” lines, see also [10, Theorem 8.2.19]. Referring to equation (4.1)
again, and assuming p, and p, are constants then we have the conditions,

Pyy — P13 —p,Po3s =0 and Py — Pe3 —pyFPos = 0.

Theorem 9.2. The linear congruence L, is an elliptic linear congruence of
lines.

Proof. In this case the two linear equations can be written using,

1 0

0 1
S1 = :plx and S9 = 7(2)911

0 -1
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So that,
(As1 4 u82) T Qo(As1 + ps2) = —2(A\% + p?) =0

This has complex roots. O

It is straightforward to see that the congruence of lines representing all
point-pairs where the final point is fixed is also an elliptic linear congruence.
The only change from the argument above is that the signs of the coordinates
of the point changes, but this does not affect the quadratic equation that
determines the type of the congruence. The congruence will be denoted Zq.

Remark 9.3. The elliptic linear congruence has many special properties which
are easily derivable. For example, no pair of lines from the congruence meet.
From the interpretation of the lines as displacements taking p to some other
point in the plane, it is clear that two lines can’t meet since this would imply
that there is a displacement which moves p to two different points. From this
it is not too difficult to see that for every point in RP? there is only one line
in the congruence through the point. Similarly for each plane in RP? there is
only one line from the congruence which lies in that plane.

Suppose we intersect the congruence £, with the quadratic complex Qs,
for some value of the separation 26. That is, we look for the set of lines in
RP? which correspond to moving p to any point a distance 28 away. The
equations that the lines must satisfy are,

Po1 — Pa3 — pyPo3 = 0,
Py — P13 — px Po3 = 0,
for the congruence;
Piy + P33 — 0° Py =0,
for s and the Klein quadric;
Pyy Pog + Poo P13 + Po3Pra = 0.

In RP® the two linear equations determine a 3-plane, so the result will be the
intersection of a pair of quadrics in an RP?. To look at this more closely we
can use the linear equations to eliminate Py; and Psy from the equation for
the Klein quadric. This produces,

(P23 + py Po3) Pa3 + (P13 + pa Po3) Pis + Po3 P2 =
(P33 + Pfs) + (poPrs + pyPas + P12) Pos = 0.
Subtracting the Qs quadric gives the singular quadric,
(62Po3 + puPi3 + py Pas + Pi2) Py3 = 0.

By construction this quadric lies in the linear system of quadrics in the 3-
plane determined by the congruence. Since it factorises, it represents a pair
of 2-planes. The intersection of the original quadrics is then given by the
intersection of either quadric with the 2-planes, that is the result is a pair of
conic curves. However, intersecting ()5 with the plane Py3 = 0 clearly gives a
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FIGURE 2. Some of the Lines in an Elliptic Linear Congruence.

complex curve. The intersection of the other 3-plane 62 Py3 + py P13 + Dy Pz +
P15 = 0 with Qs gives a conic which can be written in the form,

0 —p2  —papy —ps\ [Pis
(P13, Pos, Pia) | —pepy 6> —py —py | | Pas | =0.
—Px —DPy -1 P12

The characteristic equation of this conic is then,

(62 - pg) - A —PxPy —Pzx
det —DaDy (6> =p2) =X —py =
" S

(A + (p2 +p; +1=6)A—6%)(6° — ) =0.

From the fact that 62 must be positive and the pattern of signs of the coeffi-
cients of A in the quadratic factor, this equation must have two positive and
one negative root. Hence, the intersection is an ellipse in the Klein quadric.

In the usual geometry of the Klein quadric a conic curve represents a
regulus of a hyperboloid. This gives us a nice way to visualise the elliptic
linear congruence as reguli on a foliation of space by nested hyperbolas. Each
hyperbola corresponds to final points of the point-pair located a distance 26
from the first point p, see figure 2.

These considerations lead to the natural question: How can we tell if the
final point of one point-pair is the initial point of another? This is now fairly
simple to answer, let the first line be E;q = (P13 : Py3 : Pia: Pay: Po1: Pos)
and the second ] = (P{3 : P33 : Py : Py : Py : Pj3). So, from equations
(4.1) and (4.2), we get,

PyoPys + Pi3Py3 — PosPay + PosPis =0

and
P01P63 + P23P63 — P03P61 + P03P2’3 =0.

That is, if the point-pairs satisfy the condition then these relations will be
satisfied. On the other hand, it is clear that, so long as neither Pys nor P,
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vanish then if two lines satisfy these conditions then they will represent point-
pairs in the plane where the second point of the first pair coincides with the
first point of the second pair.

As an example of a congruence which is not linear, consider the con-
gruence of lines given by requiring the initial point of a point-pair to lie on a
circle with radius r; centred at the origin and final point on a radius 75 circle
centred at k = (20, 0).

Theorem 9.4. The congruence of lines described by the requirements above is
the intersection of the Klein quadric with another 4-dimensional quadric in
RP® and a hyperplane. That is, the intersection of a linear compler with a
quadratic complex of lines.

Proof. From section 8 we can see that the congruence will satisfy the two
quadratic equations,

(Pao — Pi3)* + (Po1 — Pa3)® — 17 P3 = 0,

(Pao + P13 — 26Po3)® + (Poy + Pas)® — 15 P53 = 0.

Expanding the second equation and subtracting the first gives,
AP0 Py3 + 4Pg1 Pas — 46(Pao + P13) Poz 4 (46% + r} —r3) Pgy = 0.

Now, we can use the equation for the Klein quadric (3.4), to substitute for
Py P13 + Py1 Ps3) to produce,

((462 —|—7‘% — ’I”g)Pog — 4P12 — 45(P20 —|— P13))P03 = O

The result is a quadratic equation that factorises, thus representing a quadric
that consist of a pair of hyperplanes. The linear line complex given by the
hyperplane Py3 = 0 does not represent any point-pair in the plane. So, the
congruence lies in the other linear complex and either one of the quadratic
complexes. O

Remark 9.5. Compare the linear line complex found here with the general
linear line complex studied at the end of section 7. The line complex found
above is clearly a general linear complex with coefficients,

ag = —4(5, bo = O, Co = —4,

a; = —46, b1 =0, c1 = (46% +ri —rd).
From the results of section 7, we can see that the two points determined by

the linear complex are ¢ = (¢z, ¢y) = (0, 0) and k = (kg, ky) = (26, 0). We
also have that the distance D is given by,

D = —4((p2+52) = (g0 — 20)* +¢2)) = ~4(r — r3).

So, if the initial point is restricted to a distance ry from the origin ¢, then
the linear complex will constrain the final point to a circle centred at k with
a radius of rq.
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Intersecting this congruence with the quadratic line complex Qs from
the end of section 8 will give a 1-dimensional set of lines in RP? corresponding
to point-pairs in the plane where the first point lies on a circle, the second
lies on another circle and the points are a fixed distance apart. This is the
geometry of a 4-bar mechanism, a device used and studied in Mechanical
engineering. There are many different approaches to representing the config-
uration space of such a linkage each with its own advantages and disadvan-
tages. This approach appears in Griinwalds original paper, [3]. Other planar
4-bar linkages could be studied using this approach, for example the elliptic
trammel. For such a mechanism two points on the coupler bar lie on a pair of
lines. To model this, we could take the linear congruence defined by the first
point of the pair restricted to the first line and the second point lying on the
second line. Intersecting this congruence with the quadratic line complex Qs,
where 26 is the distance between the points, gives the configuration space of
the coupler bar. This motion is well know so we won’t pursue this here.

Line congruences have a bi-degree. In general, if the bi-degree of a con-
gruence is (m, n) then m is the number of intersections with a general a-plane
and n is the number of intersections with a general 8-plane. If the congruence
is the complete intersection of the Klein quadric with a pair of hypersurfaces
in CP° with degrees d; and dy then the bi-degree of the congruence will be
(d1d2, d1d2). Hence, the line congruence £, has bi-degree (1, 1) since it is
the complete intersection of two linear line complexes. See [13, Ch. X] or [6].
Notice that the ground field is now the complex numbers C, this make some
of the next few results simpler to state. In particular, Halphen’s theorem,
which gives the number of intersections between a pair of congruences. If a
pair of congruences have bi-degrees (mq, n1) and (ms, ny) and they inter-
sect without a common component, then the number of intersections will be
mims-+mnine, where the intersections are properly counted. If we use R as the
ground field, then this formula gives the maximum number of intersections.
For example, the intersection £, ﬂEq will have 1 x 1+1 x 1 = 2 intersections.
These are easily seen to be the lines ;4 and £. Although this theorem dates
back to 1869 [9], it can be understood in terms of the homology of the Klein
quadric.

10. Concluding Remarks

There are many other properties and ideas associated with lines and sub-
spaces of lines which will have applications to point-pairs in the plane. As
an example, ruled surfaces, that is, one parameter families of lines have not
been considered in the above. These will correspond to one-parameter fami-
lies of point-pairs, pairs of curves in other words. There will also be a 1-to-1
mapping between points on the curves, determined by the ruled surface. This
might be useful for studying parallels of plane curves.

Around the end of the 19th century there was much interest in arrange-
ments of lines in space: the 27 lines in a cubic surface, Schléfli’s double six and
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so forth. It would interesting to see how these correspond to configurations
of points in the plane.

The ideas presented here may also provide some insight into Ivory’s The-
orem. This is a rather old result that states that the diagonals of a curved
quadrilateral formed from arcs of confocal ellipses and hyperbolas have equal
length. The theorem is simple to prove given parameterisations of the ellipses
and hyperbolas. However, it is known to generalised to any dimension, in-
deed James Ivory’s original 1809 paper gave the 3-dimensional version in the
context of finding the gravitational field of an ellipsoidal body, see [5].

Finally, there is another, completely different, way to associate a pair of
points in the plane to a line in space. In this case we begin with circles in the
plane. The set of all circles in the plane can thought of as points in an RP? by
using cyclographic coordinates; sometimes also called tetracyclic coordinates,
see [2]. The relevant Clifford algebra for the situation is CI(1,3) or CI(3,1).
The group of Mdbius transformations of the plane are represented in both
these algebras. More generally, in higher dimensions, this type of coordinate
system is useful for studying conformal geometry. Hyperbolic pencils of circles
determine a pair of points in the plane, every circle in the pencil passes
through both points. Now, pencils can be thought of as lines in RP?, that
is one dimensional linear systems. Not all lines correspond to pairs of points
and the points are unordered now. If two of these lines meet this implies that
the two pencils share a common circle. In other words, the four points of the
two point-pairs lie on a common circle. The geometry of the Klein quadric
relevant to this correspondence between point-pairs and lines in space will be
different again.
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