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Abstract. The 1911 Grünwald - Blaschke mapping is reviewed from the
point of view of a particular Clifford algebra. This is a mapping between
the group of proper Euclidean displacements of the plane and an open
set in 3-dimensional real projective space. The image of the set of group
elements which displace an arbitrary point to another fixed point is a
line in the projective space. In this way, a correspondence is established
between point-pairs in the plane and lines in 3-dimensional projective
space. The space of lines in 3 dimensions is an object of classical study
usually called the Klein quadric. The action of the group of planar rigid-
body displacements on the Klein quadric is different from the usually
considered action of the spatial group. The quadratic invariants with
respect to this representation are found and interpretations in terms of
point-pairs are given. Some subspaces of lines, including line complexes
and congruences, are investigated and their interpretation as sets of
point-pairs in the plane are given.
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In some recent work in Computational geometry, the Erdős distinct
distances problem was considered. This asks: given n distinct points in the
plane, what is the minimum number of distinct distances we can have be-
tween the pairs of points, see [4,11]. A key observation there was to identify
pairs of points in the plane with lines in 3-dimensional space. More pre-
cisely, the group of planar rigid-body displacements can be identified with a
3-dimensional space. Then the set of group elements that transform a given
point in the plane to another given point form a line in the 3-space. How-
ever, the mapping used was rather crude, a more sophisticated version was
given by Tao [14] a little later. One aim of this work is to show that the 1911
mapping due to Grünwald and, independently the same year, by Blaschke
see [1, chapter XI], is much neater and also leads to interesting geometry.
It should be noted that this map was used in [8] to look at closely related
problems.

The other aim here is to explore some of this geometry. The paper by
Grünwald [3], in fact explicitly looks at the connection between point-pairs
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in the plane and lines in space and the mapping arises in this context. In this
work, a different approach is taken. A Clifford algebra naturally associated to
the group of planar rigid-body displacements is introduced. Elements of this
algebra can be used to represent elements of the group, points in the plane,
and also lines in the plane. The Grünwald - Blaschke mapping is then easily
expressed in terms of the coefficients of the elements of the Clifford algebra.
The map takes group elements to points in a 3-dimensional projective space
away from a particular line. It is then shown that the set of group elements
that transform a given point in the plane to another fixed point, form a line
in the 3-dimensional projective space. This gives a correspondence between
point-pairs in the plane and lines in space.

The action of the group of planar rigid-body displacements lifts to an
action on the lines. Quadratic invariants under this action are computed and
interpreted in terms of point-pairs.

The rest of the paper is then devoted to looking at the correspondences
between sets of lines in space and sets of point-pairs in the plane. In particu-
lar, line complexes and congruences are investigated. Several of these results
appear in [3] but without explicit proof, as was the style at the time.

1. Clifford Algebra

The appropriate Clifford algebra for 2-dimensional Euclidean geometry is
Cl(0, 2, 1). This algebra has two generators which square to −1: e21 = e22 = −1
and one which squares to zero e2 = 0. These generators also anti-commute.
The Clifford conjugation operation acts on any product of generators by
reversing their order and making each one negative,

(e1e2e)
− = (−e)(−e2)(−e1) = e1e2e.

This is extended to the rest of the algebra by linearity.

In this algebra, a rigid displacement, or rather the double cover of a
rigid displacement, is represented by an element with even degree. Rotations
about the origin have the form,

r̃ = cos
θ

2
+ e1e2 sin

θ

2
,

where θ is the angle of rotation. A translation with translation vector ~t =
(tx, ty)T , is given by the element,

t̃ = 1 +
tx
2
e1e+

ty
2
e2e.

Multiplication in the group is modelled by the Clifford product. A general
proper rigid-body displacement is a rotation followed by a translation and is
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thus given by,

g̃ = t̃r̃ = cos
θ

2
+ e1e2 sin

θ

2
+

1

2
(tx cos

θ

2
+ ty sin

θ

2
)e1e+

1

2
(ty cos

θ

2
− tx sin

θ

2
)e2e.

The inverse of a group element is given by its Clifford conjugate,

g̃−1 = g̃− = cos
θ

2
− e1e2 sin

θ

2
−

1

2
(tx cos

θ

2
+ ty sin

θ

2
)e1e−

1

2
(ty cos

θ

2
− tx sin

θ

2
)e2e.

Not every even grade element of the Clifford algebra represents a rigid dis-
placement. Only those elements that satisfy the equation g̃−1g̃ = 1 are ele-
ments of the group.

A point in the plane p = (x, y), can be represented by an algebra element
of the form, p̃ = 1 + xe1e+ ye2e. Now, the action of the group element g̃ on
the point is then given by,

1 + x′e1e+ y′e2e = g̃(1 + xe1e+ ye2e)g̃
†,

where

g̃† = cos
θ

2
− e1e2 sin

θ

2
+

1

2
(tx cos

θ

2
+ ty sin

θ

2
)e1e+

1

2
(ty cos

θ

2
− tx sin

θ

2
)e2e.

This is slightly different from the Clifford conjugate. Notice that g̃ and −g̃ will
give the same result for any point in the plane. So both g̃ and −g̃ represent
the same rigid displacement. This was referred to earlier, the group of unit
dual quaternions double covers the proper rigid-body displacements.

The Clifford algebra also contains elements which can represent lines in
the plane. These are elements of the form,

π = −de1e2e− nye1 + nxe2.

Here ~n = (nx, ny)T is the normal unit vector to the line and d is the perpen-
dicular oriented distance from the origin to the line. The action of the rigid
displacements on these lines is the same as the action on points,

(−d′e1e2e− n′ye1 + n′xe2) = g̃(−de1e2e− nye1 + nxe2)g̃†. (1.1)

We can pass from this double cover group to SE(2); the group of rigid
displacements in the plane, by thinking of the parameters as homogeneous
coordinates in an RP3. Taking a ray through the origin in R4 will identify g̃
and −g̃. So, a general rigid body displacement will be represented by elements
of the form,

g = a0 + a3e1e2 + a1e1e+ a2e2e

where (a0 : a1 : a2 : a3) ∈ RP3, are homogeneous coordinates. Now however,
the condition, gg− = 1 has no meaning. The elements of SE(2) will lie in the
open set where gg− 6= 0. That is, the points in RP3 which satisfy gg− = 0,
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do not correspond to rigid displacements. They may be considered as ideal
elements. Expanding the equation gives,

gg− = a20 + a23 = 0.

This has real solutions given by a0 = a3 = 0, that is a line in RP3. This line
will be denoted `∞ henceforth. Thus we can identify the group manifold of
SE(2) with the real projective space minus a single line, RP3 \ `∞.

Notice that the ground field we are working in is crucially important
here. Over the complex numbers the solution to the above equation would
be a pair of complex 2-planes, meeting in `∞.

Now, the key observation in this work is given by the following theorem.

Theorem 1.1. The set of rigid displacements which move a point p to a point
q comprise a line in RP3.

Proof. The line can be expressed by the linear equation in the Clifford alge-
bra,

gp− q(g†)− = 0.

Expanding this and comparing coefficient of the Clifford generators give the
two linear equations,

2a1 − a0(qx − px)− a3(qy + py) = 0,

2a2 − a0(qy − py) + a3(qx + px) = 0.
(1.2)

�

Remark 1.2. Another way to see this is as follows. Notice here that the
rotations about the origin are given by the line of elements satisfying a1 =
a2 = 0. Now any rigid displacement taking the point p = 1 + pxe1e + pye2e
to a point q = 1 + qxe1e + qye2e can be decomposed into a translation 1 −
(1/2)pxe1e−(1/2)pye2e which translates p to the origin, followed by a rotation
about the origin cos(θ/2) + sin(θ/2)e1e2 and then finally a translation which
moves the origin to q, 1 + (1/2)qxe1e+ (1/2)qye2e,

(1 +
1

2
qxe1e+

1

2
qye2e)(cos

θ

2
+ sin

θ

2
e1e2)(1− 1

2
pxe1e−

1

2
pye2e) =

cos
θ

2
+ sin

θ

2
e1e2 +

1

2

(
(qx − px) cos

θ

2
+ (qy + py) sin

θ

2

)
e1e+

1

2

(
(qy − py) cos

θ

2
− (qx + px) sin

θ

2

)
e2e. (1.3)

It is simple to verify that the coefficients of the Clifford generators satisfy
the linear equations (1.2) found above.

It is well known that almost all rigid-body displacements in the plane
are rotations about a fixed centre in the plane. The exceptions being pure
translations. In the Clifford algebra a rotation about a point c = (cx, cy) can
be found from a conjugation in the group. We can translate c to the origin,
rotate about the origin and then translate the origin back to c. In the Clifford
algebra this can be written as c̃r̃c̃− where r̃ is a rotation about the origin,
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as above, and c̃ = 1 + (1/2)cxe1e+ (1/2)cye2e. Performing the computation
gives,

c̃r̃c̃− = cos
θ

2
+ sin

θ

2
e1e2 + cy sin

θ

2
e1e− cx sin

θ

2
e2e. (1.4)

Comparing equations (1.3) and (1.4) we can see that,

Theorem 1.3. The rotation centres of the set of group elements that displace
a point p to q lie along the perpendicular bisector line between p and q.

Proof. Comparing the coefficients of e1e and e2e in the two equations gives,

cy sin
θ

2
=

1

2

(
(qx − px) cos

θ

2
+ (qy + py) sin

θ

2

)
,

cx sin
θ

2
=

1

2

(
(qx + px) sin

θ

2
− (qy − py) cos

θ

2

)
.

Multiplying the first equation by (qy−py), the second by (qx−px) and adding
the equations together gives,

(qx − px)cx + (qy − py)cy =
1

2
(q2x + q2y)− 1

2
(p2x + p2y),

after cancelling the sin(θ/2). This gives the equation of the line in RP2, on
which the rotation centres lie. The normal vector to this line is given by,

~n =

(
(qx − px)
(qy − py)

)
.

Although this vector is not unit length, we see that it is parallel to the line
from p to q and hence normal to the perpendicular bisector between p and
q. When θ = π radians we have the centre of rotation located at,(

cx
cy

)
=

1

2

(
qx + px
qy + py

)
,

That is, midway between p and q. �

Remark 1.4. This result is, of course, also easy to see by more geometrical
methods.

Next we look at sets of group elements that form 2-planes in RP3.

Theorem 1.5. A set of planar rigid displacements whose rotation centres lie
on a line in the plane correspond to group elements lying on a 2-plane in
RP3.

Proof. Suppose the rotation centres of the displacements lie on a line given
by,

Acx +Bcy + C = 0,

where A, B and C are constants. From equation (1.4) it is clear that the
group elements will satisfy the linear equation,

−Aa2 +Ba1 + Ca3 = 0.

In RP3 a 2-plane consists of the set of points satisfying a linear equation. �
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Remark 1.6. In the group there are other 2-planes consisting of other sets
of displacements. For example, the set of pure translations comprise the so-
lutions to the linear equation a3 = 0 and the set of rotations with rotation
angle π satisfy a0 = 0. Slightly more generally, rotations with fixed rotation
angle ψ will lie on the 2-plane determined by a3 cosψ − a0 sinψ = 0.

The most general 2-plane of group elements is, however, given by the
following.

Theorem 1.7. A general 2-plane of displacements in RP3 consists of rotations
about each point of the plane by an angle that depends on the position of the
point. The 2-plane will also determine a set of parallel lines in the plane such
that rotations about points lying on the same line have the same rotation
angle.

Proof. A general 2-plane is given by a linear equation of the form,

A0a0 +A1a1 +A2a2 +A3a3 = 0, (1.5)

where the Ais are fixed coefficients. Using equation (1.4) to substitute for the
coordinates of RP3 gives,

A0 cos
θ

2
+A3 sin

θ

2
+A1cy sin

θ

2
−A2cx sin

θ

2
= 0.

Rearranging this gives the linear equation,

−A2cx +A1cy +
(
A3 +A0 cot

θ

2

)
= 0.

Clearly, for a fixed value of the rotation angle the possible rotation centres

(cx, cy) will lie on a line with normal vector ~n =

(
−A2

A1

)
. On the other

hand. Given a point in the plane (cx, cy), we can use the equation to find the
rotation angle for the point,

θ = 2 arctan

(
A0

A2cx −A1cy −A3

)
.

�

Remark 1.8. In the set of parallel lines determined by the 2-plane there will
be a line corresponding to a rotation angle of π. We can choose coordinates
so that the origin lies on this line and the x-axis of our coordinates are
parallel to the lines. With this choice of coordinates the coefficients will satisfy
A2 = A3 = 0. In this way the x-axis becomes the line corresponding to
rotations by π and the parallel line a distance h above the π-line corresponds
to rotations by,

θ = −2 arctan

(
A0

A1h

)
.
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2. The Grünwald - Blaschke Mapping

The Grünwald - Blaschke mapping is implicit in the Clifford algebra repre-
sentation of SE(2) discussed in the previous section. In this section it will
be made explicit. It is usual to represent proper rigid-body displacements in
the plane by 3× 3 matrices of the form,

G =

cos θ − sin θ tx
sin θ cos θ ty

0 0 1

 . (2.1)

This is often referred to as the homogeneous representation of the group. The
action of such a displacement on a point p = (px, py) in the plane can then
be conveniently represented by the matrix-vector product,cos θ − sin θ tx

sin θ cos θ ty
0 0 1

pxpy
1

 =

px cos θ − py sin θ + tx
px sin θ + py cos θ + ty

1

 =

p′xp′y
1

 , (2.2)

where p′ = (p′x, p
′
y) is the transformed position of the point. Such a displace-

ment can be thought of as a rotation about the origin by angle θ followed by
a translation given by the vector ~t = (tx, ty)T .

A general point in the projective space RP3 can be written using ho-
mogeneous coordinates as (a0 : a1 : a2 : a3), where not all a0, a1, a2, a3 are
zero.

The birational map from RP3 to SE(2) is given explicitly as,

(a0 : a1 : a2 : a3) 7−→ 1

a20 + a23

a20 − a23 −2a0a3 2(a0a1 + a3a2)
2a0a3 a20 − a23 2(a3a1 − a0a2)

0 0 a20 + a23

 . (2.3)

Clearly, multiplying the homogeneous coordinates of RP3 by a non-zero con-
stant will produce the same rigid-body displacement. The exceptional set of
this mapping consists of the line in RP3 given by a0 = a3 = 0, that is `∞.
Away from `∞ the map is clearly differentiable, 1-to-1 and onto.

To write the inverse of this map it is best to think of the 3 × 3 matrix
as, C −S τx

S C τy
0 0 ∆


where the entries C, S, τx, τy and ∆ are homogeneous coordinates in a 4-

dimensional projective space, RP4. Not every point in RP4 corresponds to a
group elements though. It is not difficult to see that the group elements must
satisfy the homogeneous equation,

C2 + S2 −∆2 = 0.

This is a singular quadric in RP4, where the singularity is the line C = S =
∆ = 0. The matrices corresponding to points on this line are clearly not rigid-
body displacements. So, in this representation the rigid-body displacements
correspond to the points on the quadric minus its singular line.
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Definition 2.1. The Grünwald - Blaschke map is the inverse to the mapping
given in (2.3),

a0 = 2(C + ∆)∆,

a3 = 2S∆,

a1 =
(
(C + ∆)τx + Sτy

)
,

a2 =
(
Sτx − (C + ∆)τy

)
.

(2.4)

As defined above, this is a quadratic map from RP4 to RP3. The image
of the hyperplane ∆ = 0 is clearly `∞.

Substituting the map in (2.3) into the above gives the identity map up
to an overall factor of 4a0(a20 + a23). Since the coordinates are homogeneous,
this common factor can be ignored.

The exceptional set of this map, the points where the map is undefined,
consist of the 2-plane C + ∆ = S = 0 and the line τx = τy = ∆ = 0.
The 2-plane contains all rotations by π radians and the singular line of the
quadric. The line, τx = τy = ∆ = 0, doesn’t meet the quadric of rigid-body
displacements — unless we change the ground field to C. See [1, Ch. 11] and
also [7] for more details.

3. Lines in RP3 - The Klein Quadric

Theorem 1.1 showed a connection between pairs of points in the plane and
lines in space. The study of lines in 3-dimensions is a subject with a long and
illustrious history. However, line geometry in 3-D is usually concerned with
the geometry of 3-dimensional space and hence the action of the group SE(3),
of rigid-body displacements in spaces is often important either explicitly or
implicitly. Here we are concerned with the geometry relative to the group of
planar motions SE(2). This does not seem to have been studied to any great
extent. Hence, the action of SE(2) on lines in RP3 will be considered in a
following section. First, the geometry of the space of lines in space will be
revisited in order to set-up notation and make the connection with pairs of
points in the plane explicit.

Lines in RP3 are usually written in terms of Plücker coordinates. Con-
sider a pair of points in the projective space RP3, ā = (a0 : a1 : a2 : a3) and
b̄ = (b0 : b1 : b2 : b3). The Plücker coordinates of the line ` joining these two
points are given by,

Pij = det

(
ai bi
aj bj

)
= aibj − ajbi,

where we assume 0 ≤ i < j ≤ 3. Notice that if a different pair of points on
the line are taken then the Plücker coordinates are unchanged except that
they may be all multiplied by a non-zero constant. Hence, the six coordinates
can be taken as homogeneous coordinates in RP5. The Plücker coordinates



Points in the Plane, Lines in Space 9

can be collected into a vector in the following order,

` =


P13

P23

P12

P20

P01

P03

 . (3.1)

This order is, of course, arbitrary and the above choice is not the conventional
one used when studying the geometry of 3-dimensional space. The reason for
this order will become apparent in section 5 below. Also, note that P20 =
−P02 has been used, this avoids a minus sign later.

As a first example, consider the line `∞. We can think of this as the
line passing through the two points (0 : 1 : 0 : 0) and (0 : 0 : 1 : 0) in RP3.
Hence the Plücker coordinates of this line are given by,

`∞ =


0
0
1
0
0
0

 .

The main example of interest here is the line of group elements trans-
forming point p = (px, py) to a point q = (qx, qy). A parameterisation of this
line was given in (1.3) above. Using c and s as homogeneous parameters the
line can be parameterised as,

(a0 : a1 : a2 : a3) =

(2c : c(qx − px) + s(qy + py) : c(qy − py)− s(qx + px) : 2s) (3.2)

Two points on the line can be found by setting c = 1, s = 0 and c = 0, s = 1
for example. These points are,

ḡa =
(
2 : (qx − px) : (qy − py) : 0

)
and

ḡb =
(
0 : (qy + py) : −(qx + px) : 2

)
,

respectively. The Plücker coordinates of this line are then,

`pq =


2(qx − px)
2(qy − py)

(p2x + p2y)− (q2x + q2y)
2(qx + px)
2(qy + py)

4

 . (3.3)

Notice that this gives a map from directed pairs of points in the plane to
lines in RP3. The pairs of points are directed since reversing the order of the
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points gives a different line,

`qp =


2(px − qx)
2(py − qy)

(q2x + q2y)− (p2x + p2y)
2(px + qx)
2(py + qy)

4

 =


−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 `pq.

That is, reversing the order of the points changes the sign of the Plücker
coordinates, P13, P23 and P12.

From this it is clear that the line of group elements which move a point
p to itself, that is the pure rotations about p, correspond to the line,

`pp =


0
0
0
px
py
1

 .

Recall that these are homogeneous coordinates so a non-zero overall factor
can be cancelled. Notice that a line representing rotations about a fixed point
will contain the identity in the group, that is the point (1 : 0 : 0 : 0).
Moreover, these lines are easily seen to be subgroups of SE(2).

Not all points in RP5 correspond to lines in RP3 since their coordinates
must satisfy the condition,

P01P23 + P20P13 + P03P12 = 0. (3.4)

Using P02 rather than P20 would introduce a minus sign into the above equa-
tion. This condition can be found by expanding the following 4× 4 determi-
nant identity,

det


a0 b0 a0 b0
a1 b1 a1 b1
a2 b2 a2 b2
a3 b3 a3 b3

 = 0.

This equation defines a 4-dimensional variety of degree 2 in RP5, it is
usually known as the Klein quadric or sometimes Plücker’s quadric. The lines
of RP3 are in 1-to-1 correspondence with the points of this quadric.

Remark 3.1. It was shown here that the set of group elements taking a point p
to a point q comprise a line in the RP3 representing SE(2). How does this line
of displacements move other points in the plane? The line of displacements
`pq that move a point p in the plane to a point q will also move any circle
centred on p to a circle centred on q with the same radius. Another way of
expressing this it to say that any point a distance r from p will be moved to a
point that is a distance r from q. This can be easily seen from the description
of `pq given above.
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4. More on Lines in RP3

Not all lines in RP3 correspond to point-pairs in the plane. To see this consider
how one might recover the points given a line. Suppose the line is given by
` as in equation (3.1). Comparing this to the Plücker coordinates of the line
of displacements taking p to q, as given in equation (3.3), we can see that,

px =
P20 − P13

P03
, py =

P01 − P23

P03
, (4.1)

and the second point is given by,

qx =
P20 + P13

P03
, qy =

P01 + P23

P03
. (4.2)

This gives a unique pair of finite points as long as P03 6= 0. So, lines with
Plücker coordinate P03 = 0 do not correspond to point-pairs in the plane.

This leads to the following.

Theorem 4.1. The set of rigid displacements which move a line $ to a line
π is given by a line in RP3 with Plücker coordinate P03 = 0.

Proof. From (1.1), a rotation that moves the x-axis −e1, to the line,

π = −de1e2e− nye1 + nxe2

is given by,

g = cos
φ

2
+ sin

φ

2
e1e2 −

d

2
sin

φ

2
e1e+

d

2
cos

φ

2
e2e,

where, the angle the line makes with the x-axis is φ. So that, nx = − sinφ =
−2 sin φ

2 cos φ2 and ny = cosφ = cos2 φ2 − sin2 φ
2 . Now, given two lines in the

plane,

π = −de1e2e− nye1 + nxe2 and $ = −he1e2e−mye1 +mxe2,

we can think of the group elements that take $ to π as consisting of a rotation
g−2 , moving $ into coincidence with the x-axis, followed by an arbitrary
translation sx in the x-direction and then finally a rotation g1 taking the
x-axis into coincidence with π. In the Clifford algebra this can be written as
g1sxg

−
2 , which can be expanded to,

(c1 + s1e1e2−
ds1
2
e1e+

dc1
2
e2e)(1 + γe1e)(c2− s2e1e2 +

hs2
2
e1e−

hc2
2
e2e)

= (c1c2 + s1s2) + (s1c2 − c1s2)e1e2+(
γ(c1c2 − s1s2)− d− h

2
(s1c2 + c1s2)

)
e1e+(

γ(s1c2 + c1s2) +
d− h

2
(c1c2 − s1s2)

)
e2e,

with c1 = cos φ1

2 and s1 = sin φ1

2 and similar for c2 and s2, and where γ is

an affine parameter. This is an affine parameterisation of a line in RP3. We
can get a homogeneous parameterisation of the line by substituting γ = µ/λ
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and multiply through by λ. Then we can look at the two points on the line
given by λ = 1, µ = 0,

ḡa =

(
cos

(
φ1 − φ2

2

)
: −d− h

2
sin

(
φ1 + φ2

2

)
:

d− h
2

cos

(
φ1 + φ2

2

)
: sin

(
φ1 − φ2

2

))
and when λ = 0 and µ = 1 we have,

ḡb =

(
0 : cos

(
φ1 + φ2

2

)
: sin

(
φ1 + φ2

2

)
: 0

)
.

Finally, the Plücker coordinates for this line are then,

`$π =


− sinφ1 + sinφ2
cosφ1 − cosφ2

h− d
− sinφ1 − sinφ2
cosφ1 + cosφ2

0

 =


nx −mx

ny −my

h− d
nx +mx

ny +my

0

 .

Recall again that, Plücker coordinates are homogeneous coordinates, so mul-
tiplying by an overall constant has no effect. �

Remark 4.2. Note that any line parallel to $ a distance say, r from it will be
displaced to a line parallel to π a distance r from π. So, we cannot associate
a single pair of lines in the plane to such a line in RP3.

5. The action of SE(2) on Lines in RP3

Above, in equation (2.2), we saw the action of elements of the group of rigid-
body motions in the plane on points in the plane. This can be extended to
an action on lines in RP3.

Theorem 5.1. The action of SE(2) on lines in RP3 is the direct sum of the
standard homogeneous representation of the group with its dual or inverse
transpose representation.

Proof. Suppose both points p and q are subject to a displacement,pxpy
1

 7→
cos θ − sin θ tx

sin θ cos θ ty
0 0 1

pxpy
1

 =

px cos θ − py sin θ + tx
px sin θ + py cos θ + ty

1

 ,

and similar for q. Then we will have that,

P13 = 2(qx − px) 7→ 2(qx − px) cos θ − 2(qy − py) sin θ

= cos θP13 − sin θP23,

P23 = 2(qy − py) 7→ 2(qx − px) sin θ + 2(qy − py) cos θ

= sin θP13 + cos θP23.
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We also have that,

P20 = 2(qx + px) 7→ 2(qx + px) cos θ − 2(qy + py) sin θ + 4tx

= cos θP20 − sin θP01 + txP03,

P01 = 2(qy + py) 7→ 2(qx + px) sin θ + 2(qy + py) cos θ + 4ty

= sin θP20 + cos θP01 + tyP03.

After a little algebra, we get that,

P12 =
(
(p2x + p2y)− (q2x + q2y)

)
7→

P12 − (tx cos θ + ty sin θ)P13 − (−tx sin θ + ty cos θ)P23

This can be written in matrix form as,
P13

P23

P12

P20

P01

P03

 7→


cos θ − sin θ 0 0 0 0
sin θ cos θ 0 0 0 0
ρx ρy 1 0 0 0
0 0 0 cos θ − sin θ tx
0 0 0 sin θ cos θ ty
0 0 0 0 0 1




P13

P23

P12

P20

P01

P03

 ,

where,

ρx = −(tx cos θ + ty sin θ),

ρy = −(−tx sin θ + ty cos θ).

Notice that we can write,

(ρx, ρy) = −(tx, ty)

(
cos θ − sin θ
sin θ cos θ

)
= −~t TR.

The 6× 6 matrix above can be written in partitioned form as,
cos θ − sin θ 0 0 0 0
sin θ cos θ 0 0 0 0
ρx ρy 1 0 0 0
0 0 0 cos θ − sin θ tx
0 0 0 sin θ cos θ ty
0 0 0 0 0 1

 =

(
G−T 0

0 G

)
,

where 0 represents the 3 × 3 zero matrix here, and G is the 3 × 3 standard
representation of SE(2) as given in equation (2.1). The matrix G−T is the
inverse, transpose of G, that is,

G−T =
(
G−1

)T
=
(
GT
)−1

=

cos θ − sin θ 0
sin θ cos θ 0
ρx ρy 1

 .

�

Remark 5.2. The six Plücker coordinates can be partitioned into two sets of
3. The group action shows that the first three represent a line in the plane
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while the last three correspond to a point. This is the justification for the
unconventional order used for the Plücker coordinates. The coordinates,P20

P01

P03

 = 4

 1
2 (px + qx)
1
2 (py + qy)

1

 ,

represent the midpoint of the pair of points in the plane andP13

P23

P12

 = 4


1
2 (qx − px)
1
2 (qy − py)

1
4

(
(p2x + p2y)− (q2x + q2y)

)
 ,

represents the line in the plane perpendicular to the line determined by the
point-pair. The relation for the Klein quadric (3.4), shows that the perpen-
dicular line passes through the mid-point of the point-pair. That is, the line
is the perpendicular bisector of the line joining the points, see also theorem
1.3.

This gives us another interpretation of the lines in RP3 as pointed lines in
the plane. In this interpretation the Klein quadric represents the flag manifold
of pointed lines.

Remark 5.3. Notice that, this 6 × 6 representation of the group SE(2) is
different from the standard representation of the group of rigid-body dis-
placements in 3D. That is, the adjoint representation of SE(3) restricted to
a planar subgroup SE(2). Hence, we can expect that the invariants under
the two representations will be different.

So next we look at the possible quadratic invariants of these lines in
RP3. Suppose that ` is a line in RP3, then a quadratic invariant will have the
form,

`TQ`,

where Q is a 6× 6 symmetric matrix.

Theorem 5.4. A general quadratic in the Plücker coordinates of a line in
RP3, invariant under the action of SE(2) is a linear combination of three
basis invariants,

Q = λQ0 + µQ1 + νQ2

where λ, µ and ν are arbitrary and the basic invariants are given by the 6×6
symmetric matrices,

Q0 =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 , Q1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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and

Q2 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 .

Proof. The fact that a symmetric matrix Q is invariant under a rigid-body
displacement in the plane is expressed by the relation,(

G−T 0
0 G

)T
Q

(
G−T 0

0 G

)
= Q.

That is, if ` is subject to a rigid displacement the invariant will not change.
This relation can be rewritten as,(

G−T 0
0 G

)T
Q−Q

(
G−T 0

0 G

)−1
= 0,

that is, (
G−1 0

0 GT

)
Q−Q

(
GT 0
0 G−1

)
= 0.

We can write the 6× 6 symmetric matrix Q, in partitiond form as,

Q =

(
Kα Kβ

KT
β Kγ

)
,

where Kα and Kγ are 3 × 3 symmetric matrices but Kβ is an arbitrary
3× 3 matrix. Substituting this into the equation for invariants gives 3 linear
equations for the K sub-matrices,

G−1Kα −KαG
T = 0,

KβG−GKβ = 0,

GTKγ −KγG
−1 = 0.

These equations are simple to solve for arbitrary group elements G, and give
the solution stated. �

Remark 5.5. The relation for the Klein quadric, equation (3.4), can be written
as,

`TQ0` = 0.

Suppose we have two pairs of points in the plane, p, q and p′, q′ and suppose
the corresponding lines are,

`pq =


2(qx − px)
2(qy − py)

(p2x + p2y)− (q2x + q2y)
2(qx + px)
2(qy + py)

4

 and `p′q′ =



2(q′x − p′x)
2(q′y − p′y)

(p′x
2

+ p′y
2
)− (q′x

2
+ q′y

2
)

2(q′x + p′x)
2(q′y + p′y)

4

 .
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After a little algebra we get,

`TpqQ0`p′q′ = 4
(
(px − p′x)2 + (py − p′y)2 − (qx − q′x)2 − (qy − q′y)2

)
.

This implies that `TpqQ0`p′q′ = 0 if and only if the distance between the points
p and p′ is the same as the distance between q and q′. On the other hand,
if the distances between these points is the same then there is a rigid-body
displacement that simultaneously takes p to q and p′ to q′. That is, the lines
`pq and `p′q′ share a common point. In this way we convert a question about
distances between points in the plane; a question in metric geometry, into a
question about lines meeting in projective 3-dimensional space; a question in
projective geometry.

Remark 5.6. Next we look at the interpretation of the invariant Q1. A simple
computation shows that,

`TpqQ1`p′q′ = 4
(
(px − qx)(p′x − q′x) + (py − qy)(p′y − q′y)

)
.

This quantity will vanish if and only if the two pairs of lines in the plane deter-
mine perpendicular directions. That is, the vectors from p to q is orthogonal
to the vector from p′ to q′.

Remark 5.7. Finally here, it is easy to see that `TQ2` = 0 if and only if `
corresponds to pairs of lines in the plane rather than a pair of points. See
theorem 4.1.

6. α-Planes and β-Planes

The Klein quadric is a 4-dimensional quadric in RP5 and it has two ‘rulings’.
That is, there are two families of 2-planes which lie entirely in the quadric.
These are usually called α-planes and β-planes. To see how these occur let,

π =

P13

P23

P12

 and p =

P20

P01

P03

 .

Now, consider the matrix equations,

(I −M)p+ (I +M)π = 0,

where M is a 3 × 3 orthogonal matrix, that is MTM = I. It is not hard to
see that, for a fixed matrix M , the 2-planes determined by these equations lie
entirely in the Klein quadric. When det(M) = 1 the corresponding 2-plane
is called an α-plane and when det(M) = −1, it is a β-plane. The details of
this can be found in [12, §6.3].

The lines in an α-plane consist of all the lines passing through a point
in RP3, see [10, Lemma 2.1.9]. In 3D geometry, the α-planes correspond to
“point-stars”, the set of lines passing through a fixed point. Here, the lines
all contain a common group element. In terms of point-pairs in the plane
this corresponds to a set of point-pairs where there is a single displacement
that takes the first point to the second for each pair. In [1] points with this
property are referred to as homologous points.
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Theorem 6.1. The point-pairs in the plane corresponding to an α-plane in
the Klein quadric lie on circles centred on a point in the plane and each pair
of points subtends the same angle at the centre of the circle.

Proof. If the centre of the circles is c and the angle subtended by the point-
pairs is θ, then the group element which moves the first point of each pair to
the second is a rotation about c by the angle θ. �

Notice that the perpendicular bisectors of the point-pairs will all pass
through c.

Next we turn to the β-planes. In general, a β-plane in the Klein quadric
corresponds to a set of lines in RP3 lying on a 2-plane, see [10, Lemma 2.1.9]
once more. We can say something about how β-planes correspond to pairs
of points in the plane. First, recall from theorem 1.7 that a general 2-plane
in RP3 corresponds to rotations about points in the plane where the angle
of rotation is constant along parallel lines in the plane. From this it is clear
that for a line of group elements to lie in a 2-plane in RP3 the midpoint of
the corresponding point-pair must lie on the line with rotation angle π.

φ

h

θ/2

d

d

r

x

y

Figure 1. A Pair of points in the Plane.

Theorem 6.2. The midpoints of point-pairs corresponding to the lines com-
prising a β-plane lie on a fixed line. The points of the point-pair lie on parallel
lines perpendicular to the line of midpoints.

Proof. Choose coordinates so that the x-axis coincides with the line of π ro-
tations determined by the 2-plane in RP3 given by the β-plane. Consider a
pair of points whose midpoint lies at the origin of these coordinates. Remem-
ber that the line of group elements taking the first point of the pair to the
second have their rotation centres on the perpendicular bisector of the line
joining the points, see theorem 1.3. Suppose that this perpendicular bisector
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makes an angle φ with the x-axis and that the distance between the points
is 2d, see figure 1. From theorem 1.7 we have that,

cot
θ

2
= −A1h

A0

where A0 and A1 are the coefficients defining the β-plane in RP3. The dia-
gram, figure 1, shows that cot θ/2 = r/d and that h = r sinφ, where r is the
distance between the mid-point of the point-pair and the centre of rotation.
The x-coordinate of the lower point in the diagram is x = d sinφ and hence,
combining these results gives

x = d sinφ =
dh

r
= −A0

A1
.

So this point lies on the line x = −A0/A1 and by symmetry the other point
lies on the line x = A0/A1. �

7. Linear Line Complexes

A complex of lines is a 3-dimensional family of lines in RP3. The simplest
complex is a linear complex, this consists of the set of lines formed by the
intersection of the Klein quadric and a 4-dimensional plane in RP5.

Several, sets of point-pairs correspond to linear line complexes. As a
first example consider the set of point-pairs where the initial point of the
pair lies on a line. If the line has normal vector ~n = (nx, ny)T and d is its
perpendicular oriented distance to the origin, then the condition for the first
point to lie on this line will be,

nxpx + nypy − d = 0.

Then, using equation (4.1) to substitute for the coordinates of the point we
get,

nx(P20 − P13) + ny(P01 − P23)− dP03 = 0.

This is the equation of a 4-plane in RP5.
Similarly, if the final point of the pair lies on the line we get a linear

line complex determined by the 4-plane,

nx(P20 + P13) + ny(P01 + P23)− dP03 = 0.

If the midpoint of the pair lies on the line, the linear line complex is,

nxP20 + nyP01 − dP03 = 0.

We also get a linear complex of lines from point-pairs whose perpendicular
bisectors pass through a fixed point. If the fixed point is (x, y), the linear
line complex is given by,

xP13 + yP23 + P12 = 0.

The equation for any linear line complex can be written as,

`TQ0s = 0,
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that is, the line complex is the set of all lines ` satisfying the above equation.
The quantity s here is a point in RP5, not necessarily a point representing a
line in the group.

The four examples above are given respectively by,

s =


nx
ny
−d
−nx
−ny

0

 , s =


nx
ny
−d
nx
ny
0

 , s =


nx
ny
−d
0
0
0

 and s =


0
0
0
x
y
1

 .

In the first two examples s is not a line in RP3 but in the last two it is. A
linear line complex where s is itself a line is called a special linear complex.
Such a complex consists of all the lines in RP3 meeting the line s.

A general linear line complex would have an arbitrary s, that is,

s =


a1
b1
c1
a0
b0
c0


where the entries here are arbitrary but fixed. The equation of the resulting
linear complex is then,

a0P13 + b0P23 + c0P12 + a1P20 + b1P01 + c1P03 = 0. (7.1)

This leads to,

Theorem 7.1. A general linear line complex determines a pair of points c =
(cx, cy) and k = (kx ky). Fixing the initial point in a point-pair corresponding
to the complex, the final point will lie on a circle centred on k with radius
depending on the distance of the initial point from c. Alternatively, if the final
point of the pair is fixed, then the initial point must lie on a circle centred on
c with radius determined by the distance of the final point from k.

Proof. Using equation (3.3) to substitute for the Plücker coordinates in (7.1)
gives the equation,

c0
(
(p2x + p2y)− (q2x + q2y)

)
+ 2
(
a0(qx − px) + a1(qx + px)

)
+

2
(
b0(qy − py) + b1(qy + py)

)
+ 4c1 = 0.

Rearranging and completing the squares this can be written as,

c0

((
(px − cx)2 + (py − cy)2

)
−
(
(qx − kx)2 + (qy − ky)2

))
= D.
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Where,

cx =
(a0 − a1)

c0
, cy =

(b0 − b1)

c0
,

kx =
(a0 + a1)

c0
, ky =

(b0 + b1)

c0

and

D = −4
(a0a1 + b0b1 + c0c1)

c0
.

This shows how the coordinates of the points c = (cx, cy) and k = (kx, ky)
are related to the parameters of the complex. �

Remark 7.2. If s is a line, so that the line complex is a special line complex,
then a0a1 + b0b1 + c0c1 = 0 and hence D = 0. This implies that, in such a
complex, the distance of p from c will be the same as the distance of q from
k.

Remark 7.3. Notice that the range of different linear line complexes is richer
than the spatial case of lines in RP3. In the standard case, line complexes are
classified up to the action of SE(3) by the pitch of the element s, with pitch
0 corresponding to the special linear complex. Since the action of the planar
group SE(2) has different invariants, the classification of line complexes with
respect to this action will be different. In particular, notice that the first
two examples in this section satisfy the relation sTQ2s = 0. There is also
a very special linear complex; the set of lines meeting the line `∞. In [3],
this complex is denoted D. This is however, another way of expressing the
hyperplane P30 = 0 of lines that don’t correspond to any point-pairs, see
theorem 4.1.

8. Quadratic Line Complexes

A quadratic line complex is a 3-dimensional set of lines in RP3 given by the
intersection of the Klein quadric with another 4-dimensional quadric.

Clearly, from the previous section, we will get a quadratic line complex
by considering the point-pairs in the plane where either the initial or final
point of the pair lies on a conic curve in the plane. For example, consider the
set of point-pairs in the plane where the initial point lies on a circle given by
the equation,

x2 + y2 = r2,

and where the radius r is constant. Substituting for x and y using equation
(4.1) gives,

(P20 − P13)2 + (P01 − P23)2 = r2P 2
03.

This is certainly a quadratic in the Plücker coordinates and hence represents
a quadratic line complex. We can also write this as `TQ` = 0, were, as usual,
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` is the vector of Plücker coordinates and Q is the 6× 6 symmetric matrix,

Q =


1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 0 0 0 −r2

 .

In fact, this is a singular quadratic complex since det(Q) = 0. It is singular
on the 2-plane spanned by,

s1 =


1
0
0
1
0
0

 , s2 =


0
1
0
0
1
0

 and `∞ =


0
0
1
0
0
0

 .

Clearly, we get a similar result if the final point of the pair is required to
lie on a circle, in fact, only a few signs are changed. We also get very similar
results if the initial or final points of the pair lie on any conic section.

As another example of a quadratic complex of lines, consider the set of
all pairs of points in the plane separated by a fixed distance 2δ.

Theorem 8.1. The lines in RP3 corresponding to point-pairs in the plane
separated by a distance 2δ comprise a singular quadratic line complex.

Proof. The distance between the points p and q is,

(px − qx)2 + (py − qy)2 = 4δ2.

From equation (3.3) we have that P13 = 2(qx − px), P23 = 2(qy − py) and
P03 = 4. So, substituting in the above equation gives,

P 2
13 + P 2

23 = δ2P 2
03.

Again, this is a quadratic in the Plücker coordinates and hence a quadratic
line complex. The complex is given by the 6× 6 symmetric matrix,

Qδ =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −δ2

 .

�

Remark 8.2. This quadratic equation can also be written in terms of the
invariants found in theorem 5.4 as,

`TQ1`− δ2`TQ2` = 0 = `T
(
Q1 − δ2Q2

)
`.
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That is Qδ = Q1 − δ2Q2. This determines a singular quadric in RP5, it is
easy to see that the singular set of the quadric is the 2-plane determined by
P13 = P23 = P03 = 0. Notice that, this 2-plane lies entirely within the Klein
quadric. In fact this is a β-plane given by the orthogonal matrix,

M =

1 0 0
0 1 0
0 0 −1

 ,

see section 6.

This gives us a way to determine when a pair of lines represent point-
pairs with the same separation.

Theorem 8.3. Two lines `pq and `p′q′ represent point-pairs with the same
separation if,(

`TpqQ1`pq
) (
`Tp′q′Q2`p′q′

)
=
(
`Tp′q′Q1`p′q′

) (
`TpqQ2`pq

)
.

Proof. This relation results from eliminating δ2 between the relations,

`Tpq
(
Q1 − δ2Q2

)
`pq = 0 and `Tp′q′

(
Q1 − δ2Q2

)
`p′q′ = 0.

�

Remark 8.4. Unlike the result in remark 5.5, this gives a direct way to com-
pare the separation of point-pairs.

To reconcile these two views we have,

Theorem 8.5. For two pairs of points in the plane, p, q and p′, q′ the two
conditions,(

`TpqQ1`pq
) (
`Tp′q′Q2`p′q′

)
−
(
`Tp′q′Q1`p′q′

) (
`TpqQ2`pq

)
= 0

and (
`Tpp′Q0`qq′

)
= 0

are equivalent. Both conditions are satisfied if and only if |p− q| = |p′ − q′|.

Proof. Using equation (3.3) to substitute for the coordinates of the points
into the first condition gives, after a lengthy computation,(

`TpqQ1`pq
) (
`Tp′q′Q2`p′q′

)
−
(
`Tp′q′Q1`p′q′

) (
`TpqQ2`pq

)
=

64
(
(px − qx)2 + (py − qy)2 − (p′x − q′x)2 − (p′y − q′y)2

)
When the coordinates are real, this vanishes if and only if |p−q|2 = |p′−q′|2.

A similar computation for the other condition then shows,

16
(
`Tpp′Q0`qq′

)
=
(
`TpqQ1`pq

) (
`Tp′q′Q2`p′q′

)
−
(
`Tp′q′Q1`p′q′

) (
`TpqQ2`pq

)
.

�
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Remark 8.6. This quadratic complex gives another realisation of the group
of planar rigid displacements. Suppose we take a particular point-pair in the
plane, say the points,

p =

(
−δ
0

)
and q =

(
δ
0

)
.

This will give a line in RP3 with Plücker coordinates, `Tpq = (δ, 0, 0, 0, 0, 1).
Now, acting on this line with every element of the group will produce,

(
G−T 0

0 G

)
`pq =

1

a20 + a23


(a20 − a23)δ

2a0a3δ
−(a0a1 + a3a2)δ
a0a1 − a3a2
a0a2 + a3a1
a20 + a23

 .

This can be thought of as a birational map from RP3 to the quadratic line
complex in RP5. Explicitly, we have,

P13 = (a20 − a23)δ, P20 = a0a1 − a3a2,
P23 = 2a0a3δ, P01 = a0a2 + a3a1,

P12 = −(a0a1 + a3a2)δ, P03 = a20 + a23.

The exceptional set of this map, that is, the set where the map is undefined,
is just the ideal line `∞. The inverse of the map is then given by,

a0 = (δP03 + P13)P23, a1 = (δP20 − P12)P23,

a3 = P 2
23, a2 = −(δP03 + P13)(δP20 + P12).

Note that these are maps between projective spaces, so common factors can
be cancelled. The exceptional set of the inverse map consists of a pair of
3-planes: P23 = (δP03 + P13) = 0 and P23 = (δP20 + P12) = 0.

9. Line Congruences

Line congruences are 2-dimensional families of lines. Often these are given
by the intersection of the Klein quadric with a 3-dimensional space in RP5.
Linear congruence are given by the intersection of the Klein quadric with
3-planes.

For example, consider the lines representing point-pairs in the plane
where the first point lies on a fixed line and the second point lies on another
fixed line. These conditions define a 3-plane in RP5 given by the equations,

nx(P20 − P13) + ny(P01 − P23)− dP03 = 0

and

n′x(P20 + P13) + n′y(P01 + P23)− d′P03 = 0,
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where the normals to the lines for the first and second point are respectively,

~n =

(
nx
ny

)
and ~n′ =

(
n′x
n′y

)
,

and their perpendicular oriented distances from the origin are d and d′, see
section 7.

Notice that these linear equations can be written as sT1Q0` = 0 and
sT2Q0` = 0 with,

s1 =


nx
ny
−d
−nx
−ny

0

 and s2 =


n′x
n′y
−d′
n′x
n′y
0

 .

In [10, Chap. 7], linear line complexes are classified as: elliptic, hyper-
bolic or parabolic. If the line s = λs1 + µs2 in CP5, meets the Klein quadric
in two real points then the congruence is hyperbolic. If the intersections are
complex, the congruence is elliptic and if the line is tangent to the quadric
then the congruence is parabolic. That is, the classification depends on the
number of real roots of the quadratic, sTQ0s = 0.

Theorem 9.1. The example above gives a hyperbolic linear line congruence.

Proof. Using the values of s1 and s2 given above, the quadratic,

(λs1 + µs2)TQ0(λs1 + µs2) = 0

simplifies to,

µ2
(
(n′x)2 + (n′y)2

)
− λ2

(
(nx)2 + (ny)2

)
= 0.

This has two real roots. �

Next, consider the set of lines given by group elements taking p to every
other point in the plane. This construction was denoted Lp in [4]. In [3] lines
corresponding to point-pairs with a common initial point were called “left-
paratactic” lines, see also [10, Theorem 8.2.19]. Referring to equation (4.1)
again, and assuming px and py are constants then we have the conditions,

P20 − P13 − pxP03 = 0 and P01 − P23 − pyP03 = 0.

Theorem 9.2. The linear congruence Lp is an elliptic linear congruence of
lines.

Proof. In this case the two linear equations can be written using,

s1 =


1
0
−px
−1
0
0

 and s2 =


0
1
−py

0
−1
0

 .
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So that,

(λs1 + µs2)TQ0(λs1 + µs2) = −2(λ2 + µ2) = 0

This has complex roots. �

It is straightforward to see that the congruence of lines representing all
point-pairs where the final point is fixed is also an elliptic linear congruence.
The only change from the argument above is that the signs of the coordinates
of the point changes, but this does not affect the quadratic equation that

determines the type of the congruence. The congruence will be denoted L̂q.

Remark 9.3. The elliptic linear congruence has many special properties which
are easily derivable. For example, no pair of lines from the congruence meet.
From the interpretation of the lines as displacements taking p to some other
point in the plane, it is clear that two lines can’t meet since this would imply
that there is a displacement which moves p to two different points. From this
it is not too difficult to see that for every point in RP3 there is only one line
in the congruence through the point. Similarly for each plane in RP3 there is
only one line from the congruence which lies in that plane.

Suppose we intersect the congruence Lp with the quadratic complex Qδ,
for some value of the separation 2δ. That is, we look for the set of lines in
RP3 which correspond to moving p to any point a distance 2δ away. The
equations that the lines must satisfy are,

P01 − P23 − pyP03 = 0,

P20 − P13 − pxP03 = 0,

for the congruence;

P 2
13 + P 2

23 − δ2P 2
03 = 0,

for Qδ and the Klein quadric;

P01P23 + P20P13 + P03P12 = 0.

In RP5 the two linear equations determine a 3-plane, so the result will be the
intersection of a pair of quadrics in an RP3. To look at this more closely we
can use the linear equations to eliminate P01 and P20 from the equation for
the Klein quadric. This produces,

(P23 + pyP03)P23 + (P13 + pxP03)P13 + P03P12 =

(P 2
23 + P 2

13) + (pxP13 + pyP23 + P12)P03 = 0.

Subtracting the Qδ quadric gives the singular quadric,

(δ2P03 + pxP13 + pyP23 + P12)P03 = 0.

By construction this quadric lies in the linear system of quadrics in the 3-
plane determined by the congruence. Since it factorises, it represents a pair
of 2-planes. The intersection of the original quadrics is then given by the
intersection of either quadric with the 2-planes, that is the result is a pair of
conic curves. However, intersecting Qδ with the plane P03 = 0 clearly gives a
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Figure 2. Some of the Lines in an Elliptic Linear Congruence.

complex curve. The intersection of the other 3-plane δ2P03 +pxP13 +pyP23 +
P12 = 0 with Qδ gives a conic which can be written in the form,

(P13, P23, P12)

δ2 − p2x −pxpy −px
−pxpy δ2 − p2y −py
−px −py −1

P13

P23

P12

 = 0.

The characteristic equation of this conic is then,

det

(δ2 − p2x)− λ −pxpy −px
−pxpy (δ2 − p2y)− λ −py
−px −py −1− λ

 =

(
λ2 + (p2x + p2y + 1− δ2)λ− δ2

)
(δ2 − λ) = 0.

From the fact that δ2 must be positive and the pattern of signs of the coeffi-
cients of λ in the quadratic factor, this equation must have two positive and
one negative root. Hence, the intersection is an ellipse in the Klein quadric.

In the usual geometry of the Klein quadric a conic curve represents a
regulus of a hyperboloid. This gives us a nice way to visualise the elliptic
linear congruence as reguli on a foliation of space by nested hyperbolas. Each
hyperbola corresponds to final points of the point-pair located a distance 2δ
from the first point p, see figure 2.

These considerations lead to the natural question: How can we tell if the
final point of one point-pair is the initial point of another? This is now fairly
simple to answer, let the first line be `Tpq = (P13 : P23 : P12 : P20 : P01 : P03)

and the second `Tqr = (P ′13 : P ′23 : P ′12 : P ′20 : P ′01 : P ′03). So, from equations
(4.1) and (4.2), we get,

P20P
′
03 + P13P

′
03 − P03P

′
20 + P03P

′
13 = 0

and

P01P
′
03 + P23P

′
03 − P03P

′
01 + P03P

′
23 = 0.

That is, if the point-pairs satisfy the condition then these relations will be
satisfied. On the other hand, it is clear that, so long as neither P03 nor P ′03



Points in the Plane, Lines in Space 27

vanish then if two lines satisfy these conditions then they will represent point-
pairs in the plane where the second point of the first pair coincides with the
first point of the second pair.

As an example of a congruence which is not linear, consider the con-
gruence of lines given by requiring the initial point of a point-pair to lie on a
circle with radius r1 centred at the origin and final point on a radius r2 circle
centred at k = (2δ, 0).

Theorem 9.4. The congruence of lines described by the requirements above is
the intersection of the Klein quadric with another 4-dimensional quadric in
RP5 and a hyperplane. That is, the intersection of a linear complex with a
quadratic complex of lines.

Proof. From section 8 we can see that the congruence will satisfy the two
quadratic equations,

(P20 − P13)2 + (P01 − P23)2 − r21P 2
03 = 0,

(P20 + P13 − 2δP03)2 + (P01 + P23)2 − r22P 2
03 = 0.

Expanding the second equation and subtracting the first gives,

4P20P13 + 4P01P23 − 4δ(P20 + P13)P03 + (4δ2 + r21 − r22)P 2
03 = 0.

Now, we can use the equation for the Klein quadric (3.4), to substitute for
P20P13 + P01P23) to produce,(

(4δ2 + r21 − r22)P03 − 4P12 − 4δ(P20 + P13)
)
P03 = 0.

The result is a quadratic equation that factorises, thus representing a quadric
that consist of a pair of hyperplanes. The linear line complex given by the
hyperplane P03 = 0 does not represent any point-pair in the plane. So, the
congruence lies in the other linear complex and either one of the quadratic
complexes. �

Remark 9.5. Compare the linear line complex found here with the general
linear line complex studied at the end of section 7. The line complex found
above is clearly a general linear complex with coefficients,

a0 = −4δ, b0 = 0, c0 = −4,

a1 = −4δ, b1 = 0, c1 = (4δ2 + r21 − r22).

From the results of section 7, we can see that the two points determined by
the linear complex are c = (cx, cy) = (0, 0) and k = (kx, ky) = (2δ, 0). We
also have that the distance D is given by,

D = −4
((
p2x + p2y

)
−
(
(qx − 2δ)2 + q2y

))
= −4(r21 − r22).

So, if the initial point is restricted to a distance r1 from the origin c, then
the linear complex will constrain the final point to a circle centred at k with
a radius of r2.
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Intersecting this congruence with the quadratic line complex Qδ from
the end of section 8 will give a 1-dimensional set of lines in RP3 corresponding
to point-pairs in the plane where the first point lies on a circle, the second
lies on another circle and the points are a fixed distance apart. This is the
geometry of a 4-bar mechanism, a device used and studied in Mechanical
engineering. There are many different approaches to representing the config-
uration space of such a linkage each with its own advantages and disadvan-
tages. This approach appears in Grünwalds original paper, [3]. Other planar
4-bar linkages could be studied using this approach, for example the elliptic
trammel. For such a mechanism two points on the coupler bar lie on a pair of
lines. To model this, we could take the linear congruence defined by the first
point of the pair restricted to the first line and the second point lying on the
second line. Intersecting this congruence with the quadratic line complex Qδ,
where 2δ is the distance between the points, gives the configuration space of
the coupler bar. This motion is well know so we won’t pursue this here.

Line congruences have a bi-degree. In general, if the bi-degree of a con-
gruence is (m, n) then m is the number of intersections with a general α-plane
and n is the number of intersections with a general β-plane. If the congruence
is the complete intersection of the Klein quadric with a pair of hypersurfaces
in CP5 with degrees d1 and d2 then the bi-degree of the congruence will be
(d1d2, d1d2). Hence, the line congruence Lp has bi-degree (1, 1) since it is
the complete intersection of two linear line complexes. See [13, Ch. X] or [6].
Notice that the ground field is now the complex numbers C, this make some
of the next few results simpler to state. In particular, Halphen’s theorem,
which gives the number of intersections between a pair of congruences. If a
pair of congruences have bi-degrees (m1, n1) and (m2, n2) and they inter-
sect without a common component, then the number of intersections will be
m1m2+n1n2, where the intersections are properly counted. If we use R as the
ground field, then this formula gives the maximum number of intersections.

For example, the intersection Lp∩L̂q will have 1×1+1×1 = 2 intersections.
These are easily seen to be the lines `pq and `∞. Although this theorem dates
back to 1869 [9], it can be understood in terms of the homology of the Klein
quadric.

10. Concluding Remarks

There are many other properties and ideas associated with lines and sub-
spaces of lines which will have applications to point-pairs in the plane. As
an example, ruled surfaces, that is, one parameter families of lines have not
been considered in the above. These will correspond to one-parameter fami-
lies of point-pairs, pairs of curves in other words. There will also be a 1-to-1
mapping between points on the curves, determined by the ruled surface. This
might be useful for studying parallels of plane curves.

Around the end of the 19th century there was much interest in arrange-
ments of lines in space: the 27 lines in a cubic surface, Schläfli’s double six and
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so forth. It would interesting to see how these correspond to configurations
of points in the plane.

The ideas presented here may also provide some insight into Ivory’s The-
orem. This is a rather old result that states that the diagonals of a curved
quadrilateral formed from arcs of confocal ellipses and hyperbolas have equal
length. The theorem is simple to prove given parameterisations of the ellipses
and hyperbolas. However, it is known to generalised to any dimension, in-
deed James Ivory’s original 1809 paper gave the 3-dimensional version in the
context of finding the gravitational field of an ellipsoidal body, see [5].

Finally, there is another, completely different, way to associate a pair of
points in the plane to a line in space. In this case we begin with circles in the
plane. The set of all circles in the plane can thought of as points in an RP3 by
using cyclographic coordinates; sometimes also called tetracyclic coordinates,
see [2]. The relevant Clifford algebra for the situation is Cl(1, 3) or Cl(3, 1).
The group of Möbius transformations of the plane are represented in both
these algebras. More generally, in higher dimensions, this type of coordinate
system is useful for studying conformal geometry. Hyperbolic pencils of circles
determine a pair of points in the plane, every circle in the pencil passes
through both points. Now, pencils can be thought of as lines in RP3, that
is one dimensional linear systems. Not all lines correspond to pairs of points
and the points are unordered now. If two of these lines meet this implies that
the two pencils share a common circle. In other words, the four points of the
two point-pairs lie on a common circle. The geometry of the Klein quadric
relevant to this correspondence between point-pairs and lines in space will be
different again.
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