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The assessment of the cellular heterogeneity and abundance in bulk tissue samples is
essential for characterising cellular and organismal states. Computational approaches to
estimate cellular abundance from bulk RNA-Seq datasets have variable performances,
often requiring benchmarkingmatrices to select the best performingmethods for individual
studies. However, such benchmarking investigations are difficult to perform and assess in
typical applications because of the absence of gold standard/ground-truth cellular
measurements. Here we describe Decosus, an R package that integrates seven
methods and signatures for deconvoluting cell types from gene expression profiles
(GEP). Benchmark analysis on a range of datasets with ground-truth measurements
revealed that our integrated estimates consistently exhibited stable performances across
datasets than individual methods and signatures. We further applied Decosus to
characterise the immune compartment of skin samples in different settings, confirming
the well-established Th1 and Th2 polarisation in psoriasis and atopic dermatitis,
respectively. Secondly, we revealed immune system-related UV-induced changes in
sun-exposed skin. Furthermore, a significant motivation in the design of Decosus is
flexibility and the ability for the user to include new gene signatures, algorithms, and
integration methods at run time.
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INTRODUCTION

Gene expression quantification is indispensable for the interrogation of cellular and organismal
states. However, bulk tissue samples of interest in clinical research have considerable cellular
heterogeneity that standard methods (Microarray and RNA-Seq) cannot decipher. Although
single-cell technologies have been developed to uncover the cellular heterogeneity within cell
populations, they have a range of limitations (e.g., time, tissue types, dropouts, technical noise,
and cost), making large-scale or clinical applications impossible. Since bulk analysis methods
report average expression levels, it is often challenging to disentangle changes in cell-type
composition from fundamental differences in states. To address this, several computational tools
(so-called deconvolution methods) have been developed to estimate cell-type composition

Edited by:
Luis Zapata,

Institute of Cancer Research (ICR),
United Kingdom

Reviewed by:
Florent Petitprez,

University of Edinburgh,
United Kingdom

Giulio Caravagna,
University of Trieste, Italy

*Correspondence:
Chinedu A. Anene

a.anene@qmul.ac.uk

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 27 October 2021
Accepted: 04 March 2022
Published: 01 April 2022

Citation:
Anene CA, Taggart E, Harwood CA,
Pennington DJ and Wang J (2022)

Decosus: An R Framework for
Universal Integration of Cell Proportion

Estimation Methods.
Front. Genet. 13:802838.

doi: 10.3389/fgene.2022.802838

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8028381

METHODS
published: 01 April 2022

doi: 10.3389/fgene.2022.802838

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.802838&domain=pdf&date_stamp=2022-04-01
https://www.frontiersin.org/articles/10.3389/fgene.2022.802838/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.802838/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.802838/full
http://creativecommons.org/licenses/by/4.0/
mailto:a.anene@qmul.ac.uk
https://doi.org/10.3389/fgene.2022.802838
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.802838


within bulk expression data. These utilise various models,
including least squares regression (Abbas et al., 2009),
constrained least squares regression (Li et al., 2016; Racle
et al., 2017; Finotello and Trajanoski, 2018), quadratic
programming (Gong et al., 2011; Gong and Szustakowski,
2013; Zhong et al., 2013), support vector regression
(Newman et al., 2015), the geometric mean of marker gene
expression (Becht et al., 2016) and single-sample gene set
enrichment analysis (ssGSEA) (Aran et al., 2017),
extensively reviewed in (Sturm et al., 2019).

Unfortunately, individual tools have limitations that affect
their effective utilisation. Critically, due to the differences in
the underlying statistical assumptions and marker gene
signatures, the approaches often produce different results in
a data type-dependent manner (Jiménez-Sánchez et al., 2019;
Sturm et al., 2019). Thus, there is a need for a consensus
approach that can combine and integrate these methods into a
single robust output.

Recent benchmarking studies (Jiménez-Sánchez et al., 2019;
Sturm et al., 2019) have provided robust frameworks to
systematically integrate the outputs of these methods into a
single unified deconvolution solution, thereby reducing the
limitations of individual methods. While these approaches are
helpful, significant challenges remain. Jiménez-Sánchez et al.,
restricted their implementation to a set of common cancers
(Jiménez-Sánchez et al., 2019), while Sturm et al., focused on
method performance on key immune cell types (Sturm et al.,
2019). Thus, neither tool can be applied universally, especially for
poorly studied cancers, and non-cancer conditions or
deconvolution of non-immune cells. We developed a
deconvolution integration tool (Decosus, available as an R
package) without tissue type restrictions, allowing for universal
application of the integration framework. A further advantage of
Decosus is the ability to generate both relative (allowing sample-
to-sample comparison only) and absolute (also allowing within-
sample comparison of one cell type to another) estimations where
possible. We demonstrate the utility of Decosus through
reference datasets and use cases, including cancer and non-
cancer datasets. Decosus generates a validated and robust
decomposition of cell composition in various tissue types
while allowing for flexible integration of new methods and
signatures as they become available (github.com/caanene1/
Decosus).

MATERIALS AND METHODS

Deconvolution Method
We used common cell deconvolution methods and signatures to
estimate cell composition from bulk RNA-Seq datasets
individually. The methods include EPIC (Racle et al., 2017),
MCPcounter (Becht et al., 2016), quanTISeq (Finotello et al.,
2019), and xCell (Aran et al., 2017). The estimates for the four
methods were generated using the corresponding R
implementations: MCPcounter (v1.2.0), EPIC (v1.1.5), xCell
(v1.1.0), and quanTISeq (github.com/icbi-lab/quanTIseq). In
addition to these, we used the following gene signatures:

Danaher, Davoli, Rooney (Bindea et al., 2013; Danaher et al.,
2017; Davoli et al., 2017), and averaged the gene expressions to
provide measures of cellular abundance for each signature.
Additionally, we provide optional gene signatures from the
CellMarker database (Zhang et al., 2019) and use this in the
analyses featured here.

Decosus Framework
Decosus is an R package that flexibly integrates the estimates of
cell compositions from deconvolution methods and cell
signatures. We identified cell types for which estimates exist in
at least two of the seven default methods and signatures
(Supplementary S1 CSV). This mapping was similar to that
of a previously published method, ConsensusTME, where cells
were exhaustively mapped to a controlled vocabulary of cell types
(Jiménez-Sánchez et al., 2019). However, in Decosus, the user can
expand the consensus through the optional arguments for new
signatures and mappings (https://github.com/caanene1/
Decosus), ensuring that Decosus can produce results relevant
to the most up-to-date cell signatures and allowing the addition of
rarer cell types. For instance, licensing restrictions did not allow
us to include CIBERSORT into the package, but a user can still
integrate CIBERSORT if you obtain the output or source code
from the author’s website.

After generating the estimates for the individual methods,
we average the values for the source cells to create a single
estimate for the cell types in the controlled vocabulary
(Supplementary S1 CSV). The assumption behind this
approach is that it limits any one method from
dominating the estimates, thereby ensuring the consensus
is closer to the best measure or is the best performing measure
(see results section). We also included optional arguments in
the function call to specify whether the data is to be scaled or
not and the aggregation mode (i.e., mean (default) or
geometric mean). Furthermore, two outputs are provided;
1) relative, the default using all methods, and 2) absolute,
which is derived by limiting the methods used to those that
can be considered absolute cell compositions (EPIC and
quanTISeq, reviewed previously by Sturm et al., 2019).
This option offers a less comprehensive selection of
consensus cells than the relative output but may be helpful
in analyses requiring cell-cell comparison, which is not
permitted when using all seven algorithms due to the
methods involved (see Table 1 and Sturm et al., 2019).
The Decosus R package can be obtained through GitHub
(https://github.com/caanene1/Decosus).

TABLE 1 | Default deconvolution method and signatures included in Decosus.

Signature/Method Type Comparison

Xcell Algorithm Across Samples
MCP-counter Algorithm Across Samples
quanTISeq Algorithm Across Samples & Between Cells
EPIC Algorithm Across Samples & Between Cells
Danaher Signature Across Samples
Davoli Signature Across Samples
Rooney Signature Across Samples
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Datasets for Benchmarking
To benchmark the Decosus framework, we obtained pre-
processed bulk RNA-seq and FACS data from Sturm et al.
(2019) through their Github repository (https://github.com/
icbi-lab/immune_deconvolution_benchmark/releases/
download/v1.0.0-rcl/data.tar.gz). This data includes eight
healthy PBMC samples (Hoek data) (Finotello et al., 2019),
four metastatic melanoma samples (Racle data) (Racle et al.,
2017) and three ovarian cancer ascites samples (Schelker data,
x2 replicates) (Schelker et al., 2017). We obtained 20 PBMC
samples analysed by microarray (gene-level values) and flow-
cytometry from the CIBERSORT web portal (Cibersort data)
(Newman et al., 2015). Additionally, we obtained the two
(SDY311, n = 76; SDY420 ref, and n = 105) pre-processed
bulk RNA-seq and FACS data from the Immport study (Alpert
et al., 2019) through the xCell Github repository (https://
github.com/dviraran/xCell/tree/master/vignettes).

To evaluate the performance of Decosus in real-world clinical
contexts, we interrogated two additional RNA-Seq datasets. The first
dataset contained skin samples of atopic dermatitis (n = 54) and
psoriasis (n = 55) (GSE121212) (Tsoi et al., 2019). The second
dataset was normal skin samples (sun-exposed and non-sun
exposed) samples from the GTEX project (n = 1879) (Lonsdale
et al., 2013).

All RNA-Seq gene expression values are expressed as
transcript per million (TPM).

Datasets for Simulation Studies
To evaluate how well Decosus estimates known cell compositions
compared to individual methods, we simulated cell mixtures from
single-cell RNA-Seq datasets. Specifically, we extracted the RNA
expression values for select samples from the Panglaodb data
portal (Franzén et al., 2019), including SRA701877, SRS3279685,
SRA713577, SRS3363004, SRA716608, SRS3391633, SRA779509,
SRS3805246, SRA878024, and SRS4660846.

Next, we generated expression profiles as below:

1 Given a dataset of annotated n single cell types, assign random
fractions to each cell type (the fractions sum to 100 and integers)
(data 1).

2 Generate an expression matrix of single cells with 100 columns
by randomly selecting the corresponding fraction of the
available samples for the selected cell types to be included
in the matrix. Here, we used a random selection to introduce
noise like the variation in real datasets (data 2). We allow
sampling with replacement if the cell type-specific fraction is
bigger than the available single cells.

3 Finally, generate a simulated expression profile by adding the
expression values across the rows of data 2 and use data 1 as the
ground truth.

We repeat the process 500 times (per data source) with
different fractions, samples, and cell types.

RESULTS

Overview of the Decosus Integration
Framework

Our framework integrates seven deconvolution algorithms
and cell signatures into consensus estimates of cell
composition (Table 1). We do this by selecting and
averaging the shared cell types across the tools
(Supplementary S1 CSV). It requires a gene expression
dataset and a set of optional parameters under a single R
function (set to reasonable defaults, see github. com/
caanene1/Decosus). The R implementation of the
framework allows for flexible inclusion of new algorithms
or signatures at run time (see https://github.com/caanene1/
Decosus). When available, the final output has two tables
representing relative and absolute consensus estimates (see
Materials and Methods).

FIGURE 1 | Decosus produces stable estimates of cell proportions. (A)
Box plot of the Pearson’s R of correlation between decomposed and
simulated cell fractions (n = 500 per single-cell RNA-Seq data used in the
simulations studies). The higher the R, the more similar the decomposed
and simulated cell fractions are. (B) Bar plot of inter-method variability in
Pearson’s R of correlation between decomposed and simulated cell fractions
measured by IQR. The lower the IQR, the more stable the estimates from the
method across datasets and cell types. Within the plots, colours represent the
method of estimating cell fractions from bulk RNA-Seq datasets. The number
of cell types covered for each method in the simulation is indicated (Cell
Types). MCP = MCPcounter.
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Analysis of Simulated Cell Proportions
Demonstrate the Stability of Decosus
Cell proportion deconvolution methods produce different
results in a data type-dependent manner. Decosus
combines and integrates these methods into a single stable
consensus value to reduce the data-dependent differences in

performance. To assess how well the framework achieves this
aim, we first evaluated its ability to decompose known cell
proportions using simulated gene expression profiles (see
Methods). We simulated large sets of bulk-expression
profiles (n = 2,500) with specific cell proportions from
multiple single-cell RNA-Seq datasets (source, n = 5). We

FIGURE 2 | Decosus identifies known cell fractions. Bar plots of the Pearson’s R of the correlation between computer-generated cell fractions and flow cytometry
fractions. The higher the R, the more similar is the computational estimates and the gold standard. Within the plots colours represent the method of estimating cell
fractions from bulk RNA-Seq datasets. MCP = MCPcounter.
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used multiple sources to reflect data-specific differences in
real applications. Interrogating the correlation coefficient
between the estimates and the expected cell proportions
across a range of cell types revealed surprisingly stable
estimates of cell proportions (Figure 1). Decosus had the
4th lowest interquartile range (IQR = 0.31) compared to xCell
(IQR = 0.39), MCPcounter (IQR = 0.47), quanTISeq (IQR =
0.50), and Danaher (IQR = 0.64) (Figure 1A). Although
Rooney (IQR = 0.09), Davoli (IQR = 0.22), and EPIC (IQR
= 0.29) were lower than Decosus, this is potentially due to the
small number of cell types they covered in the simulation
(Davoli = 3, EPIC = 3, and Rooney = 2), compared to the other
methods (Decosus = 6, xCell = 6, MCPcounter = 5, quanTISeq
= 4, and Danaher = 4). Indeed, normalising for the number of
cell types revealed Decosus has the second-lowest IQR
(Supplementary Figure S1). The stability of Decosus
estimates is due to the robustness of averaging multiple
signatures and methods (see Methods). As expected, there
is no difference between median R values across the methods
(Kruskal–Wallis, p = 0.6, Figure 1B), suggesting that Decosus
increases the stability of the estimates without
reducing the average performance expected from
individual tools.

Benchmark on Known Cell Proportions
Demonstrate the Utility of Decosus
We applied the Decosus framework to six benchmark
datasets (see Methods) and compared the estimated
proportions with their corresponding flow cytometry
fractions used as ground-truth. We also interrogated the
distribution of the performance statistic across the
individual methods and datasets. To ensure we can
perform meaningful comparative analysis, we restricted
our analysis to six cell types (natural killer cells, dendritic
cells, monocytes, CD4+ T-cells, CD8+ T-cells and B-cells)
present in two or more ground truth datasets. Our consensus
estimates obtained a high correlation with the flow cytometry
fractions (Median R = 0.64) across all datasets and the
evaluated cell types (Figure 2). This observation was
consistent with the contributing methods/signatures being
highly concordant with the corresponding gold standards
(Figure 2). However, we observed unpredictable
performance differences across the same cell type for the
individual methods (Figure 2). For natural killer (NK) cells,
Danaher (r = −0.04038) and EPIC (r = 0.53) had the worst
performances in the Cibersort dataset, Rooney (r = −0.0557),
xCell (r = 0.129) and Davoli (r = −0.125) in Schelker, and
EPIC (r = −0.08), Danaher (r = 0.0316), quanTISeq (r =
0.243), and xCell (r = 0.253) in SDY420, while all the methods
performed well in Hoek or poorly in SDY311 (Figure 2). We
observed similar behaviour for monocytes, where xCell
performed worse in Hoek (r = 0.244) and xCell (r = 0.215)
in SDY311. Interestingly, for dendritic cells, Davoli
performed worse in both Hoek (r = 0.092) and Schelker (r
= 0.25), but QuanTISeq additionally performed poorly in
Hoek datasets (r = 0.55). Although T and B cells have multiple

subtypes making benchmark analysis difficult, we generally
made similar observations for CD4+ T cells, CD8+ T cells and
B cells (Figure 2), where the different combinations of
methods performed worse in different datasets. These
observations suggest that no single method can guarantee
top performance across user cases, even for the same cell type.
However, our consensus estimates consistently performed
well across the datasets, regardless of cell types and user cases
(Figure 2). For instance, it had high performance in all
datasets with DC (Hoek, r = 0.82; Schelker, r = 0.69) and
most datasets with NK cells (Cibersort, r = 0.668; Hoek, r =
0.973; SDY420, r = 0.315). Furthermore, Decosus was able to
derive the cellular estimates for all six cell types benchmarked
here, whilst other methods/frameworks were restricted to a
subset of cell types where marker gene signatures were
included internally (Figure 2).

Decosus Identified the Immunological
Differences Between Atopic Dermatitis and
Psoriasis
To further demonstrate the utility of Decosus and evaluate its
performance in other physiological and health settings, we
focused on diseases and cell types that were not well covered
and annotated by existing methods. Here, we simulated a
condition with known condition-dependent differences in
cell proportions. Specifically, atopic dermatitis (AD) and
psoriasis (PSO) are common skin conditions associated with
barrier dysfunction. Both are characterised by T-cell driven
inflammation; however, in AD, CD4+ T helper cells (Th) are
polarised towards a Th2 phenotype, while Th1 polarization is
characteristic of PSO (Brunner et al., 2017; Albanesi, 2019).
Thus, immune cell composition estimated from bulk RNA
expression profiles from PSO and AD skin samples should
enrich for Th1 and Th2 cell signatures, respectively. Note that
many existing methods do not have these two cell types, thus
could not handle such cases. To this end, we collected 54 AD
and 55 PSO samples from a publicly available dataset
(GSE121212) (Tsoi et al., 2019) and applied our framework
to interrogate the enriched immune profiles. We observed a
significantly higher Th1 cell signature in PSO samples than AD
samples and the reverse for Th2 (Figure 3), aligning with what
is widely recognised in the literature (Brunner et al., 2017;
Albanesi, 2019). The results also showed expansions in other
cell types known to infiltrate each lesion, such as basophils in
AD (Mashiko et al., 2017), macrophages and neutrophils in
PSO (Lowes et al., 2014) (Figure 3). These results indicate that
our framework can provide robust estimates of cell
proportions in non-cancer bulk tissue samples, like
precursor lesions.

Decosus Enables the Identification of UV
Mediated Immune Reprogramming in the
Skin
Finally, we utilised transcriptomic data from the GTEX project
of non-sun exposed and sun-exposed skin to evaluate the
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impact of ultraviolet radiation (UV) on skin immune profiles.
We assessed the difference between the immune cell estimates
of the sample groups and visualised the fold change for
significant (T-test, p < 0.05) cell types. We found that UV
exposure significantly enriched several immune cell types in
the skin, including monocytes, dendritic cells, and
macrophages (Figure 4). Interestingly, CD4+ and CD8+

T cells were depleted in sun-exposed skin (Figure 4). These
observations are consistent with previous studies showing that
UV exposure inhibits the expansion of these T cell subtypes

while increasing innate immune cells (Rana et al., 2008; Gläser
et al., 2009). Reprogramming of T cell composition is
consistent with the idea that impaired immune function
through UV damage plays a role in skin cancers (Freeman
et al., 2014; Slater and Googe, 2016). Indeed, active research
programmes in our group are using Decosus to help
characterise the immunological factors
underlying the progression of actinic keratoses (sun-
damaged skin, pre-malignant lesions) to squamous cell
carcinomas.

FIGURE 3 | Decosus identifies the Th1 and Th2 differences between atopic dermatitis and psoriasis. (Top) Heatmap of Decosus estimated cell fractions across
atopic dermatitis (AD, n = 54) and psoriasis (PSO, n = 55) samples fromGSE121212.Within the plot, Th1 and Th2 cells are indicated in red, while other cells of interest are
highlighted with blue. (Bottom) Box plots of the Decosus estimates of Th1 cells (left) and Th2 (right) fractions across skin samples of AD and PSO. Multiple test adjusted T.
test p values are indicated. Within the heatmap, NL = non-lesional and L = lesional.
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DISCUSSION

Estimating the cellular compositions in bulk RNA-Seq samples has
been addressed by various algorithms and gene signatures. These
approaches have different assumptions and strengths, frequently
resulting in varied performances across the different dataset (Sturm
et al., 2019). Thus, it is challenging to objectively select the best
method in real applications which lack ground truth cell fractions.
The Decosus framework addressed this gap by providing consensus
estimates that exhibit consistent performance across different
benchmark datasets and has further invaluable features not found
in existing consensusmethods. Themain utilities of Decosus are that
it 1) leverages the strengths of the individual methods and signatures
whileminimising their weakness, and 2) provides a broader coverage
of cell types.

Further,our framework is inherently expandable, whereby the
user can add new methods, signatures, and cell mappings to the
default set. We demonstrated this function by including gene sets
from the CellMarker database to enable the consensus estimation
of Th1 and Th2 cell fractions in AD and PSO samples (Figure 2).
This flexible approach is critical for robustly estimating cell
abundance and fractions across biological states and represents
an important advance in the domain compared to previous
methods that exclusively focus on common cancers or cell
types. Though the expansion of the signatures and mappings

may inadvertently incorporate spurious estimates to the
consensus, the multiple sources per cell type can better
capture the diversity in cellular gene expression profiles across
different biological states. Unlike the ConsensusTME that
generated new consensus gene signatures (Jiménez-Sánchez
et al., 2019), we solved this problem by first calculating the
cell estimations individually for each method (see Methods)
before taking the average value for the same cell in each
method. Here, a future update may include additional ways to
generate consensus estimates such as geometric mean, trimmed
and weighted averages, particularly as validation datasets become
available. Further advantages to our tool are the ability to apply
Decosus to any tissue type or disease compared to previous efforts
to create consensus cell composition estimates, which focused on
tumour tissues (Jiménez-Sánchez et al., 2019; Sturm et al., 2019).
We also incorporated the option to use absolute estimates, which
is crucial for applications requiring cell-cell comparisons.

Benchmarking on the PBMC and cancer datasets showed that
although each method ranked highly in at least one dataset, we
saw highly varied correlations across datasets. This performance
issue is expected but impossible to identify in actual use cases
because of the differences in the statistical assumptions and gene
signatures associated with each method. Our consensus estimates
reduce this unpredictable behaviour by averaging out the poorly
performing methods. Indeed, we adequately identified the
expected Th1 cells enriched in PSO and the Th2 cells in AD.
It is worth noting that many existing methods, such as Cibersort,
EPIC, and ConsensusTME, could not resolve such a case due to
their limited coverage of diseases/conditions or cell types (see
Supplementary S2 CSV), further highlighting the versatility of
our method.

An important limitation of the Decosus framework is that it
represents the aggregate performance of the contributing methods.
Thus, if they have universally poor performance for a given case,
then Decosus will have a corresponding poor performance. For
instance, all the approaches, including Decosus, performed poorly in
decomposing NK cells and Monocytes from the SDY311 dataset
(Figure 2). However, Decosus is stable for most cases compared to
the individual methods.

To allow for easy incorporation of Decosus into new and
existing workflows, we implemented an object-oriented system in
R, allowing the user to add, retrieve and evaluate individual
methods (https://github.com/caanene1/Decosus). The full
output of Decosus provides consensus estimates when
available and offers unified interphase for the procedures.
Although, Decosus is implemented and valid for human data,
the framework can easily be expanded with new methods and
signatures, including for other species at run time, as
demonstrated in the analysis of Th1 and Th2 cells in skin
samples. Moreover, one of the future directions of Decosus is
to create a flexible function within ourmethod that allows users to
input associated weights of individual methods and additive
equations, to facilitate users to infer the most accurate
estimates of cellular compositions in their biological settings.
However, this will require very large validation datasets to
derive weights accurately for the biological setting of interest.

FIGURE 4 | Identification of UV-mediated reprogramming of skin
immune cell profile. Bar plot depicting the mean difference between the
Decosus immune cell estimates for non-sun exposed skin (NS) and sun-
exposed skin (SE) (n = 1879). The plot shows only immune cells
significantly different between the two groups at p-value < 0.05.
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