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Abstract—An indoor positioning system (IPS) is a technology
employed to locate objects and people within a building scenario
using signal processing or other sensory information. Ultra Wide
Band (UWB) is a versatile wireless technology that can be
employed as an IPS and has shown very good performances.
UWB can be used in many scenarios and its effectiveness in
through wall detection along with its excellent resolution for
person localization is one of the best applications of IR-UWB.
The main objective of this work is to propose a concept for
intelligent radar systems employing UWB augmented by machine
learning approaches to not only localize but understand the
location of a person or target within a building. Although suitably
developed UWB is excellent for obtaining localizing data it does
not automatically understand what that location effectively means
or where it is thus further methods are required to create
meaningful data for end user appreciation. Learning from the
huge amount of UWB signal data through Multi Class Support
Vector Machine (MC-SVM) architecture enables a truly evolving
scheme to both localize targets and identify them in a useful
way. Statistical analysis of the experimental results supports the
proposed algorithm.

Index Terms—Indoor Positioning System (IPS), Localization,
Ultra Wide Band (UWB), Principal Component Analysis (PCA),
Multi Class Support Vector Machine (MC-SVM)

I. INTRODUCTION

An IPS locates a targets position whether that is people,
animals, objects etc. Applications are numerous, security,
health, personal assistive living, home healthcare etc. Ultra
Wide Band (UWB) radar has advantages over other existing
technologies due to its high spatial resolution, safe Radio
Frequencies (RF) levels (-44dBm/MHz) and its potential to
penetrate through different materials or obstacles [1]. The
proposed work focuses on identifying and naming the position
of a user within a home environment through a supervised
machine learning technique augmenting UWB radar system.
Multi-Class Support Vector Machine (MC-SVM) is used
as the supervised UWB signal learning algorithm in the
proposed work. A brief description of the related work
is included here from which motives the proposed work.
Generally, in the case of UWB, identifying the position of a
moving person is determined by monitoring the return UWB
signals, and the positions are calculated using positioning
methods [2], or moving persons are considered as radar blobs
in radar images [3] [4]. Generally, localization observation
is a complex procedure [5] [6]. Positioning or monitoring
of a static person is also a difficult task because it involves
detection and reliance on the periodical nature of breathing

and heartbeat rates as well as differentiating them from clutter
components. Recently, most of the localization techniques are
based on respiratory motion [7] [8], but few works are based
on cardiac-induced radar signatures [9]. Indoor-positioning
systems using UWB signal for unmanned aerial vehicle
(UAV) platforms to navigate through global navigation
satellite system (GNSS) have been presented. Non-LOS
rejection is implemented based on the ratio of the first path
compared to the power of the cumulated channel impulse
response [10]. UWB has also been presented for a high
precision positioning system based on the time difference of
arrival (TDOA) algorithm in a cluttered environment [11],
assisted living potential and in the areas of energy reduction
assistance [12] [13] [14] and [15].

To the best of our knowledge the proposed work is first work
where an intelligent system can automatically identify the
target location in building from a machine learning embedded
IPS using radar signal. The detailed description of the pro-
posed methodology, experimental set up and result analysis
are described in the following sections.

II. PROPOSED WORK

There are two stages in the proposed work, recognizing or
predicting the pre-processed signal pattern, and recognizing
or predicting the features extracted by Principal Component
Analysis (PCA) using MC-SVM. The data process flow of
the proposed architecture is presented in Fig. 1. Initially, the
raw UWB signals containing the localization information are
pre-processed to examine the leading part of the signals. This
pre-processing stage is briefly described in Section III. Subse-
quently, each amplitude of the pre-processed UWB signals is
considered as a feature value to train the MC-SVM, and out-
comes are observed. Following this, each signal still contains
too many amplitude values to be effectively fitted in a machine
learning algorithm. Therefore, a well-known feature reduction
method PCA [16] is applied to transform the high dimensional
signal data into a low dimensional space which would help
the MC-SVM to avoid the “curse of dimensionality” as well
as reduce time complexity of the algorithm. PCA is briefly
described in the following section. Subsequently MC-SVM is
employed again to train the algorithm using low dimensional
feature space and observe the performance improvement.
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Fig. 1. Steps related to the proposed work

A. Orthogonal Transformation of UWB Signal

Large volumes of signal data are actually a bottleneck for
any machine learning algorithm. Therefore, such dimensional
loads could create more complexity when handling and
analysing data. Thus, the well-known and thriving feature
extraction procedure PCA is used as an intermediate step in
the proposed machine learning work. It projects the entire pre-
processed data into a different lower dimensional feature space
through a linear transformation which helps to handle multi
collinearity of data, “curse of dimensionality”, and also the
time complexity to increase the efficiency of the proposed
work. PCA is preferred to other feature reduction techniques
because of its low noise sensitivity, lower memory require-
ments, and its increased efficiency given the processes taking
place in smaller dimensions. PCA identifies a small number of
uncorrelated variables, known as “principal components” from
the high dimensional pre-processed data and determines the
maximum level of variance with fewest numbers of principal
components. Let an UWB signal initially be s, whose ampli-
tudes are {a1, az, ..., aszg }, (576 is the number of prepossessed
channels), then after applying PCA to the signal s, 288 key
components are extracted from the signal which are a fewer
number of variables compared to the original signal to avoid
multicollinearity. Therefore, feature extracted signal is now,

{f1, fas s foss}
B. Crammer and Singer’s MC-SVM

The proposed work considers the UWB localization data
produced from the indoor scenario as a multi-class catego-
rization case. Therefore the extracted features are labelled and
fed into a Crammer and Singers MC-SVM, where a set of
labelled training pattern is represented by (x1,v1), ..., (1, Y1)
of cardinality [, where z; € R? and y; € 1,....,k, w € R?
is the weight vector, C' € R, is the regularization constant,
and ¢ is mapping function which projects training pattern
into a suitable feature space H that allows for nonlinear
decision surfaces. Crammer and Singer [17] proposed a SVM
with multi categorization ability by solving the quadratic
optimization problem,

min
Wy, €H,EER!

k l
1
TS
m=1 i=1
subject to wlp(a) —wl'p(x;) > 1= 6,0 — &
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(1)

where, 0; j, 7 is the Kronecker delta, defined as 1 for ¢ = j
and as 0 otherwise. The resultant decision function is defined
as,

argmaxy, fm(x) = argmaxmwg;go(w) 2)

Note that the constraints &; > 0,¢ = 1,...,[, are implicitly
indicated in the margin constraints of (1) when ¢ equals y;.
In addition, (1) focuses on classification rule (2) without any
bias terms. A nonzero bias term can be easily modelled by
adding an additional constant feature to each x. Therefore,
different categories of data are classified by solving this
decision function and the results are analysed in the following
section.

C. Statistical Measures of Performance

Performance rates of the proposed method are statistically
analyzed. Well-established statistical metrics are used to eval-
uate the proposed localization algorithm: accuracy, sensitivity,
specificity, positive predictive value, negative predictive value,
area under the curve (AUC) of receiver operating characteristic
(ROC) curve, and time taken for the simulation parameters are
all measured.

III. EXPERIMENTAL SETUP

The UWB localization experiment has been carried out on
the ground floor area of a house located in Essex, UK. The
floor plan is shown in Fig. 2 comprises four rooms: living
room, kitchen, dining room, and bathroom. The single UWB
device is fixed towards the back corner of the living room.
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Fig. 2. Floor-Plan

The experimental set-up is the same set-up used in [15]. The
commercial radar module, embedded with in-house developed
software was connected to a Raspberry-Pi (RPi) which stored
the time stamped radar data. The experiment was carried out
in the house described and data analyzed later and compared
to diary measurements made at the time to correlate findings.
The module is sown in Fig. 3. It transmits RF from 3.1 GHz
to 5.3 GHz, with center at 4.3 GHz, and follows Federal
Communications Commission (FCC) restrictions.
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The raw data from four different rooms were accumulated
over 30 minutes via a RPi connected to the radar module.
The data is accumulated with the presence and absence of a
single person where the rest of the environment is assumed
static. Nine distinct possible situations are found during the
data collection. Fig. 4 shows a typical signal sample when a
person is present in kitchen.
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Fig. 4. A sample of UWB data is collected from kitchen in a particular time
interval

A total of 7203 samples are collected during this experiment.
All the samples comprise of 1152 data points in every 15
nanoseconds time interval. The consideration of all raw data
points degrades the performance of the proposed method, due
to the fixed range (10 meters) coverage of the device.

If the person is in the living room, this implies the person

is in LOS of signal propagation within the first 1-5 meters
distance from the radar. The signal strength weakens with
distance due to the Free Space Path Loss (FSPL). Therefore,
the major amplitude fluctuation can be found within this
range. In the case of dining room, the person is in the LOS
at 5-10 meters of distance from radar and distinct changes
can be found in amplitude at that time. Therefore, all the
signals data are pre-processed to focus on the leading edges
of the signals based on the human position. For an instance of
kitchen data, the second half (last 576 data points) of signal
is considered as the leading edges, while the first half (first
576 data points) of signal is considered as important when the
person is present in the living room. Therefore, the amplitudes
of a pre-processed signals are {aq,as, ..., as76} and extracted
features are { f1, fo, ..., foss} using PCA (described in Section
II) which fed into MC-SVM. This pre-processing step is
needed to avoid the data redundancy and reduce time as well
as computational complexity of the proposed work. It also
resists MC-SVM from misleading and wrong prediction of
the human position which helps to raise the accuracy of this
experiment.

The experiment is carried out by Matlab R2016b tool in
a Intel® Core™ i7 processor@ 3.60GHz based Windows
7 Enterprise 64 bit operating system and it has 7856 MB
NVIDIA Graphics Processing Unit (GPU).

IV. RESULT ANALYSIS

Two main phases are considered for the experiment. Firstly,
the pre-processed data are learnt using MC-SVM to detect
walls and localize targets. Secondly, the pre-processed data
are simplified by selecting the key components using PCA,
and then those reduced data are learnt through MC-SVM.
In the first phase, pre-processed raw data with 576 data
points are divided into training and testing data. To evaluate
the model, data are divided into 10%, 20%, 30%, 40% for
training, and 90%, 80%, 70%, 60% for testing purposes in
the corresponding case. The testing results are listed in Table
I with statistical evaluation parameters such as, correct rate,
error rate, sensitivity, etc.

Statistical Measurements 10% 20% 30% 40%
Correct Rate 0.8804 0.8852  0.8958 0.8921
Error Rate 0.1196  0.1148 0.1042  0.1079
Sensitivity 0.9882 0.9805 0.9857 0.9875
Specificity 0.9928 0.9968 0.9957  0.9965
Positive Predictive Value 0.9653 09836 09792  0.9826
Negative Predictive Value  0.9976  0.9961  0.9971  0.9975
Area Under the curve 0.6982  0.7007 0.6995 0.7107
Time elapsed (in Seconds) 27.407  27.092 24.962 24981

TABLE I

CLASSIFICATION RESULTS OVER PRE-PROCESSED DATA BY MC-SVM



Table I shows that the proposed predictive model provided
the highest testing correction rate 0.8958 (is marked in bold)
and lowest error rate 0.1042 in the 30% percent training data.
Testing correction rate was increased from 0.8852 to 0.8958
for 10% to 30% training data. In the 40% training data case,
the algorithm is being over-fitted due to the high dimensional
data points, testing accuracy falls to 0.8921 and the error rate
increases to 0.1079. The objective of the proposed method
is to fit the model, so that it could make valid predictions
on untrained or test data. Therefore, the performance of the
proposed algorithm at 30% training data is considered as the
performance of the model. Other evaluation parameters are
also determined to support the robustness of the model. In this
case (30% training and 70% testing data), sensitivity 0.9857
of the proposed IPS indicates the probability of correctly
identifying the location of the person. Additionally specificity
of 0.9957 tells the probability of the system to recognize
the scenario accurately when there is no person present in a
room. The Positive Predictive Value (PPV) 0.9792 signifies
the probability that the system gives positive result about
the person’s location and truly there was the person, and
also Negative Predictive Value (NPV) 0.9971 points out the
probability that system says negative result (not in the room)
about the person’s location and it is true. The graphical
illustration using ROC curve (shown in Fig. 5) is plotted to
explore the prediction result of the algorithm. It is created
by plotting True Positive Rate (TPR) (Sensitivity, recall)
against False Positive Rate (FPR), where FPR is calculated
using the expression (1 - Specificity). The AUC measures
discrimination power of the classifier, i.e., the ability of the
prediction to identify correctly the location of an occupant,
which is almost equal for each amount of training data. It
accommodates all of these parameter calculations, execution
time for each case is determined, and 24.962 seconds elapsed
to produce the highest correction rate 0.8958.
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Fig. 5. ROC before feature extraction

In the second phase of the experiment, features are extracted

from the initial set of pre-processed data and derived new
key components (features) using PCA, which are informative
and non-redundant, facilitated in subsequent learning steps. A
simplified version of the signal shown in Fig. 4 is displayed
in Fig. 6. The classification results for the reduced signal
length method are presented in Table II. Only 288 derived
feature values are considered for this phase, which is guided
to achieve the maximal correction rate 0.9520 (marked in
bold) within 0.6630 seconds.
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Fig. 6. The simplified sample of UWB data which is collected from kitchen
in a particular time interval

Statistical Measurements 10% 20% 30% 40%
Correct Rate 0.9520 09518 0.9512 0.9509
Error Rate 0.0480 0.0482 0.0488 0.0491
Sensitivity 0.9991  0.9990 0.9989  1.0000
Specificity 0.9998 0.9998 0.9996  0.9995
Positive Predictive Value 0.9991 0.9990 0.9977 0.9976
Negative Predictive Value ~ 0.9998  0.9998  0.9998  1.0000
Area Under the curve 0.7153  0.7242  0.7066  0.7076
Time elapsed (in Seconds) 0.6630  0.6891 0.7661  0.8297
TABLE II
CLASSIFICATION RESULTS OVER FEATURE EXTRACTED DATA USING PCA
BY MC-SVM

Thus, a notable improvement of correction rate and time
complexity is realized using a smaller number of training
data, which is only 10% training data (=90% testing data)
whereas, 30% training (as shown in Table I) data is required
to achieve a maximal correction rate for pre-processed signal
data. If the amount of training data is increased (e.g., to
20%, 30%, and 40%) then due to overfitting it loses its
generalization power and ultimately makes poor predictions
which is reflected in result table. Therefore, the correction rate
of 10% training data is contemplated as the correction rate of
the proposed localization method. In terms of other evaluation
parameters, the performance refinement is also considerable.

15



As the sensitivity and specificity is slightly enhanced, therefore
the change in AUC for ROC curve (displayed in Fig. 7) is
modest.
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Fig. 7. ROC after feature extraction

This upgradation in TPR against FPR defines consequen-
tial development of the performance in localization accuracy
(classification accuracy) of proposed method than any other
localization method present in the current literature.

V. CONCLUSION

The proposed work and experimental results describe the
ability of the machine learning algorithm method augmenting
a UWB radar system to identify or recognize the position
of a person within a building and correctly identify the
specific room occupied. This work will be extended to a
semi-supervised machine learning based human localization
algorithm.
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