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Abstract 

The interlocks between smart product platforming (SPP) powered by Artificial Intelligence  

(AI) and Generative AI, big data analytics, and machine learning are still in their infancy. 

Modern technology-driven SPP promotes personalized product design and manufacturing 

suited to support environmentally friendly products for the circular economy. In this study, we 

develop a framework pertaining to the interlinks between SPP, big data analytics, machine 

learning, and the circular economy. To test our framework, we apply structure equation 

modeling based on data collected from more than 200 automotive industry professionals 

operating in China. Our results demonstrate that SPP and big data analytics are the central 

determinants for manufacturing environmentally friendly products, ultimately promoting 

circular economy applications. SPP plays a pivotal role in innovative product design and in 

facilitating the relevant manufacturing procedures. Big data analytics significantly feed into 

SPP applications. Machine learning and flexibility in SPP perform moderating roles in 

strengthening environmentally friendly outcomes. The mediating role played by SPP between 

big data analytics and environmentally friendly products for the circular economy is partially 

encouraging. As SPP powered by AI and Generative AI is an emerging phenomenon, our study 

contributes to this new knowledge dimension. We conclude this paper by discussing the 

theoretical and practical implications of our study, its limitations, and directions for future 

research. 
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1. Introduction 

Product platforming emphasizes the manufacturing of a family of products based on a 

common platform while adopting feature flexibility and optimizing the available resources to 

meet emerging customer demand (Jalali et al., 2022; Zhang., 2015). Smart product platforming 

(SPP) utilizes contemporary technology to control the related operations. SPP identifies the 

common interlocks between a firm’s offerings, its ecosystem actors, and its personalized 

products and services (Hilbolling et al., 2021; Jalali et al., 2022). Artificial intelligence (AI), 

big data analytics, and machine learning are powerful tools for SPP. These technologies 

interlinked with Industry 4.0 are revolutionizing product processes and manufacturing arenas 

(Gong et al., 2021; Guo et al., 2021). The applications of generative artificial intelligence 

(GAI)—which are also called large language models (LLMs)—inherited with big data 

analytics (i.e., large volumes of unstructured and structured data) and machine learning (e.g., 

supervised and reinforcement learning) have simultaneously provided opportunities and 

created digital disruption (Akhtar et al., 2023; Gozalo-Brizuela and Garrido-Merchan, 2023: 

Wang et al., 2023). GAI tools like ChatGPT and DALL-E significantly increase productivity, 

enhance work quality, and refine ideas for product design innovation, providing the prospect 

of substituting hard work with smart work (Noy and Zhang, 2023; Zhu and Luo, 2022). This 

AI-driven substitution, combined with original human thinking, could be the key to 

personalized product design and related manufacturing, supporting environmentally friendly 

products for the circular economy, and thus reducing waste and consumption. Numerous 

complex tasks that require specific knowledge and technology underpin the successful 

execution of each part of the product design and manufacturing processes, which are effectively 

facilitated by two-way communication and a problem-solving approach involving GAI and 

human beings (Hettiarachchi et al., 2022; Wang et al., 2023). GAI, which also helps to create 

novel ideas and designs benefiting contemporary customers, produces significantly higher 

scores compared to human-generated ideas (Joosten et al., 2024). GAI is believed to have the 

potential to enhance “gross domestic products by 7%” and to replace “300 million jobs of 

knowledge workers”; as such, it simultaneously provides opportunities and challenges that 

need to be investigated (Feuerriegel et al., 2024, p.111). 

Despite the research conducted to understand the interlinks between traditional AI/big 

data analytics and performance outcomes (e.g., Akhtar et al., 2023), addictive technology and 

the circular economy (Hettiarachchi et al., 2022), and product platforming and customer needs 

(Jalali et al., 2022; Zhang., 2015), how SPP powered by AI and GAI—and fueled by big data 
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analytics and machine learning—is linked to environmentally friendly products for the circular 

economy remains unclear. The research emerging in this domain could revolutionize the design 

and manufacturing industry. Although the industrial implications of GAI have hitherto 

remained unaddressed, its ability to generate complex texts, answer specific questions, and 

write code suited to build and design human-friendly interfaces has surprised many 

professionals (Wang et al., 2023). The concept of generating AI-based design is evolving (Zhu 

and Luo, 2022). In 2022, ChatGPT (Chat Generative Pre-trained Transformer) booted this 

domain when it recorded more than 100 million active users in just a few months after its 

release (Wu et al., 2023). Although GAI models present many advantages—such as saving 

time, enhancing innovation, and improving quality—they should be used with care, as the 

accuracy of any specific knowledge and information involved may be questionable. It is also 

important to carefully address how the questions are asked, as the models may not be trained 

to obtain specific technical information. Additionally, the reliability of the online resources 

used by GAI models and the related ethical issues are important (Wang et al., 2023; Bartlett 

and Camba, 2024).  

Simpson et al. (2014) posited that industry decision-makers are more involved in 

designing a platform, defining the characteristics of a successful one, and assessing how it 

measures up against its competitors. Therefore, a significant number of firms are investing 

considerable time and resources into the creation of product platforms and the associated 

product ranges. Saporiti et al. (2023) identified 18 key challenges and proposed a set of 

countermeasures suited to solve the problems of smart platforms. However, little empirical 

evidence has hitherto been provided in relation to SPP  impacts on firm performance (Bai et 

al., 2020), the circular economy and environmental aspects notwithstanding (Awan et al., 2021; 

Batista et al., 2023; Wang et al., 2023). As the circular economy makes steady progress in 

sustainability domains (Agrawal et al., 2019; Hettiarachchi et al., 2022), a limited number of 

recent studies conducted in relation to the circular economy have examined SPP interlinks. For 

instance, Lim et al. (2020) recognized the importance of reusable and transparent digital-

physical systems capable of situational recognition and self-correction to enhance engineering 

product lifecycles. The latest studies have found that GAI is emerging and has the potential to 

be used as a tool for the design process, rather than as one for final designs (Bartlett and Camba, 

2024). The design principles should include responsibility, mental models, trust and reliability, 

generative variability, and co-creation. This helps to explore the ideas and then optimize them 

(Weisz et al., 2024). As it involves aspects of originality, copyrights, and ethical issues, GAI 
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should be used carefully and responsibly (Bartlett and Camba, 2024). The algorithms used in 

GAI could enable the optimization of processes, compared to traditional design ones. However, 

the integration of human factors is vital to make GAI more effective and innovative (Demirel 

et al., 2024). GAI, which generally provides cost-effective production and manufacturing 

processes, also facilitates design (Soldatos, 2024). Although these emerging studies are 

providing the fundamentals needed to understand the captivating benefits of GAI, the 

connections and specifics between GAI, SPP, and the circular economy for environment 

sustainability are still evolving. 

In the literature, advanced technologies and the circular economy for environmental 

sustainability are still disconnected (Nascimento et al., 2019). Most such literature has been 

focused on advanced technologies, the circular economy, and environmental sustainability, 

either independently or in combination. Kristoffersen et al. (2021) examined the lump sum of 

business analytics technology for circular economy implementations. Liu et al. (2023) studied 

the role played by integrated manufacturing systems in the adoption of circular manufacturing. 

In their review of the literature on circular supply chains, Gunasekara et al. (2023) found that 

there is currently a lack of a nuanced view of the role played by product design in 

manufacturing in the circular economy context in relation to environmental imperatives. In 

response to the recent calls made for further research to be conducted on digitalization in a 

sustainability context and to complement the underexamined role of product design in the 

circular economy (Gunasekara et al., 2023), along with emerging relevant directions on GAI 

and AI (Bartlett and Camba, 2024; Rashid et al., 2024; Soldatos, 2024; Weisz et al., 2024), we 

provide a nuanced view of SPP powered by AI and GAI—and fueled by big data analytics and 

machine learning techniques—examining the direct and indirect effects of these advanced 

technologies for environmentally friendly personalized product design and manufacturing for 

the circular economy. Our study is among the first to consider such interlinks in the digital-

enabled circular economy context through personalized product design and manufacturing. 

Given the persistence of inconclusive findings pertaining to interlinks, contradictory 

thoughts, and challenges, there is a need for more research to be conducted on the use of GAI 

for personalized product design and manufacturing, big data analytics, machine learning, and 

environmentally friendly products for the circular economy, particularly in regard to SPP. First, 

we contribute by developing a theoretical framework that borrows concepts from product 

platforming (Jalali et al., 2022; Zhang., 2015), GAI/AI (Akhtar et al., 2023; Wang et al., 2023; 
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Soldatos, 2024), and by examining their impacts on the manufacturing of environmentally 

friendly products for the circular economy (Akhtar et al., 2018; Hettiarachchi et al., 2022; 

Wang et al., 2023). As SPP powered by AI and GAI for creative product design and related 

manufacturing was a crucial theme of our study, we scrutinized the interplay between SPP and 

environmentally friendly products for the circular economy. Second, although big data 

analytics, machine learning, and flexibility in SPP play fundamental roles in supporting GAI 

and generating useful and practical content for industrial applications, few empirical studies 

have hitherto been conducted on the links between GAI applications for personalized product 

design and manufacturing, big data analytics, machine learning, and environmentally friendly 

products for the circular economy. We thus developed new relative measures and constructs 

suited to be utilized by future studies. We advanced such measures and constructs using 

comprehensive statistical procedures and with the involvement of practitioners from the 

automotive industry. Finally, we analyzed the implications of our framework for business 

practitioners. 

This paper is organized as follows. Section 2 provides a background understanding of 

SPP, product families, GAI, and the circular economy. The relationships between the 

underlying constructs to develop the hypotheses and relevant theoretical framework are also 

presented. In Section 3, the methodological procedures—including measurements, respondent 

characteristics, data collection, and analyses—are provided. Section 4 reveals the key results 

against our set of hypotheses. In the final section, the discussion and conclusion—including a 

summarization of the key findings, theoretical and practical implications, research limitations, 

and directions for future research—are provided. 
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2. Literature Review 

2.1. Smart product platforming and product families  

Smart product platforming is interlinked with the development and implementation of 

technological components or subsystems that are shared across multiple products, production 

lines, and product features. To optimize the utilization of the system, smart platforms are 

utilized for the manufacturing of multiple products (Meyer et al., 2018; Van et al., 2018). The 

types of platforms are characterized by their functional abilities in relation to production, along 

with the customization options available for each category of products (Van et al., 2018). The 

emergence of Industry 4.0—one of the pillars of which is aimed at integrating cyber-physical 

connectivity to boost smart manufacturing platforms—suggests state-of-the-art technologies 

such as big data analytics and machine learning as a green technology (Vinuesa et al., 2020) 

with digital-to-physical transfer capabilities in enhancing materials efficiency, reducing life 

cycle impacts, and enabling greater engineering functionality in product platforms and relative 

supply chains (Fatorachian and Kazemi, 2020). Scholars have provided a rich literature on the 

technological feasibility, highlighting the merits of Industry 4.0 technology in delivering real-

time communication and collaboration with ecosystem actors both within and outside 

production systems, which open up opportunities for the smooth flow of the materials and 

components pertaining to the diverse products within a family. The current literature, thus, 

encourages the examination of the opportunities and challenges presented by the technological 

characteristics of Industry 4.0 on SPP within product families (Raj et al., 2020). Smart product 

platforming connects devices and systems, enabling real-time data exchange between the 

different products manufactured within a family. Zhang et al. (2020) proposed an evaluation 

method suited to the design and manufacturing of affordable customized products with shorter 

lead times through the integration of information drawn from sales, products, and production 

configuration. Weng et al. (2020) posited that artificial intelligence (AI) and the robotic 

capabilities afforded by Industry 4.0 will enable companies to analyze the large volumes of 

data generated by product family components, enhancing the optimization of production 

processes. For instance, smart sensors installed in manufacturing equipment can provide 

insights into the production process, improving efficiency, quality, and affordability across a 

product family. By creating digital replicas of physical products or processes, a smart product 

platform can facilitate efficient development and testing. 

 



7 
 

2.2. Generative artificial intelligence, the circular economy, and interlinks 

GAI is a domain of AI that utilizes generative models capable of learning patterns or 

drawing insights from large volumes of input data (called training data) and then generating 

new data based on such learning. In other words, it draws upon any available data (e.g., big 

data) and the ability to mimic human intelligence and uses trained models and algorithms to 

generate outputs (e.g., text-based answers, images or their reciprocals, audio clips, and videos). 

GAI can also provide data for training and can use machine learning to improve model 

performance. GAI provides trained solutions interlinked with machine learning. Big data (e.g., 

large texts) are fed to machine learning models to produce outcomes that depend on what users 

ask. Consequently, GAI applications bring innovation, creativity, and efficiency to selective 

tasks, including image generation from text or vice-versa (e.g., creative arts and 3D product 

designs), text generation from text (e.g., answers to manufacturing-related questions), audio 

outputs from text (e.g., music and voice), video from texts (e.g., movies and video clips), codes 

from text (e.g., R/VBA for analysis and the development of AI-driven PowerPoint slides) 

(Gozalo-Brizuela and Garrido-Merchan, 2023; Sætra., 2023; Wu et al., 2023). 

Traditional AI performs allocated tasks interlinked with a predefined set of rules and 

relative datasets; the key being that it does not generate any new ideas or content. On the other 

hand, as an emerging subfield of (traditional) Al, GAI creates new ideas and content 

interlocked with learning from data. In other words, (traditional) AI uses data to make 

predictions while GAI generates new ideas and data or content (Forbes, 2023). GAI is linked 

to computational techniques that can generate ostensibly new and profound content; e.g., 

scripts, visuals, and audio from training datasets (Feuerriegel et al., 2024). According to Cooper 

and McCausland (2024), AI is a predictive technology that reduces the cost of predictions due 

to its higher efficiency in terms of time and accuracy, whereas GAI assists in the exploration 

of creative solutions and can be very useful in combination with human creativity. GAI is 

linked with LLMs that have exceptional capabilities to handle complex tasks and provide 

solutions based on user requirements (Joosten et al, 2024). This distinction between AI and 

GAI is aimed at aiding the examination of their integrations in our constructs and relative 

applications. 

Over the last couple of years, LLMs have been the subject of increasing attention. 

ChatGPT, one of the most popular examples of an LLM, is an automatic artificial intelligence-

generated content (AIGC) model. The public version of ChatGPT, which was released toward 
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the end of 2022, recorded 100 million active users in just a few months. Such LLMs (ChatGPT; 

Make-A-Video) use powerful advancements in technology, efficiency in computational power, 

and deep networks with various trained parameters. ChatGPT can even reject tasks that are not 

appropriated, and it can remember previous ones (Wu et al., 2023). 

To perform the tasks they are assigned, AIGC models/LLMs draw useful information 

and insights from information and large datasets and generate outputs (Gozalo-Brizuela and 

Garrido-Merchan, 2023; Sætra., 2023; Wu et al., 2023). This recently developed (and still 

emerging) domain represents a new dimension of organizational information processing theory 

(OIPT), which emphasizes how organizations access information/data and process them for 

effective operational or supply chain activities (see Cegielski et al., 2012, for more information 

on OIPT) that can impact their operational and managerial level work (Korzynski, et al., 2023). 

Developments related to big data and AI enhance data and information processing capabilities, 

strengthening OIPT and its implications. Ultimately, OIPT-associated advancements 

strengthen performance and sustainable manufacturing to achieve environmental goals (Rashid 

et al., 2024). Additionally, GAI substantially increases productivity (Feuerriegel et al., 2024). 

These aspects fueled by big data and analytics empower organizations to process more complex 

data (e.g., unstructured data) for their operational and manufacturing activities. In our study, 

we found that SPP powered by AI and GAI leads to the production of more environmentally 

friendly and personalized products for the circular economy. In this regard, organizations use 

any actionable insights drawn from big data and analytics to enhance their data and information 

processing capabilities, eventually promoting OIPT applications. Our finding thus directly 

contributes to OIPT and its constituents. 

The circular economy is a multifaceted societal concept pertaining to rebuilding and 

reframing the economy in relation to sustainable growth by promoting environmental 

stewardship (Valenzuela and Böhm, 2017). In the traditional one-way process pertaining to the 

‘take, make, dispose’ manufacturing method, material resources are disposed of in landfills or 

incinerators, meaning that their economic value is not fully exploited. As opposed to a linear 

system, the circular economy is a production and consumption manufacturing method suited 

to enable organizations to improve their resource utilization, efficiency, and productivity via a 

circular system (Awan et al., 2021). Advanced innovations play a critical role in reducing any 

environmental impacts by transforming the existing materials into desirable environmentally-

friendly designed products for net zero goals (Abdul-Hamid et al., 2022). This can be achieved 
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by planning the utilization of resources with the integration of a digital-enabled circular 

economy at the early stages of product design, extending the lives of the products for which 

the materials are sourced and remanufacturing new products from secondary raw materials 

through the loop. However, challenges remain in regard to the following question: “how can 

designers or design teams come up with truly sustainable or circular innovations if the current 

manufacturing methods only lead them to optimize what is already there?” (Den Hollander et 

al., 2017:518). We aim to contribute to this domain by adopting a new lens of advanced 

innovations by drawing on how big data analytics—with their higher predictive accuracy in 

regard to environmentally friendly products supported by GAI-driven design and 

manufacturing—could unlock circular economy potentials, along with other interlinks with 

machine learning applications. 

Big data-driven decisions are getting increasing attention because, due to dynamic 

market trends and the depletion of natural resources, businesses are being forced to use and 

manage such resources more sustainably. Furthermore, businesses are held responsible in 

regard to adopting eco-efficient practices and engaging in eco-efficient activities that have a 

high economic value and take social considerations into account while still dealing with 

operational activities. The resource-based view of sustainable competitive advantage, which 

provides the means for this approach, deals with how firms create value for their customers. 

Furthermore, it also posits that firms can achieve sustainable competitive advantages by 

developing and exploiting strategic resources that are valuable, rare, inimitable, and non-

substitutable. In our research, the applications of GAI and big data analytics are strategic 

resources for SPP, contributing to the new dimensions of OIPT that can be used to develop 

environmentally friendly automobiles. SPP-based systems, which can carry out knowledge-

intensive work faster than human beings, add a strong cognitive level to a firm's processes and 

operations. With SPP, GAI can be used to create new automobile designs that are more efficient 

and environmentally friendly. Big data analytics provide avenues suited to enforce new firm 

capacities by collecting and analyzing real-world data to support SPP. Furthermore, the 

literature identifies big data analytics as a critical factor for the adaptability and responsiveness 

of dynamic ecosystems inherited in SPP. Big data analytics performed through machine 

learning techniques are used to identify patterns in consumer behaviors and other stakeholder 

data that may be used to develop new environmentally friendly automobiles. SPP devises long-

term goals that turn into improved firm performance through value creation, innovation, and 

competitiveness. Big data analytics and machine learning feed insights to the GAI mode that 
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supports SPP, which then ultimately generates more value and productivity (Akhtar et al., 

2023; Hilbolling et al., 2021; Jalali et al., 2022; Noy and Zhang, 2023). 

Therefore, SPP powered by AI and GAI is valuable because it can help firms devise 

new products that are more environmentally friendly. It is a rare resource because not all firms 

have the technical capabilities needed to use these technologies (Akhtar et al., 2023; Dubey et 

al., 2019). It is also difficult for competitors to copy due to its unique usage in processes or 

operations. Moreover, it is non-substitutable as no other resources can provide the same 

benefits. Smart IT-based initiatives and projects establish high-performance benchmarks suited 

to enhance manufacturing capabilities in the era of screen and digitization through innovation-

driven production techniques (Li, 2018; Liu et al., 2020). Additionally, Industry 4.0 

technologies can be crucial in reducing any negative effects and assisting decision-makers in 

making decisions and taking the measures best suited to deal with any difficult and uncertain 

situations (Zamani et al., 2022). For instance, machine learning algorithms are used to analyze 

large volumes of data and to identify patterns that are useful to improve the design and 

performance of environmentally friendly products. Machine learning applications can be 

utilized to improve the accuracy of GAI models to support SPP. Under the OIPT umbrella, we 

argued that the use of SPP can help firms develop forms of personalized product design and 

manufacturing suited to lead to environmentally friendly products for the circular economy. 

To summarize, although it provides important insights into efficiency and optimization 

outcomes, the current literature on SPP suffers from the limitations discussed above. The 

mechanisms that trigger SPP for the circular economy remain unclear. Our research was aimed 

at empirically investigating how advanced technologies—such as big data analytics and 

machine learning applications—can be applied alongside SPP powered by AI and GAI to 

advance extended product platforming in addressing the challenges of the circular economy. 

The adoption of advanced Industry 4.0 applications helps in enabling better-informed decision-

making concerning the development of products suited to meet customer needs. Furthermore, 

data-driven applications within the circular economy context involve analyzing consumer 

consumption patterns for recycling. Such activities—which involve tracking consumer 

behaviors—help to predict resource usage in production planning. The accuracy of such 

predictions is enhanced by leveraging past historical data, further optimizing product lifecycles 

and resource allocations for sustainability within SPP and supporting the circular economy 

concept. Our research was aimed at advancing the current literature by postulating that Industry 
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4.0 technologies such as AI, GAI, big data analytics, and machine learning represent digital 

developments necessary for SPP within product families. These technologies connect 

manufacturing to data analytics and flexible automation, ultimately enhancing efficiency, 

agility, and customization, thus unlocking circular economy opportunities for companies 

developing diverse and environmentally friendly products. 

2.3. Hypotheses development 

2.3.1. Big data analytics and environmentally friendly products for the circular economy 

The analysis of large structured and unstructured datasets (called big data analytics) 

ultimately provides several environmental benefits—such as material efficiency and reduced 

energy consumption—that support the circular economy’s goals (Akhtar et al., 2018; 

Nascimento et al., 2019). The trends and patterns gleaned through big data analytics are used 

to improve production and operational activities. Big data analytics provide relevant insights 

for firms that operate in dynamic and fast-paced industrial environments in which timely and 

informed decision-making is crucial (Wamba et al., 2017; Yin et al., 2022). 

As a result of conscious evolution, human beings have started to think about the 

preservation of their surroundings and, in a wider context, the planet. In this era, such 

consciousness enables human beings to think about environmental preservation, resource 

conservation, climate change, air quality, waste and pollution reduction, fossil fuel depletion, 

and a sustainable economy (Akhtar et al., 2018; Zhang and Hou, 2022). These practices are 

integrated into environmentally friendly initiatives, which are the subject of the 12th United 

Nations Sustainable Development Goal. This goal addresses sustainable consumption and 

production patterns that are in line with environmentally friendly product development. 

Offering ‘green’ or ‘sustainable’ automobile options is a requirement of our times. Such 

automobiles, which are designed to have minimal negative impacts on the environment through 

their reduced carbon footprints, specifically address concerns related to air pollution, 

greenhouse gas emissions, and the depletion of natural resources. 

Applications of big data analytics (ABDAs) are technical resources suited to enhance 

firms’ manufacturing capabilities through innovation-driven production techniques and 

designs (Li, 2018; Bag et al., 2021). ABDAs supply precise and timely supply network insights 

suited to assist in the incremental improvement and transformation of operational models 
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(Roden et al., 2017). The advantage of ABDAs is their capacity to deliver in-depth insights for 

superior decision-making and the ability to adjust strategies appropriately (Bag et al., 2021). 

On the other hand, automobile manufacturing firms are acting ‘eco-responsibly’ by offering 

environmentally friendly products designed and manufactured with a minimal negative impact 

on the environment. International expectations and policies, local government policies, 

automotive industry rules and regulations, independent entities’ pressure, and customer 

awareness are forcing automobile firms to produce environmentally friendly products. This 

pressure started to manifest itself over the last decade, as the 2014 Intergovernmental Panel on 

Climate Change (IPCC) proposed specific environmentally friendly practices to be adopted by 

the automotive and other industries—e.g., improving energy efficiency in new processes and 

technologies, promoting efficient materials and products, and recycling (IPCC, 2015). ABDAs 

are currently aiding in the manufacturing of environmentally friendly cars by enabling the 

implementation of design optimization (Lepenioti et al., 2020), simulation and modeling (Mišić 

and Perakis, 2020), supply chain optimization, and effective material selection and delivery 

(Jahani et al., 2023). 

To summarize, firms usually gather information from historical performance, customer 

feedback drawn from an online presence on social media/apps/websites, sensor readings taken 

during the manufacturing stages, the actual usage/operation of product designs, simulations of 

various aspects of the manufacturing process and the final product, materials characteristics, 

and the environmental impact of a product. Such information—in the form of insights drawn 

from big data—can provide a path to the design and manufacture of automobiles with minimum 

environmental impacts throughout their entire lifecycles, including their operational and 

eventual disposal stages. Therefore, the integration of ABDAs into the development and 

operation of automobiles can contribute to a more holistic and conscious approach to 

environmentally friendly production. Through the power of big data analytics, automobile 

manufacturers can make better-informed decisions, optimize processes, and drive innovation 

with the ultimate goal of reducing their products’ environmental footprints. Ultimately, the 

sensible and timely use of big data analytics in the manufacturing of environmentally friendly 

automobiles can help to attain a competitive advantage. Hence, we formulated the following 

hypothesis. 

H1. Applications of big data analytics aid in promoting environmentally friendly products for 

the circular economy. 
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2.3.2. Big data analytics and smart product platforming powered by AI and GAI 

Big data acts as fuel for AI and GAI because it provides all the inputs required to learn 

and get useful and actionable insights, which ultimately power SPP. Digital initiatives establish 

clear objectives and performance benchmarks suited to enhance industrial capabilities (Liu et 

al., 2020; Geyer, 2023). Munir et al. (2022) posited that ABDAs enable firms to make timely 

decisions that provide a wide range of benefits toward sustainability in the market. Also, AI is 

better capable of performing tasks that typically require a human presence. ABDAs and GAI 

make large datasets and data streams valuable, relevant, and actionable for task precision and 

efficiency. SPP powered by AI and GAI can play a pivotal role in supporting data-driven 

decision-makers in taking actions appropriate to tackling challenging situations (Akhtar et al., 

2023; Hilbolling et al., 2021; Jalali et al., 2022; Wang et al., 2023). Budhwar et al. (2023) found 

that the quality of GAI output relies on that of the input it receives (e.g., big data quality), 

considering both the training data it has been exposed to and the prompts provided by users to 

describe the task they want accomplished. This training yields the capacity to deal with big 

datasets to identify patterns and models and to make predictions or classifications about certain 

phenomena. GAI understands and reads any big data patterns, analyzes them, and creates a 

new or unique version of a product or output. 

The sheer volume and complexity of the available large datasets have made it 

challenging for manufacturers to extract useful data and generate actionable insights. This is 

where GAI is useful because it represents a transformative solution suited to deal with data 

overload in machine manufacturing (Geyer, 2023). AI, GAI, and big data work shoulder to 

shoulder to enhance product quality and its related developments, ultimately supporting SPP 

(Gong et al., 2021; Guo et al., 2024; Soldatos, 2024). Geyer (2023) stated that, in relation to 

the adoption and use of AI technologies to manage large datasets, GAI algorithms can learn 

from historical data and can provide useful information for operations. Thus, big data analytics 

powered by AI and GAI fuel SPP. Big data helps AI to operate effectively for new product 

design and development (Bartlett and Camba, 2024; Cooper and McCausland, 2024). 

According to the literature, there is a connection between these two underlying concepts. Big 

data processing provides the foundation for SPP systems that eventually add human 

intelligence (i.e., learning, comprehending, and suggesting innovative designs hidden in the 

data) to derive smart manufacturing processes and personalized automobile design inherited in 

SPP. We therefore made the following hypothesis. 



14 
 

H2. The applications of big data analytics encourage smart product platforming powered by 

artificial intelligence and generative artificial intelligence. 

2.3.3. Smart product platforming powered by artificial intelligence and generative artificial 

intelligence and the circular economy. 

Smart production platforming is the result of intense competition and the intent to fulfill the 

needs of sensitive customers (Hilbolling et al., 2021; Jalali et al., 2022; Lee, 2015). Lee (2015) 

proposed that, in the component stage, sensory data are transformed into information, enabling 

the cyber-twins of components to capture time records and self-predict. In the next stage, 

machine data are combined with component information to monitor and generate machine 

cyber-twins, enhancing self-comparison. Finally, in the third stage (production system), 

aggregated knowledge ensures self-configurability, self-maintainability, and optimized 

production planning for seamless and efficient factory operation. These stages increase the 

efficiency and effectiveness of the product optimization process, supercharge development 

cycles, and create a more sustainable ecosystem, supporting environmentally friendly products 

for the circular economy (Hettiarachchi et al., 2022; Wang et al., 2023). It is changing the way 

vehicles are designed, manufactured, and maintained, leading to cost reduction, improved 

efficiency, and sustainability (Yu et al., 2022). 

Jalali et al. (2022) suggested that smart platform-based development becomes 

increasingly attractive when there is a greater disparity in the quality preferences among market 

segments, and heightened sensitive customer demand for the specific features of a market 

segment. AI inherited in SPP is being used in the automotive industry for various kinds of 

decision-making, such as access control through facial recognition and the analysis of road 

conditions. From the perspective of our study, AI/GAI is a viable option to be used in designing 

automobile parts or to be integrated into a product family. Previous research has stated that 

product family design is an effective strategy to provide variety at a reduced cost (Simpson et 
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al. 2014). Product family design commonality is intentional and is derived from the specific 

product platform (Simpson et al., 2014). Product family design targets a variety of different 

market segments despite involving high numbers of common ‘elements’ (e.g., components, 

modules, subsystems, fabrication processes, and assembly operations) (Pirmoradi et al., 2014). 

Moreover, product family design also helps to propose and produce different product designs 

and configurations (e.g., Shafiee et al., 2022; Zhang et al., 2020). 

Specific AI and GAI applications—which include automated replenishment, 

autonomous vehicles, automotive insurance, predictive maintenance, and supply chain 

optimization—are part of SPP and help to expand the product family of automobiles. 

According to Birlasoft (2022), GAI and AI are not just an option but a necessity for car 

manufacturers to stay competitive. It added that they enable predictive vehicle maintenance, 

real-time quality control, process optimization, and the development of functional vehicle 

prototypes. This ultimately helps to produce environmentally friendly products for the circular 

economy (Hettiarachchi et al., 2022; Wang et al., 2023). In light of this discussion, we argued 

that SPP is revolutionizing the automotive industry’s efficiency and effectiveness by reducing 

costs and making it more sustainable. Hence, we proposed the following hypothesis.  

H3. Smart product platforming powered by artificial intelligence and generative artificial 

intelligence leads to environmentally friendly products for the circular economy. 

2.3.4. The mediating role of smart product platforming  

The literature (e.g., H1, H2, and H3) supports the important role played by SPP in the 

manufacturing of environmentally friendly products for the circular economy, and the presence 

of multiple interlocks between ABDAs and SPP. In today's rapidly evolving technological 

landscape, the integration of SPP and the development of environmentally friendly products 

have become central to strengthening sustainability through SPP. The overarching goal of SPP 

powered by AI and GAI is to identify areas in which the interlocks between ABDAs and 
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environmentally friendly products for the circular economy can be improved at the design and 

production levels by making informed decisions, optimizing processes, and developing eco-

conscious product offerings—a route to a sustainable economy and to new innovative business 

models that maximize societal and environmental benefits (Akhtar et al., 2023; Hettiarachchi 

et al., 2022; Hilbolling et al., 2021; Wang et al., 2023). Giudice et al. (2021), Hilbolling et al. 

(2021), and Jamali et al. (2020) posited that one of the key advantages of SPP is its ability to 

capture real-time data from connected devices and sensors embedded within products. The 

pertinent collected data are fed into a unified platform, enabling firms to continuously assess 

the eco-friendliness of their products, identify areas for improvement, and connect and manage 

various aspects of a product's lifecycle—from design and development to manufacturing and 

distribution. 

Furthermore, SPP enhances the efficiency of product development and customization 

aimed at meeting sensitive customer demands. The valuable information and insights provided 

by SPP can be used to tailor products suited to meet specific environmental preferences and 

market demands. Moreover, SPP offers greater transparency in the supply chain, enabling 

companies to make informed and timely decisions pertaining to sourcing and materials. With 

SPP, businesses can trace the origins of raw materials, assess their environmental impact, and 

select eco-friendly alternatives. This level of transparency is not only aligned with the 

principles of sustainability but also enables companies to meet the growing demand for 

environmentally responsible products (e.g., Centobelli et al., 2022; Jalali et al., 2022; 

Hilbolling et al., 2021). The mediating role played by SPP is crucial in bridging the ABDAs 

and the development of environmentally friendly products for the circular economy. This 

synergy empowers businesses to harness the full potential of data-driven insights and translate 

them into tangible, sustainable product offerings. We thus suggested the following. 
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H4. Smart product platforming powered by artificial intelligence and generative artificial 

intelligence plays a mediating role between the applications of big data analytics and 

environmentally friendly products for the circular economy. 

2.3.5. The moderating role of machine learning  

Machine learning techniques—which are applied to large volumes of structured and 

unstructured data collected from different sources such as smart devices, sensors, and 

websites—have many operational and production applications in relation to strengthening 

performance outcomes. These applications have the potential to moderate the relationship 

between big data applications and environmentally friendly products, strengthening the circular 

economy. This is because machine learning, as an Industry 4.0 application, assists in the 

accurate prediction of patterns that can be utilized to better understand the processes and to 

make pertinent data-driven decisions suited to improve outcomes (Akhtar et al., 2023). 

Nascimento et al. (2019) investigated how Industry 4.0 technological applications strengthen 

the circular economy for manufacturing firms, including the reuse and recycling of products. 

Machine learning applications possess the ability to identify patterns in data, improve, make 

decisions based on a set of performance criteria, and optimize the relative outcomes (Gambella 

et al., 2021). As a result, machine learning applications enhance reliability and provide insights 

according to specific customer requirements, helping firms to leverage the information to 

develop and implement environmentally friendly products or circular economy practices. 

Furthermore, with the help of pre-determined machine learning algorithms measured based on 

performance metrics, designers can refine design schemes according to customers’ 

environmental preferences learned from the data and integrated with historical data matched 

with product sales, market demand, and user characteristics. As such, designers can devise 

products that make use of recycled materials, and sustainable manufacturing processes that 

unlock the circular economy. Therefore, in line with this reasoning, we hypothesized:  
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H5. Machine learning applications play a moderating role between the applications of big data 

analytics and environmentally friendly products for the circular economy. 

2.3.6. The moderating role of flexibility  

Flexibility signifies a firm’s responsiveness in terms of adapting, changing, and 

adjusting to new knowledge and product features. Flexibility in SPP ultimately assists in 

tackling any uncertainty and enhancing customization as per customer demand (Hilbolling et 

al., 2021; Jalali et al., 2022; Suh et al., 2007 ). Flexible product platforming provides 

operational advantages in terms of, inter alia, reducing risk, customizing, and counteracting 

any productivity obstacles (Van et al., 2018). To achieve the circular economy, firms need to 

align sustainability value across their production lines by integrating flexibility in their 

manufacturing.  

However, environmental regulations or requirements may differ across the value chain 

and evolve. To comply with updated environmental standards without having to engage in any 

significant overhaul, firms strive to anticipate future needs and establish plans for the 

adaptation and modification of technological components or subsystems in the platform. At the 

same time, flexibility provides a solution to SPP with enhanced modular components without 

the need to replace entire product units when initial designs do not meet some circular economy 

requirements or customization. Flexibility in SPP enables firms to adjust their sustainability 

features or recycling materials to bring them more in line with customer demands than they 

would as a result of any ample generated unstructured solutions. In this way, firms simulate 

and optimize the behaviors of different products within product families, thus reducing any 

unnecessary production actions in relation to circular economy goals. Flexibility ultimately 

enhances the effectiveness of SPP by enabling adjustment or adaptation to resources with a low 

environmental impact and to technological solutions that minimize waste and increase product 

lifecycles for easy disassembly and recycling, promoting flexible manufacturing concepts 
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(Sarkar and Bhuniya, 2022; Kulak et al., 2016). Thus, we present our final hypothesis and, in 

Figure 1, we depict the graphical representation of our hypotheses. 

H6. Flexibility in smart product platforming plays a moderating role in the production of 

environmentally friendly products for the circular economy. 

 

 

Fig. 1. Relationships among the underlying constructs. 
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3. Methodology 

3.1. Research approach and context 

For our research, we took a quantitative approach and adopted a cross-sectional survey 

design to examine the relationship between the variables and constructs. Creswell and Clark 

(2017) suggested that quantitative research supports investigators in collecting data from a 

large sample population to investigate specific questions. Hair et al. (2016) also posited that 

quantitative research is appropriate for the testing of hypotheses and theories, and for exploring 

the relationships between constructs. We measured all variables measured based on primary 

data collected through a self-administered online survey. 

The context for our study was the Chinese automotive manufacturing industry, which 

is actively contributing to the development of eco-friendly products for the circular economy. 

China’s automotive manufacturing, which ranks among the country’s top ten industries, is a 

significant contributor to its economic growth (Yu et al., 2022). According to the latest figures 

published by the China Association of Automobile Manufacturers (CAAM, 2023), Chinese 

automakers produced 27.02 million units in 2022, marking a 3.4% growth from the preceding 

year and leading the world (being ranked number 1 in terms of EV production units and sales). 

Concurrently, sales increased by 2.1%, to 26.86 million units. The substantial scale of 

production recorded within the automotive sector offered a rich ground to investigate the 

challenges faced by Chinese automobile businesses, including the applications of SPP powered 

by AI and GAI, flexibility in SPP, applications of big data analytics, machine learning 

applications, and eco-friendly products for the circular economy. 
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3.2. Participants, data, and common method bias 

Table 1 presents our research participants’ characteristics. To gather diverse 

perspectives from a sizeable dataset, we selected multiple managers associated with the 

automotive industry. 

Table 1 

Demographic profiles of the respondents 

Individual Demographics  Frequency Percentage Rounded 

Gender Male 162 79 

 Female 44 21 

Subtotal  206 100 

 Junior college 15 7 

 Bachelor 119 58 

 Master’s or above 72 35 

Subtotal  206 100 

Job Title Product design managers 84 41 

 Manufacturing managers 42 20 

 Operation managers 27 13 

 IT/Analytics managers 36 18 

 CEO/COO/CTO 8 4 

 Others 9 4 

Subtotal  206 100 

Experience 3 to 5 years 55 27 

 6 to 10 years 116 56 

 11 years and more 35 17 

Subtotal  206 100 

Total  206 100 

 

Before distributing our survey questionnaire, we obtained our potential respondents’ consent. 

We chose our participants through purposive sampling, adhering to the following inclusion 

criteria: (i) being top and middle-level managers with relevant knowledge and practice, and (ii) 

being employed in relevant operations, production, product design, data/analytics, and IT 

departments. Following the exclusion of any non-viable responses, our final usable sample size 

was 206 out of 1,000, generating a response rate of 20.6%. 

We used two methods to assess the quality of our data. First, to test for non-response 

bias—as proposed by Armstrong and Overton (1977)—we performed an independent t-test in 

which we compared our first respondents and last 20 respondents on all variables. The results 

confirmed that there was no significant variance between the early and late respondent 
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subsamples, thus indicating the absence of non-response bias. Second, to examine the potential 

presence of common method bias in the data, we took the marker variable approach. In our 

study framework, we included an unrelated variable (organizational culture) for correlational 

analysis (Lowry and Gaskin, 2014; Simmering et al., 2015). We found the correlational values 

to range from low (MV > EFPCE = 0.028) to moderate (MV > ABDA = 0.59), corroborating 

a low likelihood of any common methods bias. Additionally, we addressed common bias at the 

questionnaire design and survey execution stages by adopting an affective survey design 

strategy. This strategy involved avoiding double-barreled questions and not using negative and 

complex statements. We also included multiple respondents with different operational levels. 

3.3. Instruments and procedures 

Based on a comprehensive literature review, we identified the relevant concepts and 

measures of variables to use in our study. We operationalized all variables as multi-item 

measures and adapted them to suit our study context, namely the Chinese automotive 

manufacturing sector. To ensure the accuracy of our data and prevent any possibility of 

instrument misspecification, we incorporated screening questions into our questionnaire. In 

collecting the primary data for our variables, we used a five-point Likert-type scale in which 1 

stood for strongly disagree and 5 for strongly agree. We also submitted our constructs to 

comprehensive statistical procedures by performing exploratory factor analyses and 

establishing reliability and validity [e.g., composite reliability (CR), and average variance 

extracted (AVE)]. 

We measured the degree of AI/GAI used in personalized product design and product 

manufacturing processes. This was a two-dimensional, second-order construct in which 

personalized product design indicated the degree to which the teams employed GAI to develop 

personalized product designs. Moreover, the product manufacturing process referred to the 

degree to which the teams took an AI approach to the manufacturing processes. Both 
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dimensions involved four items. We measured personalized product design using scales 

suggested by Zhu and Luo (2022) and Ghoreishi and Happonen (2020) and product 

manufacturing processes using those devised by Hyunjin (2020) and Leoni et al. (2022). We 

found the internal consistency of the respective variables’ scales to be 0.786 and 0.875. To 

measure flexibility in SPP, we adopted guidelines from previous studies (Sarkar and Bhuniya, 

2022; Van et al., 2018), and found internal consistency to be 0.891. The applications of big 

data analytics (ABDAs) variable referred to the efficient utilization of the latest data analysis 

techniques and contemporary technologies to extract valuable real-time information from large 

datasets. This helps in developing and implementing business strategies suited to support 

operations and fulfill customer requirements. We measured this variable by means of five items 

from Awan et al. (2022). We found the internal consistency of the construct to be 0.839. 

The machine learning applications variable (MLA) referred to the application and 

integration of machine learning technology in production and operations to enhance firms’ 

decisions and operational outcomes. This variable was measured utilizing five items from 

Leoni et al. (2022). We found the internal consistency of the construct to be 0.882. The 

environmentally friendly products for the circular economy variable reflected the utilization of 

sustainable and recycled resources to produce eco-friendly products. It involved the 

assimilation of sustainable practices in production processes and product design to achieve a 

firm’s sustainability objectives. We measured it using eight items from Katsikeas et al. (2016) 

and Awan et al. (2021). We found the internal consistency of this construct to be 0.889. To 

summarize, we found that all internal consistency values for our constructs fell above the 

minimum recommended threshold of 0.70, demonstrating the reliability of our constructs 

(Akhtar et al., 2018; Hair et al. 2016). The details of our constructs and items are given in 

Appendix A.  
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4. Results 

4.1. Measurement model results, validity, and reliability 

To ensure the effectiveness of systematic measurements, it is crucial to assess the key 

factors of validity and reliability (Kuehnl et al., 2019). We evaluated convergent validity 

through loadings, Cronbach's alpha, composite reliability (CR), and average variance extracted 

(AVE). Hair et al. (2016), recommended an acceptable minimum loading value of 0.60. 

Moreover, AVE values have been recommended to fall above 0.5, as this helps gauge the 

relationship within the construct (Wang et al., 2023). Our findings yielded loading values 

greater than 0.6. We also found our CR and Cronbach's alpha values to significantly exceed 

the minimum recommended threshold of 0.70. Furthermore, we found our AVE values for the 

constructs to exceed the minimum threshold of 0.50. We thus found our measurement model 

results to meet all the criteria recommended for the key factors of validity and reliability. We 

performed the HTMT test as a more robust method to assess discriminant validity by measuring 

the ratio of correlation among the constructs (Rönkkö and Cho, 2022). The maximum threshold 

for HTMT is 0.85 (Hair et al., 2021). We found our results for all the constructs to fall below 

such a threshold. Therefore, we found the constructs in our model to demonstrate sufficient 

discriminant validity, with each differing from the others. The details of these assessments and 

their values are listed in Table 2 and Figure 2. 
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Table 2 

Results of Confirmatory Composite Analysis 

Construct Factor Loadings Cronbach's Alpha CR AVE HTMT 

Smart product platforming 

powered by GAI and AI  

Personalized product design 

SPPAI1 

SPPAI2 

SPPAI3 

SPPAI4 

Product manufacturing process 

SPPGAI5 

SPPGAI6 

SPPGAI7 

SPPGAI8 

 

 

 

0.790 

0.712 

0.775 

0.741 

 

0.752 

0.892 

0.774 

0.863 

 

 

 

0.786 

 

 

 

 

0.875 

 

 

 

0.791 

 

 

 

 

0.889 

 

 

 

0.543 

 

 

 

 

0.685 

 

 

 

< 0.85 

 

 

 

 

< 0.85 

Flexibility in smart product 

platforming 

FSPP1 

FSPP2 

FSPP3 

FSPP4 

 

 

0.766 

0.841 

0.876 

0.755 

 

 

0.891 

 

 

0.896 

 

 

0.672 

 

 

< 0.85 

 

 

 

Applications of big data analytics  

ABDA1 

ABDA2 

ABDA3 

ABDA4 

ABDA5 

 

0.735 

0.778 

0.821 

0.805 

0.782 

 

0.839 

 

0.857 

 

0.613 

 

< 0.85 

Machine learning applications 

MLA1 

MLA2 

MLA3 

MLA4 

MLA5 

 

0.756 

0.787 

0.719 

0.897 

0.861 

0.882 0.887 0.585 < 0.85 

Environmentally friendly 

products for circular the economy 

EFPCE1 

EFPCE2 

EFPCE3 

EFPCE4 

EFPCE5 

EFPCE6 

EFPCE7 

EFPCE8 

 

 

0.825 

0.864 

0.886 

0.746 

0.873 

0.817 

0.752 

0.788 

0.889 0.903 

 

0.702 < 0.85 

(n=206) 

Legend: CR (composite reliability), AVE (average variance extracted), HTMT (hetero-trait-monotrait ratio of 

correlations) 
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Fig. 2. The second-order construct of SPP powered by AI and GAI 

 

4.2. Structural model and hypothesis results 

As recommended by Hair et al. (2019) and Akhtar (2018), we adopted standardized 

procedures to report our results and to test our hypotheses for the structural model. We found 

ABDAs (H1) to be in a statistically significant direct relationship with EFPCE. Hence, we 

found H1 to be supported. Table 3 provides the β and t-values for all the underlying hypotheses. 

Furthermore, as a result of our hypotheses’ testing, we found a significant direct relationship 

between ABDAs and SPP, thus confirming H2. The outcomes were also found to indicate a 

significant direct relationship between SPP powered by AI and GAI and EFPCE; thus, H3 was 

found to be supported. We took a forward statistical approach to test these relationships—

which we found to be consistently significant in all four models—with control variables (e.g., 

organizational age and size). We performed a mediation analysis following Rungtusanatham 

et al. (2014). The SPP intervention in Model 4—compared to Model 1—exhibited t-values 

reduced from 6.616 (highly significant) to 3.188 (significant), demonstrating partial support 

for H4.  
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Table 3 

Models, structural results, and fit indices. 

Constructs/Hypothesis Model 1 Model 2 Model 3 Model 4 

ABDA→EFPCE (H1)  
0.541 

(6.616***) 

0.314 

(4.236***) 

0.273 

(3.479***) 

0.206 

(3.113**) 

ABDA→SPP (H2) - 
0.459 

(5.347***) 

0.467 

(4.551***) 

0.559 

(6.662***) 

SPP→EFPCE (H3) - 
 

- 

0.503 

(6.001***) 

0.373 

(4.758***) 

ABDA→ SPP →EFPCE (H4) - 
 

- 

 

- 

0.216 

(3.188**) 

MLA x ABDA→EFPCE (H5) - 
 

- 

 

- 

0.265 

(3.468**) 

FSPP x SPP→EFPCE (H6) - 
 

- 

 

- 

0.225 

(3.226**) 

R2 0.295 0.375 0.410 0.496 

χ2/df 1.766 1.421 1.285 1.011 

RMSEA 0.088 

 
0.061 0.054 0.039 

CFI 0.911 0.959 0.963 0.979 

TLI 0.898 0.931 0.952 0.970 

IFI 0.911 0.959 0.963 0.975 

n=206 

Note: statistically significant at p < 0.01 (***), and at p < 0.05 (**)  

 

Finally, we took the product indicator approach employed by Ng and Chan (2020) to 

analyze the moderating effects of ML and FSPP, respectively. Our results were found to 

demonstrate that MLA has significant moderation effects on the association between ABDAs 

and EFPCE. Moreover, our results were also found to indicate that FSPP exerts statistically 

significant moderation effects on the association. To provide a visual interpretation of the 

relationship described in H5 and H6, we plotted a graphical representation. As shown in 

Figures 3 and 4, a high presence of machine learning and flexibility in SPP enhances EFPCE. 

Last, the results of the fit indices, as reported in Table 3, show that all indicator values, 

including R2, χ2/df, RMSEA, CFI, TLI, and IFI, are well past the acceptable threshold for fit 

values, indicating a good fit. 
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Fig. 3. Moderation effect of machine learning applications 

 

 

Fig. 4. Moderation effect of Flexibility in SPP 

 

 

5. Discussion and conclusion 

Our findings emphasize how SPP powered by AI and GAI, big data analytics, and 

machine learning interact in personalized product design and manufacturing, leading to 

environmentally friendly products for the circular economy. Our findings support the 

underlying constructs that are the key determinants in enabling the production of 
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environmentally friendly products and strengthening circular economy implementations. The 

use of SPP with inherited flexibility and advanced technology—such as AI, GAI, big data 

analytics, and machine learning—plays a major role in effective and creative product design, 

consequently facilitating the related manufacturing processes. 

5.1. Theoretical and practical implications 

SPP powered by AI and GAI is an emerging field that strongly contributes to the 

dimensions of sustainability (Hettiarachchi et al., 2022; Wang et al., 2023). In particular, GAI 

came to the forefront in 2022, when ChatGPT hit the market (Wu et al., 2023). GAI models 

provide great opportunities to learn theoretical concepts both effectively and efficiently. Open 

AI could be one of the best tools for the creation and development of knowledge. These models 

involve an interplay between big data analytics, machine learning, algorithms, AI, and GAI, 

providing a comprehensive understanding of interdisciplinarity and related applications 

(Akhtar et al., 2023; Gozalo-Brizuela and Garrido-Merchan, 2023; Sætra., 2023). Designing 

products and facilitating their manufacturing using GAI can benefit the operational community 

and improve work productivity (Noy and Zhang, 2023). Flexibility in SPP is also important for 

the manufacture of environmentally friendly products for the circular economy, as it helps to 

facilitate the creation of closely related product families and achieve optimal results (Sarkar 

and Bhuniya, 2022; Van et al., 2018). 

Big data, analytics, machine learning, AI, and GAI work jointly to support information 

and data processing operations to the end of achieving mutual goals in SPP and contributing to 

OIPT (Feuerriegel et al., 2024; Rashid et al., 2024). In particular, GAI has recently changed 

the game for SPP, with these joint technologies supporting it and ultimately promoting 

personalized product development. This assists in upscaling the circular economy for a better 

future. However, ethical issues related to the use of GAI should also be considered. The 

responsible use of GAI is crucial to address ethical issues and users need to understand the 

related obligations (Bartlett and Camba, 2024). Universities and schools should also play a role 

in educating new generations in regard to their responsibilities pertaining to the use of 

technology. Governments, particularly those of advanced countries, could also introduce new 

laws and regulations aimed at ensuring that groups and forces use such technologies 

responsibly. 
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From a practical standpoint, SPP with GAI models enables exponential timesaving. It 

assists in obtaining specific information and insights more quickly than search engines. If 

properly implemented with good user input, it also assists in improving the quality of work, 

ultimately enhancing productivity. Although managers can input detailed and specific 

questions, SPP/GAI cannot replace human intelligence, which features originality in thought 

and action in improving operational business procedures, whereas SPP/GAI/AI depends on 

user inputs to generate outcomes. For instance, designers can insert specific criteria (e.g., 

sustainable, sporty look, size, type) for car designs, and GAI can then generate an image. 

Designers can then add their originality and creativity by using iterative procedures to execute 

the final designs assisted by SPP. GAI/SPP is thus used as a process tool/platform.  

The benefits of SPP are not devoid of practical challenges for managers. The security 

of the data inputted by users/managers is at risk when they operate on open AI/GAI platforms. 

Organizations and their employees thus need to be very careful when using them. They could 

develop their own AIGC models, but the required in-house expertise could challenge this 

approach. The skills required to use such models in the workplace are also challenging. Not all 

employees are IT-savvy, and the relatively traditional culture of some of them could hinder the 

workplace development and usage of SPP. However, in the long run, organizations could train 

their employees and invest in GAI/SPP to promote sustainability and circular economy 

concepts interlinked with contemporary technologies and SPP. 

5.2. Limitations and future research 

Our study is not devoid of limitations. Very few empirical studies have addressed the 

underlying topics and their links with environmentally friendly products for the circular 

economy, which is still in its infancy. We thus borrowed the literature on SSP from 

GAI/AI/interdisciplinary domains and its links with other underlying constructs. This offers 

valuable opportunities for future research to be based on our study while implementing the 

findings of other domains. For example, future research could focus on conducting case studies 

in different industries such as banking, retail, and IT. More studies could also be conducted in 

manufacturing. Although we did follow comprehensive methodological procedures, we did not 

make any causal claims. Furthermore, SPP may yet become more intelligent; thus, researching 

product platforms and their families could further benefit the business community and 

employees by enabling them to work smarter, rather than harder, reducing any unnecessary 
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extra efforts, increasing their productivity, and bringing greater innovation at work with better 

sustainable outcomes. While we addressed our research questions with data collected from 

Chinese manufacturing firms, future research could consider samples drawn from other regions 

and countries. The nexus of the digital-led circular economy for sustainability is still in its 

infancy, particularly concerning the interlinks with contemporary technology like GAI; future 

studies could thus consider further unpacking the interlocks in SPP and promoting 

sustainability dimensions. 
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Appendix A: 
Constructs, brief item descriptions, and codes. 

 

Constructs Brief item descriptions 

Smart product platforming 

powered by GAI and AI: 1) 

personalized product designs 

and 2) product manufacturing 

processes 

1) Our product design team applies GAI [e.g., 

ChatGPT,] to develop personalized product design 

concepts. 

2) Our product design team uses GAI-based product 

design innovation for personalization. 

3) Our product design team employs GAI for 

personalized product design identification. 

4) Our product design team utilizes GAI to upgrade 

our product designs as per customer requirements. 

5) Our product manufacturing team integrates AI-

based solutions to improve related manufacturing 

processes. 

6) We consider AI to be our major strategy for product-

related manufacturing innovation. 

7) We use AI in our manufacturing processes to 

optimize product characteristics (e.g., product 

strengthening and material balancing). 

8) We use robotic process automation in our 

manufacturing processes. 

Flexibility in smart product 

platforming 

1) We are flexible in our product family design 

2) We are flexible in our product family manufacturing 

procedures 

3) Our product platforming is flexible to adopt 

operational changes 

4) We continuously update our product platform to 

align it with the latest technology 

 

Applications of big data 

analytics 

1) We apply big data analytics in our operations  

2) The use of big data analytics is part of our business 

strategy.  

3) We extensively employ big data analytics in our 

operations. 

4) Big data analytical applications provide us with 

insights suited to understanding specific customer 

requirements. 

5) Our top management encourages us to apply 

insights drawn from unstructured data for better 

customer solutions. 

 

Machine learning applications  1) We apply machine learning-based analytics in our 

operations. 

2) We integrate machine learning techniques in our 

analyses. 

3) We encourage our teams to adopt machine-learning 

techniques. 
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4) We implement insights drawn from deep learning 

applications. 

5) We use insights drawn from neural networks. 

 

Environmentally friendly 

products for the circular 

economy 

1) Our products integrate recyclable materials for 

environmental benefits inherited in the circular 

economy 

2) We use environmentally friendly resources in our 

products for the promotion of the circular economy. 

3) We use recycled materials in our products to 

promote the circular economy 

4) We perform lifecycle analyses to assess the impact 

of our environmentally friendly products on the 

circular economy. 

5) Our environmentally friendly products help us to 

support our circular economy strategy. 

6) Our products’ reusability is a key part of our 

circular economy strategy. 

7) Our circular economy guidelines enable us to 

produce durable environmentally friendly products. 

8) Our circular economy directions drive our products 

to achieve our net-zero goals for an environmentally 

friendly future. 
 


