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ABSTRACT Fast charging of the electric-vehicles is one of the paramount challenges in solar smart cities.
This paper investigates intelligent optimization methodology to improvise the existing approaches in order
to speed up the charging process whilst reducing the energy consumption without degradation in the light
of the outrageous demand for lithium-ion battery in the electric vehicles (EVs). Two fitness functions
are combined as the targeted objective function: energy losses (EL) and charging interval time (CIT).
An intelligent optimization methodology based on Cuckoo Optimization Algorithm (COA) is implemented
to the objective function for improving the charging performance of the lithium-ion battery. COA is applied
through two main techniques: The Hierarchical technique (HT) and the Conditional random technique
(CRT). The experimental results show that the proposed techniques permit a full charging capacity of the
polymer lithium-ion battery (0 to 100% SOC) within 91 mins. Compared with the constant current-constant
voltage (CCCV) technique, an improvement in the efficiency of 8% and 14.1% was obtained by the
Hierarchical technique (HT) and the Conditional random technique (CRT) respectively, in addition to a
reduction in energy losses of 7.783% and 10.408% respectively and a reduction in charging interval time
of 18.1% and 22.45% respectively. Experimental and theoretical analyses are performed and are in good
agreement on the polymer lithium-ion battery fast charging method.

INDEX TERMS Constant current-constant voltage (CCCV), cuckoo optimization algorithm (COA), electric
vehicles (EV), electric vehicle fast charging, lithium-ion battery, RC second-order transient.

I. INTRODUCTION
The lithium-ion battery is becoming the backbone of most
of the popular energy storage systems worldwide [1]. It is
the infrastructure of the modern technologies such as Elec-
tric Vehicles (EV), plug-in hybrid vehicles (PHEV), Energy
Storage Systems (ESS), and most of the portable electron-
ics [1]. Recently, the lithium-ion battery is commercialized
because of its wide voltage range, low charging rate, low
self-discharging rate, long life cycle, and high energy effi-
ciency [1]–[3]. Due to the dynamic characteristics and com-
plex behavior of the lithium-ion batteries, knowledge of its
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various equivalent circuits models is an essential step to
understand its performance [4]–[8].

Modeling of Lithium-ion batteries could be divided into
two main categories: 1) the first category is Electrochemical
model that describes the electrochemical reaction occurring
in the battery [7], and 2) the second category is its elec-
tronic equivalent circuit that is based on the characteristics
of the lithium-ion battery and can be branched into Rint
model, PNGV model, Thevenin model, RC first-order tran-
sient model and RC second-order transient that is also called
Dual Polarization (DP) model [9]–[13].

Studies are ongoing to achieve faster battery charging as
the main drawbacks that face Lithium-ion batteries during
charging are the slow charging rate, the unpredictable effect
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on the battery performance, and the energy loss [12]. The
challenge is to speed up the battery charge without affect-
ing its electrochemistry [14]. Charging strategies can be
categorized into three main techniques: 1) pulse charging
technique [12], 2) constant current-constant voltage (CCCV)
technique, and 3)multi-stage charging current technique [15].

Pulse charging technique is mainly based on an appro-
priate selection of the current waveform parameters, how-
ever, the difficulty in choosing the appropriate parameters for
pulses [12] and the very low switching duty cycle [16] could
be considered as limitations. On the other hand, the constant
current-constant voltage (CCCV) technique represents the
standard charging method because of its easy implementation
and simple requirements. CCCV methodology is based on
charging the battery by a constant rated charging current until
the voltage reaches the cut off value and then the voltage
is held constant while the current decays to the minimum
value. This causes an increase in the charging interval time,
consequently, resulting in an unoptimized charging [12].

In multi-stage charging current technique, the battery
is charged by a multi-stage of different currents and the
lifetime extends without a degradation impact [12]. Many
algorithms and techniques have been implemented for
multi-stage constant current charging of the lithium-ion bat-
tery in Table 1 such as Particle Swarm Optimization (PSO)
based Fuzzy Logic, Consecutive Orthogonal Arrays, Cor-
recting Slope Iteratively, Taguchi Approach, Ant Colony
algorithm (ACA), Optimal charge pattern (OCP), Balance of
Internal Consumption and Charging Speed, Particle Swarm
Optimization (PSO), Negative pulse, Boost-charging, and
Dynamic programming algorithm.

Previous researchers used various methodologies to
study the charging process, such as the type of model
used, the charging time or/and the energy consumption,
the charging efficiency performance, the charging capac-
ity, and the no. of tests used, which are summarized in
Table 1.

Meta-heuristic algorithms presented in the previous table
such as Particle Swarm Optimization (PSO) [16], [17] and
Ant Colony algorithm (ACA) [21] operate based on a com-
bination between rules and mimic animal behavior in the
natural environment. PSO simulates a bird predation behavior
belongs to the swarm intelligence algorithm. The particles
move in the search-space and communicate with the rest of
the swarm during the exploration. ACA is inspired by the
supervision of a real set of artificial cooperative ants that used
pheromone deposited on graph edges in solving the problems
and exchanging information [21]. Each algorithm has been
used in Table 1 has its approach, objective function and own
parameters included from the equivalent circuit model of the
lithium-ion battery.

In this study, the analysis of several techniques based on
the Cuckoo optimization algorithm (COA) to optimize the
total energy consumption and battery charging interval time
to reach the full capacity limit is obtained. COA has been

TABLE 1. Multi-stage constant charging current comparison between the
proposed algorithm (cuckoo optimization algorithm (COA)) and other
algorithms presented in the literature survey.
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TABLE 1. (Continued.) Multi-stage constant charging current comparison
between the proposed algorithm (cuckoo optimization algorithm (COA))
and other algorithms presented in the literature survey.

implemented using the second-order transient equivalent cir-
cuit model after measuring all the parameters.

II. LITHIUM-ION BATTERY EQUIVALENT CIRCUIT
MODELLING
RC second-order transient equivalent circuit model (DP
model) in Fig. 1 represents the transient behavior of the
polymer lithium-ion battery. The DP model has proved to
be the closest circuit model that can be used to explain the
performance and behavior of lithium-ion batteries [4].

FIGURE 1. The proposed RC second-order transient equivalent model of a
lithium-polymer battery.

The RC second-order transient model consists of three
main sectors [25]–[28]: open circuit voltage OCV , which
depends on the battery state of charge, internal resistances
including the ohmic internal resistance (Ri), the electro-
chemical polarization internal resistance (Rα) and the con-
centration polarization internal resistance (Rβ ) and lastly,
the internal capacitances such as the electrochemical polar-
ization capacitance (Cα) and the concentration polarization
capacitance (Cβ ).

The electrical behavior and relationship between the circuit
components [26] and can be expressed as follow
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where, Iλ is the total current of the present stage λ, ICαλ is
the stage current passes through the electrochemical polariza-
tion capacitance (Cα), ICβλ is the current passes through the

concentration polarization capacitance (Cβ ) and 1t is the
change in interval time.

The detailed calculations of the OCV and the internal
parameters of the proposed polymer lithium-ion battery are
explained in the following sections.

A. OPEN CIRCUIT VOLTAGE (OCV)- STATE OF
CHARGE (SOC) METHOD
There are various methods to estimate SOC. The first method
is the Open Circuit Voltage (OCV) which is used to measure
the voltage at the required SOC percentage, however, precise
relaxation time should be taken into consideration [29]–[31].
Secondly, the Coulombs Counting method that relies on
the current integration is depending on a controlled sensor,
however, a regular calibration should be done to avoid any
error [32]–[37]. The last one is the machine learning method,
which is based on the reliability of the collected data and
includes the following: the artificial intelligent [38]–[40], the
support vector machines algorithm (SVM) [41], [42] and the
Kalman filter family methods that rely on the state-space
model, however, the machine learning method has a poor
performance in transients [43]–[49].

SOC with a low percentage of error is required to optimize
the energy loss, the interval time required to charge the bat-
tery, safety usage, and battery management. The integration
of the Coulomb Counting method represented in (3) with
the OCV method has proved to cause no critical side effects
during normal battery operation [25], [31], [35].

SOCλ = SOCλ−1 ±

(
η ×

∫ τ
t0
Iλ−1.dτ

CRate

)
× 100% (3)

where ± the positive sign for charging and negative sign for
discharging, SOCλ is the state of present charging stage λ,
Iλ−1 is the current of the battery at stage (λ − 1), η is the
coulomb coefficient and it is constant =1 for discharging
and =0.98 for charging and CRate is the rated capacity of the
battery (Ah).

The procedures of SOC estimation using the integration
between the coulomb counting method and the OCV method
are presented in the flow chart of Fig. 2(a). The proposed
procedures are implemented to draw the relationship between
OCV compared to SOC at room temperature 25◦C using NI
myRIO-1900 as shown in Fig. 2(b).

B. INTERNAL PARAMETERS OF THE PROPOSED BATTERY
MODEL
The values of the proposed battery equivalent circuit model
have been calculated based on the battery terminal potential
difference during the discharging current pulses. The dis-
charging current pulses have been implemented in a short
interval time of 20 s with a 600 s relaxation period before
and after the applied current pulse [25], [27]. Fig. 3. shows
specific voltages and times during the discharging pulses
which are used to calculate the internal parameters of the
lithium-polymer battery.
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FIGURE 2. Illustrates (a) the procedures of the OCV-SOC test method and
(b) the relation between OCV-SOC of the lithium-polymer battery cell at
room temperature 25◦C.

By applying a discharging current pulse 0.2A on the used
polymer lithium-ion battery, the ohmic internal resistance Ri,
the electrochemical polarization internal resistance Rα and
the concentration polarization internal resistance Rβ have
been calculated after 1 s, 10 s, and 18 s respectively [25]. The
equations given in [26] have been used to calculate the inter-
nal resistances and capacitances and have been illustrated in
the appendix. The relationship between the internal param-
eters of the proposed battery model and SOC are presented
in Fig. 4.

III. DERIVATION AND LIMITATIONS OF THE FAST
CHARGING FITNESS FUNCTION
A. DERIVATION OF THE FAST CHARGING FITNESS
FUNCTION
To reach the battery’s full capacity with a minimum charging
interval time and energy consumption, an objective function

FIGURE 3. Discharging current pulse sample graph measured by NI
myRIO during the interval time 20 s at room temperature 25◦C.

(fitness function) should be minimized. The energy loss for
the proposed RC second-order transient equivalent circuit can
be expressed as follow

E .L.(J ) =
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where N is the total number of constant current charging
stages and Tλ is the total time of current charging at the
stage λ.
By considering the interval change in time of the system

is 1t = 1s and the change of SOC is 1SOC = 1%,
the charging interval time for each stage will be expressed
as Tλ (sec) = (36/Iλ) from (3).

The objective function intended in this study stated in (5)
was obtained by using (1), (2), (3), and (4).

Min.Objective Function

=

ω1 ×

SOCλ∑
SOCλ−1=1

N∑
λ=1

{I2λRi 36Iλ .
}

+

{(
Iλ

{
1− e

−1t
RαCα

1t
RαCα

}
− Iλ−1

{
1− e

−1t
RαCα

1t
RαCα

− e
−1t
RαCα

}

− ICαλ−1

{
e
−1t
RαCα

})2

Rα
36
Iλ

+

Iλ

1− e
−1t
RβCβ

1t
RβCβ


−Iλ−1

1− e
−1t
RβCβ

1t
RβCβ

− e
−1t
RβCβ


VOLUME 8, 2020 140489



P. Makeen et al.: Experimental and Theoretical Analysis of the Fast Charging Polymer Lithium-Ion Battery

−ICβλ−1

{
e
−1t
RβCβ

}2

Rβ
36
Iλ




+

[
ω2 ×

N∑
λ=1

(
(SOCλ − SOCλ−1) ∗ 36

Iλ

)] (5)

where ω1 is the weighting factor of the total energy loss and it
could be adjusted from 0 to 1 andω2 is the weighting factor of
the total required charging interval time where ω2 = 1− ω1.

B. LIMITATIONS OF FAST CHARGING ALGORITHMS
1) CUT OFF VOLTAGE OF EACH STAGE (Vc−oλ)
Every battery has a charging cut-off voltage which should
not be exceeded to guarantee the battery from damage, over-
charging and to ensure a better lifespan [23]. The proposed
polymer lithium-ion battery should not exceed the maximum
permitted voltage for each stage which can be expressed by
Vc−oλ ≤ 4.25.

2) THE MAXIMUM PERMITTED CHARGING CURRENT OF
EACH STAGE (Iξλ)
The charging current should not exceed a security thresh-
old value. The security threshold value can be presented
as a relationship between the charging constant current
(0.05A - 1A) and the charging interval time [24]. To avoid
the overcharging and the damage of the battery, the maximum
permitted charging current that ensures the voltage of the
charging battery does not exceed the cut-off voltage can be
described as:

Iξλ =

1 Tλ ≤ 2, 480 sec
−Tλ
6000

+ 1.413 Tλ > 2, 480 sec
(6)

where Iξλ is themaximum permitted charging current for each
stage and Tλ is the charging interval time of stage λ.

C. THE PROPOSED CUCKOO OPTIMIZATION
ALGORITHM (COA)
Cuckoo Optimization Algorithm (COA) has been imple-
mented on the proposed RC second-order transient equivalent
circuit to determine the optimum charging interval time and
the optimum energy loss during charging. COA is superior
to various optimization algorithms (genetic algorithm, parti-
cle swarm, ant colony, . . . etc) for the multimodal objective
functions due to the robust to dynamic changes and broad
applicability [50]–[52].

Cuckoo Optimization Algorithm (COA) is inspired by the
behavior life of a species of birds called Cuckoo. This tech-
nique is mainly the form of grown cuckoos and eggs. Grown
cuckoos put their eggs in the nests of various birds as they
have two probabilities: 1) the first is that the host bird kills
the eggs, and 2) the second is that the eggs are not killed and
recognized by the host bird and grow up and become a grown
cuckoo [52], [53]. The cuckoo optimization algorithm tends

FIGURE 4. The relationship between the internal parameters of the
proposed battery model (a) The ohmic internal resistance Ri , (b) The
electrochemical polarization internal resistance Rα , (c) The concentration
polarization internal resistance Rβ , (d) The electrochemical polarization
capacitance Cα and (e) The concentration polarization capacitance Cβ
corresponding to SOC during an interval discharging pulse 20 s at room
temperature 25◦C.

to find the best habitat for all cuckoos where there is a high
opportunity for eggs to grow up. The best suitable habitat will
be the target for cuckoos in other societies [52], [54].
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FIGURE 5. Presents (a) The flowchart of the cuckoo optimization
algorithm (COA) and (b) The procedures performed to implement the
proposed multi-stage charging current methodologies.

The procedures of using the proposed Cuckoo Opti-
mization Algorithm (COA) are explained by the flowchart
in Fig. 5(a) illustrating each step including the initial

population (Cuckoo’s Habitat), Laying Eggs Style, Immigra-
tion of Cuckoo, Eliminating Cuckoos, and the convergence
criteria. Furthermore, the steps performed to implement the
proposedmulti-stage charging currentmethodologies are pre-
sented in Fig. 5(b).

IV. RESULTS AND DISCUSSION
Apolymer lithium-ion battery has been selected as a test case.
A detailed specification of this battery is given in Table 2.

TABLE 2. Specifications of the selected polymer lithium-ion battery.

Multi-stage fast charging methodologies have been imple-
mented on the polymer lithium-ion battery to reach full
capacity (SOCλ = 100%) as illustrated in Fig. 6, which can
be categorized into two main scenarios: the first scenario is
the standard CCCV methodology and the second scenario is
Multi-Stage Charging Current methodology (MSCC) based
on Cuckoo Optimization Algorithm (COA). COA is simu-
lated using MATLAB (R2017a, The MathWorks Ltd, Natick,
MA, USA).

FIGURE 6. The proposed scenarios of charging the lithium-polymer
battery.

A. CONSTANT CURRENT-CONSTANT VOLTAGE (CCCV)
APPROACH
CCCVmethodology is the standard technique for any battery
charging. It is performed on the polymer lithium-ion battery
by applying a constant current 1 A until the voltage reaches
the cut-off value (4.25 V) and then the voltage is held constant
while the current decays to the minimum value of 0.05 A.
This methodology took 7,100 s (1.9722 h) till the battery
reached its full capacity (0 to 100% SOC) of 4.1785V after a
relaxation time 10,800 s (3 h) as shown in Fig. 7(a).

B. MULTI-STAGE CHARGING CURRENT BASED CUCKOO
OPTIMIZATION ALGORITHM (COA)
Multi-stage charging current methodologies have been
applied on the polymer lithium-ion battery, and it is divided
into two main scenarios based on the conditional boundaries
of the currents as follow:
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FIGURE 7. Relationship between different charging methodologies for
polymer lithium-ion battery at room temperature 25◦C (a) The standard
CCCV methodology, (b) Multi-stage charging current methodology based
on HT and (c) Multi-stage charging current methodology based on CRT.

1) HIERARCHICAL TECHNIQUE (HT)
The first scenario called Hierarchical Technique (HT) which
has been obtained by applying a hierarchical stepping
down variable constant currents during the charging process

FIGURE 8. The maximum error declaration between experimental and
simulated voltage results for both HT and CRT at room temperature 25◦C
respectively.

Iλ ≤ Iλ−1 corresponding to the experimental measured volt-
age of the battery as presented in Fig. 7(b).

Based on the Hierarchical Technique (HT), the battery
reached full capacity (0 to 100% SOC) in 5,815 s (1.6153 h)
and based on the dynamic behavior and relaxation theory of
batteries, the capacity of the battery reached 97% (4.107 V)
after a relaxation time of 10,800 s (3 h).

By applying HT based on COA, the total energy con-
sumed during the charging process was reduced by 7.783%,
the total charging interval time was reduced by 18.1% and
the efficiency was improved by 8% based on (7), (8) and (9)
respectively compared to CCCV methodology test [17].

ESaved =
E .L.CCCV − E .L.Propsed

E .L.CCCV
× 100 (7)

Treduced =
TCCCV − TPropsed

TCCCV
× 100 (8)
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TABLE 3. A detailed comparison between the CCCV methodology and the
proposed scenarios based on COA at room temperature 25◦C.

ηimproved =

(
Cdisproposed
Cchpropsed

−
CdisCCCV
CchCCCV

)
∗ 100 (9)

where ESaved is the energy saved, Treduced is the reduced
charging interval time, Cdisproposed is the discharging capacity
of the proposed technique, Cchpropsed is the charging capacity
of the proposed technique and ηimproved is the improved effi-
ciency of the proposed charging technique.

2) CONDITIONAL RANDOM TECHNIQUE (CRT)
The second scenario was based on the conditional random-
ness of the cuckoo optimization algorithm which chooses
the values of the stage current lying within the boundaries

declared in section 4 and presented in Fig. 7(c). The bat-
tery reached its full capacity (0 to 100% SOC) in 5,506 s
(1.5294 h), but based on the dynamic behavior and relaxation
theory of batteries, the capacity of the battery reached 97%
after a relaxation time of 10,800 s (3 h). The energy consump-
tion saved by the Conditional Random Technique (CRT) is
10.408%, the timewas reduced to 22.45%, and the efficiency
was improved by 14.1%.

The proposed previous two techniques improved the effi-
ciency of the fast charging of the polymer lithium-ion battery
with minimum energy loss and less interval time with respect
to the previous data presented in the literature. The maximum
error between the experimental and simulated voltage results
of the two scenarios (HT and CRT) is presented in Fig. 8. The
maximum error of the proposed RC second-order equivalent
circuit model reached 2.3%. The maximum error between
the experimental and simulated charging voltages has been
calculated by:

3 (%) =
MExperiment −MSimulation

MExperiment
∗ 100 (10)

where 3 is the percentage of error andMExperiment−MSimulation
is the difference between the maximum experimental and
simulated voltage points respectively.

Detailed results obtained from the previous techniques
include charging stage current, charging interval time for each
stage, total charging time for all the process, and the total
energy loss presented in Table 3. As shown, the proposed
techniques based on COA and the simulation-based on the
RC second-order transient circuit have a good impact on
the interval time and the consumed energy of the charging
process.

TABLE 4. The results of changing the weights of energy loss and charging interval time.
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3) ANALYSIS OF THE WEIGHTING FACTORS
In furtherance of the foregoing, each weight of the energy
loss and charging interval time changed in (5) to vary from
0 to 1 where ω1+ω2 = 1. Any change in energy loss weight
ω1 or the charging interval time weight ω2 will result in a
different combination of five constant currents with different
charging interval times based on COA as shown in Table 4.

Based on the relationship between the current of each
stage, the interval time of each stage and the conditional con-
straints/boundaries, any change in the weight of energy loss
or in the charging interval time will not affect the charging
capacity based on COA.

COA rearranges the data and searches for the optimum
solution to minimize energy loss and charging interval time
based on the objective function regardless of the weighting
factor as explained in Table 4.

V. CONCLUSION
An intelligent optimization technique based on the Cuckoo
Optimization Algorithm (COA) was applied in this study.
COA was implemented on an objective function used for
the fast charging of the polymer lithium-ion battery with
minimum energy consumption and minimum charging inter-
val time. The proposed algorithm was applied to a dynamic
model based on the RC second-order transient equivalent cir-
cuit. A comparison between two implemented techniques and
CCCV methodology was performed yielding the following
results: 1) Hierarchical Technique (HT) reached its full capac-
ity (0 to 100% SOC), caused a reduction in both the charging
interval time and energy loss by 18.1% and 7.783% respec-
tively and improved the efficiency by 8 %, 2) Conditional
Random Technique (CRT) reached its full capacity (0 to
100% SOC), caused a reduction in both the charging interval
time and energy loss by 22.45% and 10.408% respectively
and improved the efficiency by 14.1%. The maximum error
between the proposed simulation model and the experimental
work is 2.3%. The proposed techniques prove that whenever
the weight of energy loss or charging interval time is changed,
new currents and interval times will be regenerated to opti-
mize the fitness function.

APPENDIX
The internal parameters of the proposed second-order tran-
sient equivalent circuit have been illustrated and calculated
from [25], [27] as follow:

(a) The ohmic internal resistance Ri calculated just after
1 s of applying a discharging current pulse 0.2A. The values
of ohmic internal resistance have been calculated by the
immediate voltage and discharging current according to (1A)
for each change in the state of charge (1SOC) = 5%

Ri =
VBA − VB
IDischarging

(1A)

(b) The electrochemical polarization internal resistance Rα
has been calculated after 10 s of applying a discharging cur-
rent pulse 0.2A. It depends mainly on the voltage difference

within a short period of 9 s. The electrochemical polarization
internal resistance has been measured for each change in the
state of charge (1SOC) = 5% by

Rα =
VB − VC
IDischarging

(2A)

(c) The concentration polarization internal resistance Rβ
has been determined after 18 s of applying a discharging
current pulse 0.2A for each change in the state of charge
(1SOC) = 5% by

Rβ =
VC − VD
IDischarging

(3A)

(d) The electrochemical polarization capacitance Cα has
been calculated by (4A) for each change of state of charge
(1SOC) = 5%

Cα =
9I

(VC − VB) ln
(
VC
VB

) (4A)

(e) The concentration polarization capacitance Cβ has
been calculated by (5A) for each change of state of charge
(1SOC) = 5%

Cβ =
8I

(VD − VC ) ln
(
VD
VC

) (5A)
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