
1

Non-Contact Human Gait Identification through
IR-UWB Edge Based Monitoring Sensor
Soumya Prakash Rana∗, Student Member, IEEE, Maitreyee Dey, Student Member, IEEE,

Mohammad Ghavami, Senior Member, IEEE, and Sandra Dudley, Member, IEEE

Abstract—Non-contact sensors are negating the use of wear-
ables or cameras and providing a rewarding and accepting
environment to assist in biomedical applications such as, physi-
ological examinations, physiotherapy, home assistance, rehabili-
tation success determination, compliance and health diagnostics.
In this study, physiological parameter identification of human
gait has been demonstrated through an edge based sensor and
heuristic approach. Impulse radio ultra-wide band (IR-UWB)
pulsed Doppler radar has been employed with a focus on human
walking patterns. This work extracts an individual’s gait trait
from associated biomechanical activity and differentiates the
lower limb movement patterns from other body areas via a
radar transceiver. It is observed that Doppler shifts alone are
not reliable to detect human gait because of frequency shifts
occurring across the entire body (including, breathing, heartbeat,
and arm movements) where movement occurs. Thus, a heuristic
spherical trigonometrical approach has been proposed to aug-
ment radar principles and short term fourier transformation
(STFT) to identify the gait trait precisely. The experiment
presented includes data gathering from a number of male
and female participants in both ideal and real environments.
Subsequently, the proposed gait identification and parameter
characterization has been analysed, tested and validated against
popularly accepted smartphone applications where the errors are
less than 5%.

Index Terms—Gait, Impulse Radio Ultra-Wide Band (IR-
UWB), Edge Based Sensor, Pulsed Radar, Spherical Trigonom-
etry, Doppler Signature, Short Term Fourier Transformation
(STFT).

I. INTRODUCTION

HUMAN gait is a complex mechanism [1] where dif-
ferent muscles coordinate to create human locomotion.

Motional events are characterized by parameters such as step
frequency, step length, stride length, cadence, walking speed,
and the total traversed distance within a certain observation
time, etc which can identify and analyse motion. The most
commonly used technologies for human gait analysis are ultra-
sound, infrared video, video, floor sensors, wearable sensors,
etc. [2]. These technologies involve the measurement, de-
scription, and assessment of kinetic and kinematic parameters
that define human gait [3]. Gait events and musculoskeletal
functions are quantitatively determined and applied in sports,
physiotherapy, home assistance, rehabilitation, health diagnos-
tics, and biometric recognition fields [4], [5]. Additionally
in some areas human gait analysis is employed to improve
athlete performance [6], monitor patient healing progress [7],
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help in cases of Parkinson’s disease [8], [9], and recognize
individuals through their unique walking pattern [10]. Two
types of evaluation are performed to define lower limb move-
ment of a person; subjective (carried out by observing the gait
pattern in a clinical environment), and objective (carried out
by modern techniques and devices). Objective evaluation is a
more accurate evaluation and it reduces the error in parameters
caused by subjective observation.

Modern gait analysis technologies are classified into three
groups; non-wearable sensors (NWS), wearable sensors (WS),
and hybrid methods (combination of NWS and WS). NWS
systems include image processing employing fixed sensors
placed on the ground with surrounding cameras for data col-
lection. Subsequently, the gait parameters are extracted from
image or video frames by filtering or segmentation [11], [12].
Other forms of NWS gait analysis examples are conducted
with motion capture sensors [13] and force plates [14] in
controlled laboratory observation settings. These systems are
effective to determine foot pressure, but unable to measure
the components of that pressure [15] and can require a large
amount of pressure to be applied for activation, thus may be
unsuitable for elderly or weaker patients. For instance, Force
Sensitive Resistors (FSR) only produce event detection infor-
mation or contact timing [16], [17], [18] between the leg and
ground which is significant characteristic in pathological gait
analysis [19], it does not provide kinematic or spatial swing
phase information. Also, this type of NWS systems is limited
by immobility, price, and operational cost issues. Gait analysis
by WS uses sensors placed at the hips, feet, etc. to assess gait
characteristic [20]. The widely used WSs are force sensors
(FS), accelerometers, gyroscopes, extensometers, goniometers,
electromyography, and active markers, etc. Electromechanical
device accelerometers are also used to measure the static or dy-
namic acceleration force on the feet due to the gravity where,
gyroscopes are utilized to determine the orientation or angular
velocity of the stance or swing leg during gait. Subsequently
provides individual spatio-temporal information which can be
integrated and synchronized to impart parameters related to
trajectory of foot during walking [21]. Some of the researchers
have also developed their own algorithm for gait event de-
tection from accelerometer and gyroscope data e.g., adaptive
thresholding has been employed to obtain angular velocity
from gyroscopes [22] and peak has been detected to identify
heel-strike and toe-off from angular velocity signals [23].
Ground Reaction Force (GRF) is another important parameter
in gait analysis and determined by FS. It measures the amount
of force applied to a human body by the ground during motion.
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Goniometers are used to study the knees, ankles, hips, and
metatarsals including the measure of angle between foot and
ankle [24]. Both GRF and goniometer sensors are placed in
shoe soles for experiments [25]. Muscle force is also used
to characterize gait, which is estimated from electromyogram
(EMG) signals [26]. Recently, hybrid clinical gait analysis
systems such as, CONTEMPLAS [27], Tekscan [28] have been
developed where NWS and WS sensors are used. Continuous
Wave (CW) radar systems have also been employed to analyse
human gait for biological studies and biometric authentication
system [29], [30], where time varying Doppler signatures
are measured to quantify human gait. The drawbacks of
current systems make this field highly engaging and fruitful
for further research. NWS systems, although more accurate,
need expensive controlled laboratory conditions to isolate from
external factors. Clothing can affect gait parameters collected
from NWS and WS systems, restricting their success. Image
processing based works are limited by participant’s clothing,
which affects gait parameters detection, and force researchers
to work on image segmentation method rather than significant
gait parameters. It adds the overhead complexity and reduces
the real-time reading opportunities.

A. Contribution

UWB pulsed radar has been chosen for this study. This
scheme has several advantages over other typical narrow-
band communication systems such as large bandwidth, short
pulse, RF levels that are safe to use, and high resolution,
making it suitable for biomechanical applications [31]. Short
duration UWB pulsed radar is time modulated and can be
individualized. These short duration pulses are less sensitive
to multiple reflections making the system robust and resistive
within multipath environments [32], [33]. The superior pene-
tration properties of UWB signals limit the effect of clothing
and other obstacles e.g. walls. It has the capacity to work with
low signal to noise ratios (SNR) enabling it to detect moving
objects in hostile environments. This paper describes for the
first time, the use of pulsed UWB to identify and filter gait
patterns from other simultaneous biomechanical activities such
as heartrate, breathing, and arm movements. The contributions
of the paper are as follows:
• For the first time a three-dimensional spherical trigono-

metric based theory has been proposed and implemented
alongside IR-UWB and STFT to identify parameters
which can define a person’s gait trait.

• The proposed work has been realized in both ideal (ane-
choic chamber) and normal environment to demonstrate
its efficiency and robustness.

• The resulting gait parameters (walking speed, leg orien-
tation, and traversed distance) have been validated via
popular smartphone applications to prove the correctness
of the outcomes.

The remaining sections of the article are organised as
follows; the laboratory set-up and UWB data acquisition are
detailed in Section II; This section focuses on the proposed
methodology and provides details on the time-frequency anal-
ysis by STFT and related radar principles, with experimental

results provided in Section III. Section IV concludes the paper
and provides future research directions for this innovative
work.

II. METHODS

A schematic of the proposed study is shown in Figure 1.
Here, both ideal (anechoic chamber) and real environments are
considered. Initially, the radar is configured and the raw radar
scan data are acquired through a radar application program
interface (RAPI). Radar module is also configured to retrieve
detection information from the environment.
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Fig. 1: Schematic diagram of the proposed system.

A. Laboratory Set-up

A Time Domain PulsON 410 ranging and communications
module (P410 RCM) and P410 monostatic radar module (P410
MRM) are used for this and previous work by the team [34],
[35], are shown in Figure 3a. The device is a UWB monostatic
pulsed Doppler radio transceiver. The architecture utilizes two-
way time-of-flight (TW-TOF) range measurement techniques
and is used here as hybrid ranging radio and a radar sensor
device to non-intrusively measure the human gait. The P410
MRM uses monostatic radar module with omni-directional an-
tennas. The device has been configured before data collection
and the same configuration has been maintained for both the
chosen (tested) environments. The device configuration has
been detailed in Table I. It transmits RF from lower limit
of frequency fL = 3.1 GHz to upper limit of frequency
fU = 5.3 GHz, with the centre frequency at fC = 4.3 GHz,
and bandwidth of (fU − fL) = (5.3− 3.1) GHz = 2.2 GHz.
According to the definition of UWB systems [36], the frac-
tional bandwidth of a device should be more than 50%, in case
of P410 device, fU−fL

fC
= 5.3−3.1

4.3 = 51.16%, which follows
Federal Communications Commission (FCC) restrictions [37]
for power. Transmission power to the antenna port is spec-
ified as -12.64 dBm for safe RF transmission, which abides
with FCC regulations [37]. The scan time window for this
experiment is 87.84 nanoseconds (ns) long, but the first 5 ns
of the waveform contains noise because of the direct path
interference between transmitter and receiver antenna, thus
the waveform during the first 5 ns is filtered out. The scan
interval is set to 25000 µs. The received reflected waveforms
are sampled in steps of 61 picoseconds, which results in a
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sampling frequency fs = 16.39 GHz, with a Pulse Repetition
Interval (PRI) of approximately 100 ns.

TABLE I: Parameter setting of the experiment.

Parameter Values

Center frequency 4.3 GHz
Frequency range 3.1 GHz to 5.3 GHz
Scan window 88 nanoseconds
Scan interval 25000 microseconds
Sampling frequency 16.39 GHz
Pulse Repetition Interval (PRI) 100 nanoseconds (approx)
Transmit gain -12.64 dBm
Radar area coverage upto 10 meter
Number of antennas one Tx and one Rx

Ambient operating temperature between 0◦ to 70◦

B. Data Acquisition

Fifteen human participants were engaged in the data col-
lection process. Full ethical approval (Reference Number:
Eng 01Dec2017) was gained from London South Bank Uni-
versity, where the research code of practice and ethical guide-
lines are governed by the university ethics panel (UEP).

Length of thigh

Length of shank

Length of leg

Height

Fig. 2: The measured body parts for subjective knowledge
collection.

All procedures performed in this study were done so in
accordance with the ethical standards of the institutional
and/or national research committee and with the 1964 Helsinki
declaration and it’s later amendments or comparable ethical
standards. Initially, gender and anatomical information (height,
length of the limbs) have been recorded for each individual
as shown in Figure 2. The measured body proportions have
been listed in Table II. Ideal (in anechoic chamber) and multi-
path/normal (in laboratory) both the environments have been
used for the data collection. These two environments are
shown in Figure 3b and 3c.

C. Data Processing

The non-stationary and multi-component radar signal from
moving subjects are analysed in this section. All the collected
human movement signals have been processed by spherical
trigonometry, radar principles, and short term fourier trans-
formation (STFT). A flow chart of this work is provided in
Figure 4. Here, the height at which a physiological action
takes place has been used to differentiate between lower

TABLE II: Subjective data related to fifteen individuals.

No Gender Height
(m)

Leg length
((m)

Thigh length
(m)

Shank length+
heel height (m)

1 Female 1.58 0.85 0.43 0.42
2 Female 1.54 0.83 0.42 0.41
3 Female 1.64 0.88 0.45 0.43
4 Female 1.73 0.93 0.47 0.46
5 Female 1.62 0.87 0.44 0.43
6 Female 1.71 0.91 0.46 0.45
7 Female 1.69 0.91 0.46 0.44
8 Male 1.67 0.88 0.45 0.43
9 Male 1.76 0.91 0.46 0.45
10 Male 1.71 0.88 0.45 0.43
11 Male 1.72 0.88 0.45 0.43
12 Male 1.64 0.84 0.42 0.42
13 Male 1.78 0.92 0.47 0.45
14 Male 1.79 0.92 0.46 0.46
15 Male 1.78 0.92 0.47 0.45

and upper body areas. In addition, the orientation of the
lower limb has been identified by azimuth or angle of arrival
(AoA) calculations. Radar principles have been applied to
the pulse waves back-scattered from lower limbs (covers the
motion of thigh and shank) to determine the range, walking
speed, step length, and total traversed distance. Subsequently,
STFT has been performed to derive parameters such as, step
frequency and step phase of human gait. The description of
the theoretical background has been established and presented
in the following subsections.

D. Azimuth and Elevation Angles

To assist in the differentiation of body areas, azimuth
and elevation angles are considered. Figure 5a and 5b
show the elevation angle at a particular time, where
∆OAB, ∆OAB′, ∆OCB, and ∆OCB′ are drawn from
the received pulsed radar waveform. Here, O is considered
as the radar receiver, which is fixed at a point of height
OP from the ground. Therefore, BC and CB′ represent the
height of a moving object from the radar line of sight (LOS)
OA. The moving body section is elevated from the radar
LOS at an angle θ and below the LOS at an angle θ′. Here,
∆OAB ∼= ∆OAB′ and ∆OCB ∼= ∆OCB′, therefore the
height BC and CB′ can be determined from the trigonometric
relationships. Only the calculation of BC from ∆OAB is
explained. Let, the angle between BC and OB be α. The
travelled distances are OA, OB, and OB′ in propagation
delays t1, t2 and t′2 by the pulses, where t1 > t2, t1 > t′2 and
OA > OB, OA > OB′. Therefore, the change of distance is
(OA−OB) = ∆d, the change of time is (t1− t2) = ∆t, and
speed of light or pulse is c. Therefore, pulse can travel the
distance in ∆t is BC = ∆× c. From the trigonometric ratio
in right triangle ∆OCB,

cosα =
BC

OB
⇒ BC = OB × cosα

⇒ α = cos−1
[

∆t× c
OB

] (1)
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(a) UWB P410 radar module. (b) Anechoic chamber. (c) Normal environment.

Fig. 3: UWB device and the environments during data collection.
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Fig. 4: The flow of processing UWB data and extracting gait
information.

Therefore, if the height of a moving object from ground at
a particular time is h then,

h = |OP −OB × cosα| (2)

This calculation has same outcome when t1 < t2, t1 < t′2
and OA < OB, OA < OB′.

(a) Gait towards radar

(b) Gait away from radar

(c) Azimuth during the Gait

Fig. 5: Elevation and azimuth angle during the gait.

Figure 5c displays the calculation of azimuth angle to
determine the position or orientation of moving limbs towards
the radar. The spherical system measures azimuth angle in
a counter clockwise direction from the exact north of the
receiver is denoted by φ. Let, the moving limb be deviated
at an angle φ, where the travelled distances are XY and XW
in propagation delay t1, t2. So, the change of distance is
(XY − XW ) = Y Z at the time interval (t1 − t2) = ∆t.
The object is deviated from the exact north of the receiver.
Now, Y Z is approximately equivalent to the arc YW created
by the object at angle φ. Therefore, φ is calculated from the
radian measure, and equivalent degree conversion is,

φ =
Y Z × 360◦

XY × 2× π
(3)
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E. Range and Velocity

The height of leg movement has been identified by the de-
veloped trigonometric calculations when, the leg length of an
individual is known. But, the lower arms can obscure parts of
the thigh in motion. Thus, the lower leg (shank) movement has
been considered here as a target to determine gait parameters.
The target range,R is determined by the round-trip time of the
received waveform. Therefore, the range of the moving object
is evaluated using R = c4T

2 by measuring the time delay
where, c = 3× 108 meter/ seconds is the speed of light, and
4T is the propagation delay(s). The velocity of moving object
is obtained from the measurement of the Doppler frequency
shift with the help of track information which is found from
the radar measurements of the target location over a period
of time. Thus, the velocity of an object is determined by
fd =

2vp
λ where, fd is the difference between the frequency

of transmitted and received wave or Doppler shift, vp is the
radial component of the velocity, and λ is the wavelength
of the transmitted wave. The range R decreases when the
person comes closer to the radar and fd increases and vice
versa [38]. Therefore, if the range at t1 and t2 time are R1

and R2 respectively then, the change in distance or range is
(R1−R2) which, describes the distance covered by the shank
in (t1 − t2) time, and maximum change of distance by the
shanks is the step length of a stride. The change in range
(R1 − R2) has been summed up each time for shanks to get
the total distance covered by an individual.

F. STFT

As the spectral content of the UWB radar generated wave-
forms are non-stationary, applying the discrete Fourier trans-
form (DFT) over a long window does not reveal transitions
in the movement behaviour. To solve this issue, we can apply
the DFT over short periods of time for which the radar signals
can be considered as stationary. This can be observed as a
time-frequency trade-off. The DFT of the windowed radar
waveform is defined as:

S(m, k) = S(m,ω) |ω= 2π
N k

=
∑∞
n=−∞ s(n)w(n−m)e−jωn |ω= 2π

N k

=
∑∞
n=−∞ s(n)w(n−m)e−j

2π
N kn (4)

Where s(n) is the received sequence obtained from the
corresponding environment of the experiment sampled at fs,
w(n − m) is the window function starting at discrete time
m,ω = 2πf is the angular frequency with discrete values of
ω = 2π

N k. Here, we are using the Hamming window length
of 40 (experimentally fixed) which is characterised by the
following equation:

w(n) = 0.54− 0.46 cos(
2πn

N − 1
) (5)

The discrete STFT [39] is used to create a collection of
sequences, each corresponding to the frequency components
of s(n) falling within a particular frequency band which
corresponds to a certain activity or physiological signal.

G. Signal to Noise Ratio

The radar takes a period or Scan Training Period (STP) to
determine the background noise before any detection occurs.
The background noise strength Pnoi is measured from the
received waveforms during STP. The received signal strength
Psig while detection occurred is determined with the help
of radar detection information. The signal to noise ratio
(SNR) [38] is defined as the ratio of the power of a received
signal and the power of background noise using SNR =

Psig
Pnoi

.
Here, the SNR is function of transmitter gain and receiver gain
in decibels (dB).

Pseudo-code of the entire process has been provided to
demonstrate the execution steps of the proposed study in
Algorithm 1 where, the associated theoretical background has
been detailed in Section II-F to II-G.

Algorithm 1 Pseudo code of proposed method
Require: Configure radar module (using Table 1)
Require: Scan data from RCM & MRM module

1: Total number of scans = NoS
2: Number of datapoints per scan = DPS

3: Array of raw amplitudes = Ramp

4: Detection flag = Dflag

5: Array of detection index = Dinfo

6: Speed of light c = 3× 108 meters/second
7: Length of leg of a person = LoL
8: Length of thigh of a person = LoT
9: Length of shank of a person = LoS

10: for all Scan = 1 to NoS do
11: if Dflag == TRUE then
12: Take Ramp & Dinfo

13: Two way time of flight for first detection t1 = 0
14: Two way time of flight for next detection t2 = 0
15: for all Dinfo = 1 to Length of Dinfo do
16: if Dinfo == 1 then
17: t1 = Dinfo × 61 picoseconds
18: else
19: t2 = Dinfo × 61 picoseconds
20: end if
21: Initial range R1 = c×t1

2
⇐ Section II-E

22: Range for t2 delay R2 = c×t2
2
⇐ Section II-E

23: Determine height h⇐ Equation 2
24: Determine Azimuth φ⇐ Equation 3
25: end for
26: if (hmin ≥ 0)&&(hmax ≤ LoS) then
27: Scan backscattered from Shank
28: do STFT on Ramp to get frequency ⇐ Section II-F
29: end if
30: end if
31: end for
32: Tabulate average of gait parameters
33: Plot gait route from Doppler effect

H. Validation

Three obtained parameters have been validated via popu-
lar smartphone applications. The parameters, walking speed,
traversed distance during observation period, and lower limb
orientation have been compared with the outcomes of ac-
celerometer sensor, Samsung health application, and gyro-
scope sensor. Each participant has been asked to walk, carrying
two smartphones and turning on these applications during their
walking phase in both the ideal and normal environment. The
accelerometer delivers the linear acceleration, Samsung health
application delivers covered distance within fixed time, and the
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gyroscope provides azimuth, pitch, and roll information. The
average velocity of an individual has been determined from
the average acceleration provided by accelerometer and used
for validation purpose against the UWB method. The distance
covered within 30 seconds by an individual has been compared
with the distance determined by Samsung health application.
This work doesn’t provide the left and right side information
thus, the absolute of azimuth (positive or negative) provided
by gyroscope sensor has been employed for validation purpose
of azimuths measured by the proposed work.

III. RESULT ANALYSIS

Physiological movement data have been accumulated and
studied through the proposed spherical trigonometric system
(described in Section II-D) which augmenting radar principles
(described in Section II-E). Further, the height of the reflected
pulses has been determined and subsequently, the recorded
anatomical measurements (of Table II) have been used to
identify pulsed waveforms back-scattered from different areas
of the body. As the focus of this paper is on gait parameter
identification the pulses reflected within the height of shank
and thigh have been considered for each participant. However,
arm swinging and walking are two interrelated physiological
events where, arms cover some portion of legs below the waist
creating some the redundancy to distinguish between the arm
and thigh. Also, the shank reflects the standard osteometrics
better than thigh, therefore the movement of shank has solely
been considered for characterizing an individual’s gait pattern.
The pulsed waveforms back-scattered from shank has been
transformed by using STFT to determine the frequency of an
event that occurs for the movement of shank. The waveforms
reflected above the shank and thigh obviously include other
physiological actions such as, arm movement, heart rate and
breathing patterns and they have been filtered out here. Thus,
the height of body section has been considered to discriminate
the gait from other bio-mechanical activities. The participants
have been asked to walk at different paces (i.e., slow, medium,
and fast) in ideal and normal environment both for testing the
proposed work and corresponding results have been presented
in the following sections.

A. Results from Anechoic Chamber

The pulses backscatter from the human body when in-
dividuals walk back and forth in front of the radar. These
pulsed waveforms have been processed in following manner
as shown in Figure 4, if a pulsed wave or signal has been
identified as reflecting from shank then considered for further
processing otherwise it’s discarded. The first pulse of each
signal reflecting from shank has been transformed by STFT
characterizing the step movement of human gait. Figure6
shows the frequency of lower leg movement obtained from the
proposed STFT for an observation time of 2 seconds when
preferred walking speed of participants are at fast, medium
and slow pace. The results for both female and male have
been included here. The figure shows the repetitive movement
of shanks which demonstrates the step frequency of human
gait. Figure 6a and 6b show the step frequency at a fast
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(a) Female walking at fast pace.
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(b) Male walking at fast pace.

0 0.6 1.3 2

Observation Time (Seconds)

0

1

2

3

F
re

q
u

en
cy

 (
H

z)

(c) Female walking at medium
pace.
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(d) Male walking at medium
pace.
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(e) Female walking at slow pace.
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(f) Male walking at slow pace.

Fig. 6: Shank movement frequency of participants walking at
different pace obtained through UWB radar in ideal environ-
ment.

walking pace which reaches up to 3.9 Hz for females and 4
Hz for male participants. Figure 6c and 6d displays the shank
movement at medium walking pace which results approxi-
mately 3 Hz for both female and male participants. Figure 6e
and 6e demonstrates step frequency of approximately 2 Hz at
slow walking pace for the participants. The variation of step
frequency occurs when the participants reach at one end of test
bed and walk slowly to turnaround. For example, Figure 6a
shows approximately 3.9 Hz initially but it decreases to 3.2
Hz when the person reached to the one end of test bed and
needed to slow down the walking speed. The step phase or the
swing phase also has been determined (1/step frequency) from
step frequency and detailed in Table III for all participants.

The relation between SNR and range is plotted in Figure 7
for two female and male participants. The noise figure is
evaluated from the STP and SNR is measured from the scans
with the help of detection information and logarithmic relation
is found between SNR and range.

The route of participant’s gait has been determined from
Doppler effect. The Doppler shift fd (described in SectionII-E)
has been calculated during the observation time and plotted
to check the gait route of a person. The identified signals
from shanks have been processed through STFT and plotted
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(a) 1st female participant. (b) 2nd female participant.

(c) 1st male participant. (d) 2nd male participant.

Fig. 7: SNR and range relationship in the ideal environment
during movement.

in Figure 8 as received over time. The upside and downside
of Figure 8a, 8b, 8c, and 8d specify the nearest and furthest
point from radar during a walk two female and two male
participants. Therefore, x-axis represents the increment of
time with received signals. The total distance traversed by an
individual has been obtained from summing up the changes in
range during the locomotion in front of the radar.
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(a) 1st female participant.
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(b) 2nd female participant.
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(c) 1st male participant.
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(d) 2nd male participant.

Fig. 8: Movement patterns on test bed in anechoic chamber.

Table III includes the average gait parameters obtained
from the experiment for human participants in anechoic cham-
ber/ideal environment. Seven parameters have been calculated
from the proposed experimental data to define the human gait.
The parameters such as, step phase (Sp), step length (Sl),

cadence (Ca), stride length (STl), walking speed (Ws), and
lower limb orientation (Lo) have been determined along with
step frequency (Sf ), and total traversed distance (Td). The
step period or step phase has been calculated by estimating
period of step frequency (i.e., gait period=1/gait frequency).
The maximum change in distance by the shanks describe the
step length. Cadence is the number of ’revolutions per minute’
(RPM) i.e., the number of steps per minute has been estimated
from the gait frequency (i.e., cadence= step frequency×60).
Walking speed has been obtained from the frequency shift
(described in Section II-E) for each human subject. The angle
of arrival (AoA) or azimuths of pulses are calculated from
the range and propagation delay (Eq.3) in spherical polar
coordinates, providing a clear indication of the orientation of
the moving lower limb (shank) with respect to the radar.

TABLE III: Results of gait analysis from ideal environment.

No Sf
(Hz)

Ws

(m/s)
Ca

(c/min)
Sl
(m)

Sp
(s)

STl
(m)

Td
(m)

Lo
(0)

1 3.033 1.527 181.892 0.501 0.329 1.002 45.603 1.833
2 3.050 1.522 182.783 0.498 0.328 0.997 45.608 1.714
3 3.003 1.500 180.030 0.499 0.333 0.999 45.000 1.888
4 3.144 1.564 187.759 0.521 0.347 1.042 46.910 1.876
5 2.954 1.469 176.398 0.489 0.326 0.979 44.072 1.762
6 3.271 1.629 195.532 0.542 0.361 1.085 48.852 1.954
7 2.815 1.400 168.026 0.466 0.310 0.932 41.980 1.679
8 3.018 1.499 179.986 0.499 0.333 0.999 44.968 1.798
9 2.990 1.489 178.790 0.496 0.330 0.992 44.669 1.786

10 3.181 1.584 190.151 0.527 0.351 1.055 47.508 1.900
11 3.193 1.589 190.749 0.529 0.353 1.059 47.657 1.906
12 2.898 1.440 172.810 0.479 0.319 0.959 43.175 1.727
13 3.040 1.514 181.779 0.504 0.336 1.009 45.416 1.816
14 3.025 1.504 180.583 0.501 0.334 1.002 45.117 1.804
15 3.122 1.554 186.563 0.517 0.345 1.035 46.611 1.864

1) Result validation for Anechoic Chamber: Figure 9 dis-
plays the comparison of proposed consequences with the
outcomes of smartphone sensors and applications. Figure 9a
illustrates comparison of individual’s velocity obtained from
anechoic chamber. The error has been found approximately
3%. Orientation of lower limb is also a important characteristic
for human locomotion which, has been compared in Figure 9b
for anechoic environment. The errors found is negligible in
this case. The traversed distance by an individual in this
environment has been shown in Figure 9c. The errors are
approximately within 5%.

B. Results from Multipath Environment

This section describes the results obtained from the real
or normal environment, i.e. the laboratory room environment.
To remain consistent, the same participants who participated
in anechoic chamber scenario have been involved again.
The waveforms back-scattered from shanks have been distin-
guished from other bio-mechanics activity in the same way as
before. Figure 10 shows the frequency of lower leg movement
attained from proposed STFT for the observation time of
2 seconds when the walking speed of participants was in
fast, medium and of a slow pace. The figure illustrates the
repetition of shank movements when the persons walk on the
test bed. Figure 10a, 10c, and 10e show the step frequency of
female participants at different walking pace. Figure 10b, 10d,
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Fig. 9: Commercial and UWB method comparison of gait parameters identified by proposed method and obtained from
smartphone applications in ideal environment.

and 10f demonstrates the shank movement of males at different
walking paces. The step frequency and walking speed are
interrelated process thus, fast walk results in a greater number
of steps and vice versa.
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(a) Female walking at fast pace.
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(b) Male walking at fast pace.

0 0.6 1.3 2

Observation Time (Seconds)

0

1

2

3

F
re

q
u

en
cy

 (
H

z)

(c) Female walking at medium
pace.
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(d) Male walking at medium
pace.
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(e) Female walking at slow pace.
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(f) Male walking at slow pace.

Fig. 10: Shank movement frequency of participants walking
at different pace obtained through UWB radar in multi-path
environment.

Therefore, the step frequency or the number of steps in
one minute reaches up to 4 Hz (240 steps/minute) during fast
walk and approximately 2 Hz (120 steps/minute) during the
slow walk for both female and male. The discrepancy of step
frequency for a person has been found when the participant

reaches one end of test bed and walk slowly to take a turn to
continue their walk. The step phase has been calculated (1/step
frequency) from step frequency and detailed in Table IV for
all participants.
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(d) 2nd male participant.

Fig. 11: Relationship between SNR and range in multi-path
environment during gait.

The relation between SNR and range in real environment is
plotted in Figure 11 for two female and male participants. The
noise figure is evaluated from the STP and SNR is measured
from the scans with the help of detection information and
logarithmic relation is found between SNR and range.

The route of participant’s gait has been determined from
Doppler effect like the experiment of anechoic chamber. The
Doppler shift fd (described in SectionII-E) has been measured
during the observation time and plotted to check the route of a
human walk in normal environment. Thus, the identified scans
from shank have been plotted as received by time in Figure 12.
The top and bottom of Figure 12a, 12b, 12c, and 12d specify
the nearest and furthest point from radar respectively. These
figures illustrate the repetitive route of a participants walk.
Table IV includes the average of parameters obtained from
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(b) 2nd female participant.
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(c) 1st male participant.
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(d) 2nd male participant.

Fig. 12: Movement patterns on test bed in normal environment.

the experiment in normal or laboratory environment. The
parameters of gait have been determined by following the same
way in case of ideal environment.

TABLE IV: Results of gait analysis from multipath environ-
ment.

No Sf
(Hz)

Ws

(m/s)
Ca

(c/min)
Sl
(m)

Sp
(s)

STl
(m)

Td
(m)

Lo
(0)

1 2.881 1.444 172.636 0.500 0.347 1.005 43.162 1.926
2 3.033 1.520 181.898 0.497 0.329 0.993 45.447 2.933
3 2.831 1.413 169.545 0.500 0.355 1.001 42.393 2.771
4 3.176 1.582 190.268 0.561 0.398 1.123 47.572 3.108
5 3.200 1.594 191.706 0.565 0.401 1.132 47.932 3.132
6 2.946 1.467 176.507 0.521 0.369 1.042 44.132 2.883
7 3.160 1.574 189.321 0.558 0.396 1.118 47.336 3.093
8 3.147 1.568 188.542 0.556 0.394 1.113 47.141 3.080
9 2.886 1.438 172.906 0.510 0.362 1.021 43.231 2.825
10 2.863 1.426 171.523 0.506 0.359 1.013 42.885 2.802
11 3.064 1.526 183.564 0.541 0.384 1.084 45.896 2.999
12 3.308 1.648 198.218 0.585 0.415 1.170 49.560 3.238
13 2.980 1.484 178.550 0.527 0.373 1.054 44.642 2.917
14 3.110 1.54 186.326 0.550 0.390 1.100 46.587 3.044
15 2.918 1.454 174.847 0.516 0.366 1.032 43.717 2.856

1) Result validation for multipath environment: Figure 13
shows the comparison of proposed outcomes with the out-
comes of smartphone sensors and applications. Figure 13a
demonstrate comparison of individual’s velocity obtained from
and normal environment respectively where the error has been
found less than 3%. Orientation of lower limb has been com-
pared in Figure 13b. The traversed distance by an individual in
normal environment has been presented in Figure 13c where
the error is within 5%.

C. Discussion

There are several human gait analysis techniques present in
the literature aimed to parameters that identify and analyse

bipedal human gait. But, most of whether wearable and non-
wearable techniques such as, sensors and cameras are included
and had been employed with the help of expensive laboratory
setting to identify and recover gait disorders. However, limited
number of gait parameters had been obtained and could
increase the number by including very function specific instru-
ments which makes human subjects uncomfortable sometimes.

The work aims to propose an efficient, non-contact, and non-
intrusive UWB gait identification technique by understanding
of spherical trigonometry and radar principles heuristically. In
this study a comprehensive framework has been developed to
identify different types of person’s walking pattern without
hampering their privacy and comfort. A number of healthy
human walking pattern involved for data accumulation in two
type of environments (ideal and real). Due to the complexity
of radar signals of human gait, a new theory has been
developed. Further all the different walking style (male and
female) towards and away from the radar has been evaluated.
The rigorous analysis made this gait identification system
robust and precise. Additionally, the obtained outcomes of this
investigation have been tested and validated to prove this study
which makes this method a powerful and productive human
gait detection method that would be able to work even in harsh
environments. This would open the door to clinical studies,
security, health monitoring and many more perspectives.

IV. CONCLUSION & FUTURE WORK

This paper presents the first ever description and experimen-
tal demonstration of a non-contact pulsed UWB sensor system
to identify and extract human gait from other simultaneous
bio-mechanic actions such as, arm swing, breathing and heart
rates. A UWB radar sensor with in-house developed algo-
rithms is used for data collection and processing. These signals
are processed by STFT with fundamental radar principles
employed to extract gait parameters including walking speed,
step length, step phase, that define the quality and type of
locomotion of a person. Also, important parameter such as
distance travelled is evaluated which is effective for long term
gait and mobility quality monitoring. The results show the
effectiveness and advantages of pulsed UWB radar to analyse
the quality of movement in an autonomous way. Research
is currently underway to include - (i) stance (posture), joint
angles, and duration of stops, (ii) leg/arm swing and stance
times to understand/recognise abnormal gait patterns e.g.,
scissors, steppage, waddling, and propulsive gait.
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