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ABSTRACT 25 

Purpose: To investigate the joint-specific contributions to the total lower extremity joint work 26 

during a prolonged fatiguing run. Methods: Recreational long-distance runners (RR; n = 13) 27 

and competitive long-distance runners (CR; n = 12) performed a 10-km treadmill run with near-28 

maximal effort. A three-dimensional motion capture system synchronized with a force-29 

instrumented treadmill was used to calculate joint kinetics and kinematics of the lower 30 

extremity in the sagittal plane during the stance phase at 13 distance points over the 10-km run. 31 

Results: A significant (P < 0.05) decrease of positive ankle joint work as well as an increase 32 

of positive knee and hip joint work was found. These findings were associated with a 33 

redistribution of the individual contributions to total lower extremity work away from the ankle 34 

towards the knee and hip joint which was more distinctive in the RR group than in the CR 35 

group. This redistribution was accomplished by significant (P < 0.05) reductions of the external 36 

ground-reaction force (GRF) lever arm and joint torque at the ankle and by the significant (P 37 

< 0.05) increase of the external GRF lever arm and joint torque at the knee and hip. 38 

Conclusion: The redistribution of joint work from the ankle to more proximal joints might be 39 

a biomechanical mechanism that could partly explain the decreased running economy in a 40 

prolonged fatiguing run. This might be because muscle-tendon units crossing proximal joints 41 

are less equipped for energy storage and return compared to ankle plantar flexors and require 42 

greater muscle volume activation for a given force. In order to improve running performance, 43 

long-distance runners may benefit from an exercise-induced enhancement of ankle plantar 44 

flexor muscle-tendon unit capacities. 45 

Key Words: LOCOMOTION, RUNNING MECHANICS, JOINT TORQUE, ANKLE 46 

JOINT, LEVER ARM, RUNNING ECONOMY  47 



INTRODUCTION 48 

Long-distance running is one of the most popular recreational activities in the world and is 49 

often performed with competitive effort. High-performance runners differ from less successful 50 

ones mainly in terms of the energy demand for a given submaximal running velocity, with 51 

lower steady-state oxygen uptake indicating better running economy (1). Running economy is 52 

a useful predictor of endurance running performance, which depends on a complex interplay 53 

of factors such as the runner’s training level, environment, anthropometric parameters, 54 

physiology, and biomechanics (1). From a biomechanical perspective, running economy can 55 

be related to spatio-temporal running characteristics (2), kinetics of the center of mass (CoM), 56 

joint kinematics, and the tendons’ capacity to store and return elastic energy (1,3,4). However, 57 

no biomechanical parameter alone can explain the complexity of human running economy 58 

(2,5). 59 

Severe modifications of the running style, such as exaggerated knee flexion during the 60 

stance phase (i.e., Groucho running), substantially reduce running economy by increasing 61 

oxygen uptake (6). Reduction of running economy also occurs during sustained long-distance 62 

runs performed until exhaustion (7,8). Fatigue, defined as exercise-induced reduction in the 63 

ability to generate muscle force or power due to changes in the neural drive or exhaustion of 64 

contractile function (9), can cause a decline in running velocity and changes in spatio-temporal 65 

running characteristics and spring-mass behavior (10). However, whether these changes occur 66 

when the running velocity is kept constant (as for instance during running on a treadmill) is 67 

currently not clear (11–14). Furthermore, despite one study indicating that knee flexion angle 68 

at foot contact and mid-stance may be more flexed due to exhaustion on a treadmill (15), most 69 

reports show relatively constant hip, knee, and ankle joint kinematics during prolonged 70 

fatiguing treadmill runs (13,16). This appears to be independent of the performance level of 71 



runners performing a 10-km treadmill run to volitional exhaustion at a velocity approximating 72 

their 10-km race pace (17). 73 

Only a few studies have examined the effects of exhaustion on running kinetics during 74 

constant-velocity runs. In general, vertical ground-reaction force (GRF) and leg stiffness 75 

decrease during exhausting running, whereas vertical stiffness tends to be rather constant 76 

(11,14,18,19). However, considerable inter-individual differences seem to exist in the fatigue-77 

induced changes in running kinetics (18,19). It is surprising that most reports investigating 78 

exhausting running have focused on CoM kinetics, although it is known that CoM work is the 79 

result of a complex interaction of the joint work done by individual muscles, especially at the 80 

lower extremity (20,21). A joint-specific view allows to describe the individual contributions 81 

of different muscle groups to the total work of the lower extremity (22–24).  82 

Negative work is facilitated by forcefully stretching activated muscle fascicles or 83 

passive elastic structures within the muscle-tendon unit. Positive work originates from active 84 

shortening of muscle fascicles or the return of potential strain energy previously stored within 85 

passive elastic structures (25,26). Among the different muscle groups of the lower extremity, 86 

the ankle plantar flexors are one of the main contributors to total joint work of the lower 87 

extremity during running (20–22). It is notable that the relative contribution of ankle plantar 88 

flexors does not seem to alter, even when the running velocity is changed (20–22). However, 89 

other observations have identified an age-related proximal shift of the individual joint 90 

contributions in walking and running in older adults. This is represented foremost by a reduced 91 

ankle joint contribution which seems to be due to a reduced ankle plantar flexor muscle strength 92 

compared to other more proximal muscle groups (27–30). This indicates that changes in the 93 

contractile properties of the lower extremity muscles may lead to modifications in the joint-94 

specific contribution during human locomotion, including running. The literature provides 95 

indications towards an altered joint-specific contribution in response to running-induced 96 



fatigue. For example, the maximal muscle strength of hip and knee extensors, and ankle plantar 97 

flexors have been demonstrated to decrease after long-distance running, especially following 98 

ultra-marathons (31–33). Specifically, running a half marathon, intensive treadmill running 99 

over 2 hours or a 5-km run have shown to decrease the isometric ankle plantar flexor muscle 100 

strength (34–36). 101 

The triceps surae muscle (TS) is the main plantar flexor of the foot and consists of the 102 

soleus and the biarticular gastrocnemius. The relatively short muscle fascicles and pennate 103 

architecture of the TS (37,38) allow it to generate force at a lower metabolic cost than longer 104 

fibered muscles such as the knee extensors (25). This facilitates an efficient energy storage and 105 

return within the long Achilles tendon (26). Theoretically, greater energy storage and return 106 

would reduce the work needed to be done by the muscle fascicles during the propulsion phase 107 

in running and therefore improve running economy (39). This effect has been confirmed in a 108 

study that demonstrated that an increase of the ankle plantar flexor muscle strength by 109 

resistance training could reduce oxygen uptake and thus increase running economy (3). 110 

Furthermore, well-trained distance runners with a good running economy show greater ankle 111 

plantar flexor muscle strength and greater tendon-aponeurosis stiffness than runners with lower 112 

running economy (4). 113 

Although it is known that there are differences in individual joint contributions during 114 

running, no studies have investigated if and how joint-specific work is altered over the course 115 

of a prolonged fatiguing run (especially when performed at constant velocity) and whether 116 

there are differences between recreational and competitive runners. The current study therefore 117 

aimed to investigate the joint-specific contributions to the total lower extremity joint work 118 

during a prolonged fatiguing run in recreational and competitive long-distance runners. The 119 

primary hypothesis was that a long-distance run with near-maximal effort would change the 120 

work contributions of the lower extremity joints, characterized by a reduction of work at the 121 



ankle joint. A secondary hypothesis was that recreational runners would experience greater 122 

running-induced reduction of ankle joint work than competitive long-distance runners. The 123 

results of the present study might improve our understanding of fatigue-related alterations in 124 

running mechanics and reductions in running economy in prolonged fatiguing runs. 125 

METHODS 126 

Participants 127 

A total of 25 male runners were recruited and separated into two groups based on their 128 

individual long-distance running performance level. The recreational runners (RR) group 129 

included physically active students (n = 13; age 24.3 ± 3.4 years; height 1.84 ± 0.05 m; mass 130 

81.3 ± 7.4 kg) with individual season best times >47:30 min in a 10-km run. The competitive 131 

runners (CR) group included competitive long-distance runners (n = 12; age 24.7 ± 3.8 years; 132 

height 1.82 ± 0.06 m; mass 73.0 ± 7.9 kg) with individual season best times <37:30 min in a 133 

10-km run. Runners with self-reported history of musculoskeletal injury of the lower extremity 134 

in the preceding 12 months were excluded. Each participant signed a written informed consent 135 

prior to the study. The Research Ethics Committee of the German Sport University Cologne 136 

approved this study (No. 102/2017). All procedures were in accordance with the Declaration 137 

of Helsinki. 138 

Experimental protocol 139 

All participants performed a 10-km treadmill run with near-maximal effort (105% of their 140 

individual season best time over the 10-km distance). The near-maximal effort was selected for 141 

safety reasons and to ensure that all participants could complete the task. The average 142 

calculated 105% time was 52:49 ± 2:21 min (approximate running velocity of 3.2 m·s-1) for 143 

the RR group and 37:32 ± 1:17 min (approximate running velocity of 4.4 m·s-1) for the CR 144 

group. The treadmill’s inclination was set at 0% to avoid the effects of gradient on running 145 

kinematics or kinetics. All participants wore light-weight (~0.170 kg) racing flat shoes 146 



(Adizero Pro 4; Adidas AG, Herzogenaurach, Germany). A practice run was performed 7 days 147 

before the actual run to allow participants to familiarize with the racing flat shoe and the 148 

treadmill. All participants stated that they regularly used different kinds of running shoes, 149 

including racing flat shoes. No further footwear adaptation was conducted. Prior to the 150 

treadmill run, the participants performed warm-up exercises with self-determined duration. 151 

During the actual treadmill run the participants were continuously encouraged and kept 152 

informed of the covered distance. 153 

Monitoring of heart rate and rating of perceived exertion 154 

A heart rate monitor (M51; Polar Electro, Kempele, Finland) kept track of the heart rate during 155 

the run to quantify the cardiovascular load. Immediately after the run, the Borg scale was used 156 

for rating perceived exertion (on a scale of 6–20). 157 

Kinematics and kinetics 158 

The kinematics and kinetics were captured with 13 infrared cameras using a three-dimensional 159 

motion capture system (250 Hz, MX-F40; Vicon Motion Systems, Oxford, UK) synchronized 160 

with four multi-axis force transducers (1000 Hz, MC3A-3-500-4876; AMTI Inc., Watertown, 161 

USA) embedded in a single-belt treadmill (Treadmetrix, Park City, USA). Prior to motion 162 

capturing, spherical retroreflective markers (diameter: 13 mm; ILUMARK GmbH, 163 

Feldkirchen/Munich, Germany) were attached to 78 bony landmarks (40). The markers for the 164 

foot were attached at the corresponding positions on the shoe. All marker trajectories and the 165 

GRF data were smoothed using a recursive, fourth-order digital Butterworth filter with a cutoff 166 

frequency of 20 Hz.  167 

A three-dimensional inverse dynamics model of the total body, consisting of 15 rigid 168 

body segments (40, 41), was implemented to calculate the kinematic and kinetic parameters of 169 

the CoM and lower extremity, using custom MATLAB routines (MathWorks Inc., Natick, 170 

USA). Body height and body mass were imported to the model to obtain the inertial properties 171 



for each segment (40,42). Joint torques were expressed in the anatomical coordinate system of 172 

the proximal segment. External GRF lever arms were determined within the sagittal plane and 173 

expressed in the coordinate system of the proximal segment. Lever arms were obtained by 174 

dividing the GRF term of Hof’s explicit joint torque equation (41) by the amplitude of the GRF 175 

vector. A reference trial was recorded in an upright position to determine the neutral position 176 

of all joints (0° joint angle) prior to the beginning of the run. The hip joint center was 177 

determined using the regression equations provided by Bell and co-workers (43). The negative 178 

and positive work at the hip, knee, and ankle joint was calculated over the entire stance phase 179 

by numerical integration of the power-time curve. Positive work was determined by summing 180 

up all positive integrals and negative work by summing up all negative integrals during the 181 

entire stance phase (21). 182 

Parameters 183 

Step length, step frequency, and contact time were assessed for spatio-temporal 184 

characterization of the running. Additionally, various kinematic and kinetic parameters were 185 

determined during the stance phase of the right leg from the sagittal plane for further analysis 186 

over the course of the run. To improve reliability, the data were averaged over 20 stance phases 187 

at each of the 13 distance points (0 km, 0.2 km, 0.5 km, 1 km, 2 km, 3 km, 4 km, 5 km, 6 km, 188 

7 km, 8 km, 9 km, and 10 km). Positive and negative work were calculated for the hip, knee, 189 

and ankle joint. Subsequently, the relative joint-specific contributions to the total lower 190 

extremity joint work were determined. Further, joint kinetic (maximal power and maximal 191 

external torque) and joint kinematic (maximal angular velocity and angle) parameters were also 192 

assessed. External GRF lever arms of all three joints were determined at the instant of maximal 193 

vertical GRF. All kinetic parameters were normalized to total body mass. To describe the 194 

vertical displacement of the total body, the CoM height at touch-down of the foot (CoMTD), 195 

and at the minimal height (CoMmin) during the stance phase were calculated. 196 



Statistical analysis 197 

Two-way repeated-measure analysis of variance (ANOVA) with performance level (RR vs. 198 

CR) as between subject factor was used to analyze the effects of running distance at all 13 199 

distance points. If a significant running distance main effect or interaction effect between 200 

performance level and running distance was detected by two-way ANOVA, a univariate 201 

repeated-measures ANOVA with 78 pairwise post-hoc comparisons using Bonferroni 202 

correction (resulting in an adjusted alpha level of 0.000641) was applied for each group to 203 

determine any significant differences between the various distance points. The values obtained 204 

at the different distance points were compared with the values at the beginning of the run (0 205 

km). All parameters were presented as group means (and standard deviations). Cohen’s d effect 206 

sizes were calculated to explain the strength of an observed effect, using the equation 207 

𝑑𝑑 =
𝑥̅𝑥𝑗𝑗 −  𝑥̅𝑥𝑖𝑖

�𝑠𝑠𝑗𝑗
2 +  𝑠𝑠𝑖𝑖2

2

 208 

with 𝑥̅𝑥𝑖𝑖,𝑗𝑗 as the average and 𝑠𝑠𝑖𝑖,𝑗𝑗2  as the sample variance of different distance points. The 209 

subscript i represented the 0 km distance point. The subscript j represented the different 210 

distance points after the 0 km distance point (0.2 km to 10 km). Effect sizes of ≥0.2 were 211 

considered as small, ≥0.5 as medium, and ≥0.8 as large (44). The partial eta squared (ηp
2) value 212 

was determined to explain the proportion of the total variance between both groups, the running 213 

distance main effect, and the interaction effect between performance level and running 214 

distance, respectively. Cohen (44) suggested norms for ηp
2 as small (0.01), medium (0.06), and 215 

large (0.14). Significance for all statistical procedures was tested at a level of α = 5% (P < 0.05) 216 

using SPSS Statistics 23 (IBM Corp., Armonk, NY, USA). 217 

RESULTS 218 

Perceived exertion after the run was comparable between the two groups (RR: 16.9 ± 1.3; CR: 219 

17.1 ± 1.2), although maximal heart rates were significantly different (RR: 171 ± 14 BPM; CR: 220 



186 ± 10 BPM; P = 0.023, ηp
2 = 0.206) after the 10-km distance. There were significant (P < 221 

0.05) differences between the groups in each of the analyzed spatio-temporal parameters, 222 

which could be related to the different running velocity. However, none of the spatio-temporal 223 

parameters changed significantly over the course of the run in either group. For additional 224 

details, (see Appendix, supplemental Supplemental digital Digital contentContent 1 (SDC 1),) 225 

Tab. 1 -- Group means and standard deviations of heart rate and spatio-temporal parameters; 226 

SDC 1, and Fig. 1 left top -- .Changes in heart rate; SDC 1, Fig. 1 left center -- Changes in step 227 

length; SDC 1, Fig. 1 right center -- Changes in step frequency; SDC 1, Fig. 1 central bottom 228 

-- Changes in contact time). 229 

Joint work 230 

There was a significant (P < 0.05) running distance main effect for all positive and negative 231 

joint works other than the negative ankle joint work. For the joint work, a significant (P < 0.05) 232 

intergroup effect was found only for the negative ankle joint work, with the RR group showing 233 

relatively lower negative hip, knee, and ankle joint work . For additional details,(see Appendix, 234 

SDC 1, Tab. 1 -- Group means and standard deviations of joint work). 235 

The positive joint work of the ankle decreased significantly (P = 0.002, d = 0.88) and 236 

the positive joint work of the knee increased significantly (P = 0.046, d = 0.69) from the 237 

beginning to the end of the run in the RR group (Fig. 1). In the RR group, the positive work of 238 

the ankle joint decreased significantly for the first time at 5 km (P = 0.017) which continued to 239 

decrease up to the end of the run whereas, in the CR group, positive work of the ankle joint 240 

showed a steady modest decrease over the course of the run (Fig. 2). In the RR group, there 241 

was a slight increase in the positive joint work at the knee and hip joint, with statistically 242 

significant (P < 0.05) increase at the knee joint at 2 km, 8 km, and 10 km. The further distance 243 

points between 2 km and 8 km as well as the 9 km were slightly above the level of significance 244 

(P > 0.05). In the CR group, the positive work showed a minor increase at the knee joint, but 245 



did not change at the hip joint (Fig. 2). A significant (P < 0.05) intergroup difference but no 246 

running distance main effect was seen for the total positive work of all three joints (Tab. 1). 247 

Therefore, it is not surprising that the relative joint-specific contributions to the total positive 248 

lower extremity joint work showed changes from the beginning of the run (hip 19%, knee 29%, 249 

ankle 52%) to the end of the run (23%, 33%, 44%) in the RR group but not in the CR group 250 

(beginning of the run: hip 22%, knee 28%, ankle 50% vs. end of the run: 22%, 31%, 47%). 251 

*** insert Figure 1 about here *** 252 

In the RR group, negative joint work was slightly increased at the hip, knee, and ankle over the 253 

course of the run. In contrast, the negative knee joint work of the CR group was only slightly 254 

increased and at the ankle slightly decreased (Fig. 2). There was no running distance main 255 

effect but a significant (P < 0.001) intergroup difference and a significant (P = 0.015) 256 

interaction effect between performance level and running distance for the total negative work 257 

of all three joints. The RR group showed a distinctly higher increase in total negative work of 258 

the lower extremity than the CR group (+9% vs. -1%; Tab. 1). However, the relative joint-259 

specific contributions to the total negative lower extremity joint work remained unchanged in 260 

both groups over the course of the run (RR group: hip 7%, knee 45%, ankle 48% at 0 km vs. 261 

8%, 45%, 47% at 10 km; CR group: 7%, 34%, 59% at 0 km vs. 8%, 36%, 56% at 10 km). 262 

*** insert Figure 2 about here *** 263 

Joint torque and external GRF lever arm 264 

A significant (P < 0.05) running distance main effect was identified for all joint torques, with 265 

significant (P < 0.05) intergroup differences in the knee and ankle joint torques (Tab. 1). In the 266 

RR group, hip joint torque showed a significant (P < 0.05) increase for the first time at 6 km 267 

which continued to increase until the end of the run; in the CR group, hip joint torque showed 268 

a slight nonsignificant increase over the course of the run. In both groups, knee torque increased 269 

slightly and ankle torque decreased slightly over the course of the run (Tab. 1). Significant (P 270 



< 0.05) running distance main effects were seen for the external GRF lever arm of all three 271 

joints (Tab. 1). The external GRF lever arm of the ankle was slightly decreased, while the GRF 272 

lever arm of the knee and hip joint was slightly increased (Fig. 3). 273 

*** insert Table 1 about here *** 274 

*** insert Figure 3 about here *** 275 

Joint angle and angular velocity 276 

We found a significant (P < 0.05) running distance main effect for the maximal knee flexion 277 

angle and for the knee flexion angle at touch-down of the foot. The knee flexion angle at touch-278 

down of the foot increased significantly (P < 0.05) over the course of the run in both groups 279 

(Tab. 2). Additionally, the RR group showed a significant (P < 0.05) increase in the maximal 280 

knee flexion angle and a significant decrease in plantar flexion angle at toe-off over the course 281 

of the run (Tab. 2). A significant (P < 0.05) intergroup difference in the ankle plantar flexion 282 

angle at touch-down of the foot was observed which can explain the difference in foot 283 

positioning at touch-down of the foot (Tab. 2). Maximal ankle dorsiflexion did not change. 284 

Significant (P < 0.05) running distance main effects were seen for maximal knee extension 285 

velocity and for maximal ankle plantar flexion velocity (Tab. 2). In the CR group, the maximal 286 

ankle plantar flexion velocity showed a significant (P < 0.05) increase for the first time at 2 km 287 

which continued to increase until the end of the run (Tab. 2). 288 

CoM kinematics and GRF 289 

Significant (P < 0.05) running distance main effects were found for CoMTD and CoMmin. Both 290 

parameters decreased significantly (P < 0.05) over the course of the run, especially in the RR 291 

group (Tab. 2). Further results can be found in the Appendix For additional results of joint 292 

kinetics, joint kinematics, CoM kinematics, and maximal vertical GRF, please (SDC 1, Tab. 1 293 

-- Group means and standard deviations of joint kinetics, joint kinematics, CoM kinematics, 294 

and the maximal vertical GRF; SDC 1, Fig. 1 right top -- Changes in vertical GRF; SDC 1, Fig. 295 



2 -- Changes in external joint torques and hip flexion angle; SDC 1, Fig. 3 -- Changes in joint 296 

angles; SDC 1, Fig. 4 -- Changes in angular velocities; SDC 1, Fig. 5 -- Changes in center of 297 

mass heights; SDC 1, Fig. 6 -- Changes in joint power).refer to Tab. 1 and Fig. 1–6 of the SDC. 298 

*** insert Table 2 about here *** 299 

DISCUSSION 300 

The purpose of this study was to investigate the joint-specific contributions to the total lower 301 

extremity joint work during a prolonged fatiguing run in recreational and competitive long-302 

distance runners. The primary hypothesis of this study was that a long-distance run with near-303 

maximal effort would change the work contributions of the lower extremity joints, 304 

characterized by a reduction of work at the ankle joint. The joint work magnitudes in the current 305 

study are comparable with the findings of Roy et al. (24). We found a running distance main 306 

effect on the positive and negative work at all three joints, except for negative work at the ankle 307 

joint. The decrease in positive ankle joint work was counteracted by increases in positive knee 308 

and hip joint work. Over the course of the 10-km treadmill run with near-maximal effort, joint-309 

specific contributions to positive work displayed a clear redistribution away from the ankle 310 

towards the knee and hip joints. Therefore, our primary hypothesis can be accepted. 311 

When trying to reveal the potential underlying mechanisms, we found that knee and hip 312 

joint flexion angles slightly increased over the course of the 10-km treadmill run, but the ankle 313 

dorsiflexion angle did not change. Thus, a lower CoM height during the stance phase was 314 

observed, which could be explained by the changes in knee and hip flexion angles. Due to the 315 

lower and more backward positioning of the CoM, the point of force application under the foot 316 

was shifted slightly posteriorly, decreasing the external GRF lever arm of the ankle, but 317 

extending the GRF lever arms of the knee and hip joint (Fig. 4). These alterations in GRF lever 318 

arms could explain the increases in knee and hip joint torques, as well as the decreases in the 319 

ankle joint torque (Fig. 3). 320 



*** insert Figure 4 about here *** 321 

In this study, we found maximal torque magnitudes to be higher at the ankle joint 322 

compared to the more proximal joints during running. In contrast, it has been reported that the 323 

maximal voluntary joint torque of the ankle plantar flexors during isolated strength testing is 324 

smaller than that of the knee or hip extensors (45). Therefore, our findings could suggest that 325 

the ankle plantar flexors might have suffered more from fatigue than proximal muscle groups, 326 

probably because the ankle plantar flexors worked closer to their maximal voluntary joint 327 

torque capacity compared to knee and hip. Several studies have described decreases in maximal 328 

voluntary ankle plantar flexor muscle strength after a 5-km run (36), a half marathon (34), and 329 

intensive treadmill running over 2 hours (35). Furthermore, in ultra-marathons, additional 330 

fatigue effects in knee and hip extensors have been reported (31–33). Nonetheless, the 331 

contraction velocity and joint ankle configuration are different between isometric strength 332 

testing and running. Future studies should integrate more sophisticated, non-isometric strength 333 

tests utilizing running-specific contraction conditions in order to resolve joint-specific 334 

reductions in force generation capacities after fatiguing runs.  335 

The finding that maximal ankle torque and positive work decline during a 10-km 336 

treadmill run with near-maximal effort seems counterintuitive given the positive characteristics 337 

of ankle plantar flexor muscle-tendon unit work for running economy. Our results show that 338 

the reduced ankle joint work output was compensated by more positive work at the knee and 339 

hip joints, especially for the RR group. This redistribution of positive work towards more 340 

proximal muscle groups might lead to a greater metabolic cost. This is because these proximal 341 

joint work requirements might be satisfied to a greater extent by work performed by muscle 342 

fascicles as compared to tendon energy storage and return. It can be assumed that, in contrast 343 

to the knee and hip extensor muscle-tendon units, the TS muscle-tendon unit is better equipped 344 

for energy storage and return during running (25,26). Furthermore, shorter muscle fibers reduce 345 



the cost of force generation due to a reduction in muscle volume to cross-sectional area ratio 346 

(46), which therefore is also assumed to be beneficial for running economy (39). The TS has 347 

relatively short fascicles and high pennation angles compared to the knee and hip extensor 348 

muscles (37,38). Consequently, force production of the TS might be metabolically less costly 349 

compared to long-fibred muscles (25). Accordingly, running economy might be reduced when 350 

the TS muscle-tendon unit is less involved in the lower extremity energy exchange, either due 351 

to less work performed by tendon energy storage and return or due to higher muscle volume 352 

activation at the hip and knee joint. Recent results of Holt and co-workers (47) support the 353 

latter explanation. They found that replacing muscle stretch-shortening work with tendon 354 

elastic energy storage and return did not significantly reduce the cost of force production. 355 

However, due to the limitations of the chosen methodology in the current study, these 356 

interpretations are rather speculative and need to be further verified by in vivo assessments of 357 

the behavior of lower extremity muscle-tendon units during prolonged fatiguing running. 358 

The counter effect of a fatigue induced reduction in TS involvement has been confirmed 359 

in a study that demonstrated that an increase in the contractile force of the TS muscle-tendon 360 

unit induced by resistance training could improve running economy (3). Furthermore, well-361 

trained distance runners with high running economy typically show greater TS muscle strength 362 

and greater tendon-aponeurosis stiffness than runners with lower running economy (4). 363 

Previous findings show that running economy substantially reduces when running is performed 364 

with an excessively flexed knee joint, also called Groucho running style (6). The observed 365 

more flexed knee joint angles (maximal and during touch-down of the foot) in the present study 366 

could be a strategy to minimize vertical GRF when running into exhaustion (11). Our findings 367 

are furthermore consistent with the work of Peltonen et al. (48) who postulated that changes in 368 

running technique result from muscle fatigue. Additionally, Derrick and co-workers (15) 369 

assumed that altered kinematics result in increased metabolic costs during the latter stages of 370 



an exhausting run. Based on the current findings, the frequently reported increase in oxygen 371 

uptake during long-distance running (7,8) may partly be caused by the additional metabolic 372 

cost due to the redistribution of work towards more proximal muscle groups potentially because 373 

of TS fatigue. For most parameters in the present study we observed a nearly linear change as 374 

a function of running distance. Future studies should explore whether this behavior can also be 375 

observed for longer running distances or runs with maximal effort or if a rapid alteration in 376 

running mechanics occurs at greater levels of fatigue compared to our 10-km treadmill run with 377 

near-maximal effort. 378 

Due to methodological reasons the present study was performed on a treadmill whereas 379 

distance running is most often performed overground. Previous studies have found that 380 

differences in lower extremity kinematics between overground and treadmill running are rather 381 

small and show inconsistent trends for individual participants, depending on shoe or treadmill 382 

condition (49). However, it can be generalized that running on a treadmill leads to a flatter foot 383 

strike pattern in comparison to overground running (49,50). This could be partly a protective 384 

behavior due to a higher stiffness of force-instrumented treadmills and the associated higher 385 

joint loading (51). Furthermore, treadmill running has shown to increase the maximal knee 386 

flexion angle and decrease knee extension power with no modifications in ankle plantar flexion 387 

power (52). If and to what extent the hard surface of the present treadmill may influence the 388 

redistribution in joint kinetics in comparison to overground running, the effect of different 389 

cushioning shoes or surfaces like bitumen, Tartan, or forest floor should be investigated in 390 

future studies of prolonged fatiguing running. Additionally, an early study suggested that the 391 

energy requirements of the runners could be reduced by running on a treadmill because the 392 

backward motion of the belt assists the runner by moving the supporting leg back during the 393 

stance phase (53). Nonetheless, Riley and co-workers (52) concluded that a treadmill-based 394 



analysis of running mechanics can be generalized to overground running mechanics if the belt 395 

speed is adequately regulated. 396 

When considering our second hypothesis, it is generally accepted that high-397 

performance runners differ from less successful ones mainly in terms of the running economy 398 

and fatigability. Therefore, the second hypothesis of the current study was that the RR group 399 

would experience a greater running-induced reduction of positive ankle joint work than the CR 400 

group. We found a significant (P < 0.05) decrease of the positive ankle joint work of the RR 401 

group for the first time at 5 km (P = 0.017) which continued to decrease up to the end of the 402 

run. However, no change of the positive ankle joint work was found for the CR group. Both 403 

findings allow us to accept our second hypothesis. The tendency (p = 0.126) towards an 404 

interaction between performance level and running distance for positive ankle joint work is an 405 

additional indication. When trying to explain the greater reduction in the positive ankle joint 406 

work of the RR group, we speculate that the RR group suffered more from an ankle plantar 407 

flexor muscle fatigue than the CR group. Thus, the CR group showed a tendency towards a 408 

lower rate of decrease in positive ankle plantar flexor work. This suggests that the CR group 409 

had a higher muscular capacity and attempted to maintain the ankle plantar flexor work as long 410 

as possible. Future studies should directly assess the relationship between the redistribution of 411 

lower extremity joint work and localized ankle plantar flexor muscle fatigue after prolonged 412 

fatiguing runs. Referring to the plantar flexor muscle capacity, an earlier study has shown that 413 

well-trained distance runners have greater ankle plantar flexor muscle strength than less trained 414 

runners (4) which might indicate a specific adaptation to maintain high positive ankle joint 415 

work output in prolonged fatiguing runs. Our results also confirm a significant (P < 0.001) 416 

group difference for ankle joint torque during running and could be due to the different ankle 417 

plantar flexor muscle strength, as well as the dissimilar running velocity. Nevertheless, the 418 

running distance main effect for ankle joint torque in our study was significant (P < 0.001) and 419 



accordingly we found a decrease in ankle joint torque for each group by approximately 5% by 420 

the end of the run compared to the beginning. It is noteworthy, however, that the ankle joint 421 

torque of both groups was similarly decreased even though there are distinct decreases in the 422 

positive ankle joint work.  423 

Considering angular velocity could provide a possible explanation for the different 424 

reduction of positive ankle joint work between the two groups of runners. We found a 425 

significant (P < 0.016) interaction between performance level and running distance for ankle 426 

plantar flexion velocity. From the beginning to the end of the run, increased ankle plantar 427 

flexion velocity (+4%) and knee extension velocity (+7%) were observed in the CR group 428 

which might be a compensation strategy to counteract the reduced ankle torque and to maintain 429 

the positive ankle joint work generation as long as possible (see Appendix, SDC 1, Fig. 4 -- 430 

Changes in angular velocitiesFig. 4). In contrast to the CR group, we did not find this 431 

compensational strategy for the RR group because the ankle plantar flexion velocity did not 432 

change when comparing the beginning with the end of the run. Although, during the first 2 km 433 

of the run an increase of the ankle plantar flexion velocity (+2%) in the RR group was observed, 434 

which could not be maintained until the end of the run  (SDC Fig. 4)(see Appendix, SDC 1, 435 

Fig. 4 -- Changes in angular velocities). Similar to the CR group, the knee extension velocity 436 

was also increased (+6%) over the course of the run in the RR group. Such divergent alteration 437 

of angular velocities between the knee extensors and the ankle plantar flexors may be due to 438 

fatigued biarticular gastrocnemius muscle-tendon units which usually ensure the mechanical 439 

energy transfer between the knee and ankle joint (54,55). Further investigations should 440 

examine if the energy transfer between the knee extensors and the foot changes during 441 

prolonged fatiguing runs and if this change is due to a reduced capacity of biarticular muscle-442 

tendon units. Based on the data in this study, a discussion of increasing the ankle plantar flexion 443 

or knee extension velocity as compensational strategy to maintain positive ankle joint work 444 



and the efficiency of energy transfer between knee and ankle remains highly speculative 445 

without a detailed analysis of muscles and tendon fascicle behavior through e.g. ultrasound 446 

measurements. 447 

Despite dissimilar reductions in positive ankle joint work, the ankle joint torque in both 448 

groups decreased by approximately 5% by the end of the run compared to the beginning. When 449 

considering the minimal changes observed in ankle joint kinematics (< 2° for all parameters) 450 

and therefore internal Achilles tendon lever arm, this suggests that less force was acting on the 451 

Achilles tendon, leading to a lower strain and hence decreasing energy storage in the tendon. 452 

Accordingly, the increase in angular velocity in the CR group must originate from higher 453 

muscle fascicle contraction velocity and not by a faster tendon recoil. We did not find a running 454 

distance main effect for negative ankle joint work, which suggests that the runners were able 455 

to keep the sum of negative muscle fascicle and tendon work relatively constant over the course 456 

of the run. It is known that in unfatigued running, both soleus and gastrocnemius medialis 457 

muscle fascicles undergo nearly constant shortening during the stance phase by operating from 458 

the plateau region towards the ascending limb of muscle force-length relationship (56,57). 459 

Therefore, one could speculate that when Achilles tendon strain and therefore energy storage 460 

is reduced over the course of the run, the TS muscle fascicles stretch-shortening behavior might 461 

have changed as well. More detailed studies should focus on direct measurements of the 462 

lengthening and shortening amplitudes of muscle fascicles and tendinous structures when 463 

running into exhaustion, potentially with the aid of ultrasonography. These experiments could 464 

also consider potential creep effects of tendinous structures, which may attenuate the above 465 

described mechanism. Nonetheless, literature reports are contradictory regarding to the 466 

possible fatigue-related changes in the material properties through a repeated cyclic loading of 467 

the Achilles tendon, e.g. in long-distance running (34,48). 468 

LIMITATIONS 469 



This study has several limitations. First, the individual season best times were self-reported, 470 

and it is possible that the participants did not disclose their actual best times. Second, the 471 

running economy was not directly quantified. Running economy has consistently been reported 472 

to decrease during long-distance runs performed until exhaustion (7,8) and therefore it is very 473 

likely that the participants of the present study also suffered from a reduced running economy. 474 

In addition, we did not use spirometry because we speculated that wearing the spirometer 475 

would affect running mechanics. Third, we did not determine the isometric or isokinetic force 476 

capacities of the leg extensors to quantify the possible alteration of muscular capacity before-477 

after the course of the run. And, fourth, we did not directly quantify the viscoelastic behavior 478 

of tendinous tissues and the contraction patterns of muscle fascicles of the main leg extensor 479 

muscle-tendon units before-after or over the course of the run. 480 

CONCLUSION 481 

Our findings demonstrate that a 10-km treadmill run with near-maximal effort leads to a clear 482 

redistribution of joint work from the ankle to the knee and hip joint in recreational runners. The 483 

reduction in positive ankle joint work and ankle joint torque may be due to fatigued ankle 484 

plantar flexors. This could partly explain the decreased running economy in a prolonged 485 

fatiguing run, because the muscle-tendon units crossing proximal joints are less equipped for 486 

energy storage and return compared to ankle plantar flexors. Furthermore, due to the activation 487 

of the longer muscle fascicles and greater muscle volumes of the more proximal muscle groups 488 

can possibly incur a greater metabolic cost. Therefore, in order to improve running 489 

performance, long-distance runners may benefit from an exercise-induced enhancement of 490 

ankle plantar flexor muscle-tendon unit capacities (TS muscle strength and Achilles tendon 491 

stiffness) to postpone the redistribution of work from distal to proximal joints. 492 
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FIGURE LEGENDS 655 

FIGURE 1: The individual negative and positive joint work of recreational runners (RR; n = 656 

13) and competitive runners (CR; n = 12) at the beginning (0 km) and at the end (10 km) of the 657 

10-km treadmill run with near-maximal effort. Significant differences are represented by *P < 658 

0.05 and **P < 0.01. The values in parentheses show the Cohen’s d effect sizes. 659 

 660 

FIGURE 2: Changes in joint work (means ± standard deviation) over the course of the 10-km 661 

treadmill run with near-maximal effort of recreational runners (RR; n = 13) and competitive 662 

runners (CR; n = 12). The gray area represents the standard deviation of the hip joint work. All 663 

significant differences from the values at the beginning of the run are represented by *P < 0.05 664 

and **P < 0.01. The values in parentheses show the Cohen’s d effect sizes. 665 

 666 

FIGURE 3: Changes in external ground-reaction force lever arm of the hip, knee, and ankle 667 

joint (means ± standard deviation) over the course of the 10-km treadmill run with near-668 

maximal effort of recreational runners (RR; n = 13) and competitive runners (CR; n = 12). The 669 

gray area represents the standard deviation of the external ground-reaction force lever arm of 670 

the knee joint. All significant differences from the values at the beginning of the run are 671 

represented by *P < 0.05. The values in parentheses show the Cohen’s d effect sizes. 672 

 673 

FIGURE 4: Schematic illustration of the stance phase during maximal vertical ground-reaction 674 

force (GRFvert) at the beginning (0 km, unfilled lines) and the end (10 km, black lines) of the 675 

10-km treadmill run with near-maximal effort. GRFvert, joint angles and segment lengths are 676 

not to scale, as also the dashed lines representing external ground-reaction force lever arm of 677 

the hip, knee, and ankle joint. The percentage rates at each joint represent the relative changes 678 

of positive joint work after the 10-km treadmill run of recreational (RR; top value) and 679 



competitive (CR; bottom value) runners. Note: The 10-km treadmill run with near-maximal 680 

effort led to increased knee and hip joint torques as well as a decreased ankle joint torque, 681 

probably due to fatigue of the ankle plantar flexors. The flexion angle of knee and hip joints 682 

increased slightly, but there were no alterations in the ankle joint angle. Hence, the center of 683 

mass (CoMmin) shifted slightly deeper and posteriorly, causing the point of force application 684 

under the foot to shift, thereby modifying the external ground-reaction force lever arms 685 

(decrease at ankle joint and increase at knee and hip joints). The positive joint work 686 

contribution shifted from the ankle joint to proximal joints. 687 

 688 

TABLE 1: Positive (pos) and negative (neg) total joint works, maximal (max) external joint 689 

torques, and external lever arms at maximal vertical ground-reaction force (GRFmax) of lower 690 

extremity joints (mean ± standard deviation) for recreational runners (RR; n = 13) and 691 

competitive runners (CR; n = 12) at the beginning (0 km) and at the end (10 km) of the 10-km 692 

treadmill run with near-maximal effort. Note: Significant differences between 0 km and 10 km 693 

are represented by **P < 0.01. The values in parentheses show the Cohen’s d effect sizes. To 694 

explain the group difference between RR and CR, the partial eta squared (ηp
2) values are 695 

presented, as well as the running distance main effect and interaction effect between 696 

performance level and running distance. 697 

 698 

TABLE 2: Kinematic parameters of lower extremity joints (mean ± standard deviation) for 699 

recreational runners (RR; n = 13) and competitive runners (CR; n = 12) at the beginning (0 km) 700 

and the end (10 km) of the 10-km treadmill run with near-maximal effort during foot touch-701 

down (TD), maximal values (max), maximal vertical ground-reaction force (GRFmax), and toe-702 

off (TO). The center of mass (CoM) height at foot touch-down (CoMTD), and the minimal 703 

height (CoMmin) during the stance phase. Note: Significant differences between 0 km and 10 704 



km are represented by *P < 0.05 and **P < 0.01. The values in parentheses show the Cohen’s 705 

d effect sizes. To explain the group difference between RR and CR, the partial eta squared (ηp
2) 706 

values are presented, as well as the running distance main effect and interaction effect between 707 

performance level and running distance. 708 
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