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Abstract: As an alternative approach, viseme-based lipreading systems have demonstrated promising
performance results in decoding videos of people uttering entire sentences. However, the overall
performance of such systems has been significantly affected by the efficiency of the conversion of
visemes to words during the lipreading process. As shown in the literature, the issue has become
a bottleneck of such systems where the system’s performance can decrease dramatically from a
high classification accuracy of visemes (e.g., over 90%) to a comparatively very low classification
accuracy of words (e.g., only just over 60%). The underlying cause of this phenomenon is that
roughly half of the words in the English language are homophemes, i.e., a set of visemes can map to
multiple words, e.g., “time” and “some”. In this paper, aiming to tackle this issue, a deep learning
network model with an Attention based Gated Recurrent Unit is proposed for efficient viseme-to-
word conversion and compared against three other approaches. The proposed approach features
strong robustness, high efficiency, and short execution time. The approach has been verified with
analysis and practical experiments of predicting sentences from benchmark LRS2 and LRS3 datasets.
The main contributions of the paper are as follows: (1) A model is developed, which is effective in
converting visemes to words, discriminating between homopheme words, and is robust to incorrectly
classified visemes; (2) the model proposed uses a few parameters and, therefore, little overhead
and time are required to train and execute; and (3) an improved performance in predicting spoken
sentences from the LRS2 dataset with an attained word accuracy rate of 79.6%—an improvement of
15.0% compared with the state-of-the-art approaches.

Keywords: deep learning; lip reading; neural networks; speech recognition; robustness; augmenta-
tion; visemes; Gated Recurrent Unit; recurrent neural networks

1. Introduction

The automation of lipreading has attracted a significant amount of research attention in
the last several years. A variety of different approaches have been utilised for classification,
with deep learning-based approaches being particularly popular for lipreading individuals
uttering words and sentences.

Lip movements can be decoded by using a variety of forms, including visemes,
phonemes, characters, and words. Accordingly, each of these forms can provide a different
classification schema for designing automated lipreading systems. Such systems vary
in their capabilities, ranging from recognising isolated speech segments in the form of
individual words or characters to decoding entire sentences covering a wide range of
vocabulary. In some cases, the lexicons can consist of a vocabulary with thousands of
different possible words.

Visemes are the fundamental building blocks of visual speech, and visual speech
recognition is a task of significant importance when audio is unavailable or when there is
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noise, which makes audio speech recognition difficult or even impossible. Using visemes
as classes for automated lip reading has the following advantages:

1. Fewer classes are needed in comparison to the use of ASCII characters, and words
which can reduce computational bottleneck;

2. Pre-trained lexicons are not required. Hence, in theory, a viseme-based lipreading
system can be used to classify words that may have not been presented in the training
phase. This is because visemes can be classified as images where deciphered visemes
can then be matched to all the possible words spoken;

3. They can be applied to different languages because many different languages share
the same visemes.

However, the overall performance of a viseme-based lipreading sentence system has
been significantly affected by the efficiency of the conversion from visemes to words. In
some cases, a high accuracy for visemes classification can be achieved, for instance, in
the work by Fenghour et al. [1]: more than 95.4% accuracy of viseme classification was
achieved; however, the overall accuracy of word classification dropped down to 64.6%.
The underlying cause of this phenomenon is the existential problem whereby one set of
visemes can map to multiple different sounds or phonemes resulting in a one-to-many
relationship between sets of visemes and words. As such, it becomes critical to design
efficient strategies for viseme-to-word conversion in order to develop practically useful
viseme-based lipreading systems.

In this paper, a viseme-to-word converter is proposed for effectively distinguishing
between words that share identical visemes, and its performance is compared with three
other approaches. When compared with other approaches [2–6], the proposed approach is
more robust to the possibility of misclassified visemes in the input, and its robustness is
demonstrated by adding perturbations to the input visemes and comparing the outputs to
the ground truth. Moreover, the converter is integrated within a deep learning network-
based architecture for lip reading sentences and is trained on the LRS2 dataset; it attained
an improved performance of over 15% on other lipreading systems evaluated on the same
corpus such as Ma et al. [7] (a word accuracy of 62.1%) and Fenghour et al. [1].

The four models being compared include an Attention-based GRU (Gated Recurrent
Unit Networks), Perplexity-Iterator, Feed-Forward Neural Network, and Hidden Markov
Model. The rationale behind the comparison of these models is to compare conversion
approaches from three different categories of conversion implementation, discussed in
more detail in Section 2. One of the approaches uses a statistical language model with a
fixed-context window while another of the approaches uses a feed-forward neural network
with a fixed-context window. The other two approaches use neural language models;
however, one of these approaches is known to perform poorly when there are incorrectly
classified visemes as inputs because the predicted output is vulnerable to error propagation.

The best proposed approach has been experimentally verified. It was shown to be
more effective at discriminating between words sharing visemes that are either semantically
or syntactically different. This is because unlike other approaches that only use context
from a fixed-window, the proposed approach uses unlimited context to detect semantic and
syntactic information needed for disambiguation. The proposed approach is also shown to
be somewhat robust to incorrectly classified visemes due to its ability to model both long
and short term dependencies. The novelty of this paper is not any model being proposed
but the application of a model in the domain to solve a new problem in converting visemes
to words and exploiting sufficient context to overcome the one-to-many mapping problem.

The rest of this paper is organised as follows: First in Section 2, a literature review is
provided, describing the general approaches used for viseme-to-word conversion, their
limitations and advantages of the proposed approach, and an explanation of how the
conversion model for the proposed viseme-to-word converter addresses the limitations
of existing converters. Then, in Section 3, all the distinct components that make up the
viseme-to-word conversion process are described, including the following: the principle
of perplexity analysis, the neural network used for performing viseme-to-word conver-
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sion, the data augmentation techniques used for modelling the converter’s robustness to
noise, and the accuracy metrics used to evaluate the performance of the word detector.
In Section 4, the performance of the proposed word converter is discussed and compared
with other approaches, followed by concluding remarks provided in Section 5 along with
suggestions for further research.

2. Literature Review

Viseme-to-word conversion is related to a language model and the various methods
of the implementing a language model. Conversion methodologies used to predict words
from visemes can be grouped into two categories: statistical conversion models and neural
conversion models. This section provides the essential fundamentals of a language model
and the different methods of implementing of a language model in order to analyse how
effective they are when applied in a viseme-to-word conversion model.

2.1. Implementation of a Language Model

A language model is a probability distribution over sequences of words, and it can be
measured on the basis of the entropy of its output from the field of information theory [8].
A language model provides context to distinguish between words and phrases that look
similar when spoken. For example, the phrases “recognize speech” and “wreck a nice
beach” both appear similar when uttered and consist of identical lip movements. The
context of a word in a language model can be deduced by its surrounding words, and
according to the linguist J. R. Firth, “you shall know a word by the company it keeps” [9].

The language model will predict the most likely set of words that was spoken given
the spoken visemes, and the two methods for implementing a language model include
statistical language models and neural models. Statistical language models predict words
based on the preceding words in the sequence according the Markov assumption, whereas
neural language models use deep neural networks.

Algorithms such as Weighted Finite State Transducers(WFSTs) [10] and HMMs [11]
are some examples of statistical conversion models as they implement language models
based on Markov chains or N-grams, which assume that each word in a sentence depends
only on its previous N − 1 predecessors.

Statistical models based on N-grams are limited in comparison to neural models
because they are a sparse representation of language in which model sentences based on
the probability of words in combination and would naturally provide a zero probability
to combinations of words that have not previously appeared [12]. Furthermore, N-grams
fail to accurately predict semantic and syntactic details of sentences [12]. However, one
fundamental problem with N-grams is that they need a large value of N to produce an
accurate language model, which requires a lot of computational overhead.

An N-gram model predicts sequences of words according to the Markov process
where the probability of the next word in a sequence is predicted based on the previous
(N − 1) words. Equation (1) provides the ideal chain rule of probability P to apply to any
language model with a sequence of K words. However, as K increases, the computation
becomes impossible, so statistical language models use the Markov assumption given in
Equation (2).

P(w1, w2, ..., wK) = ∏
i

P(wi|w1, w2, ..., wi−1) (1)

P(w1, w2, ..., wK) = ∏
i

P(wi|wi−N+1, ..., wi−1) (2)

N-grams are an approximation of the Markov assumption, and the problem with
N-grams is that the context is only limited to the preceding N − 1 words (Equation (3)).
Moreover, although one exploits more contextual information by increasing the value of n,
this comes at the cost of increasing the computation of the model [13]. Bigrams language
models will only be able to predict words based on the previous word in a sentence
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(Equation (4)), which in practice is insufficient for disambiguating words sharing identical
visemes.

P(wi|wi−N+1, ..., wi−1) =
count(wi−N+1, ..., wi−1, wi)

count(wi−N+1, ..., wi−1)
(3)

P(wi|wi−1) =
count(wi, wi−1)

count(wi−1)
(4)

One major difference between statistical models and neural models is that whilst the
former treats each word as a fixed representation such as a one-hot-vector [13], neural
models use the concept of distributed representations whereby words are treated as contin-
uous vectors, each with a discrete number of features(each feature represents a semantic
dimension in feature space). This means that words that are semantically similar are closer
together in vector space. Neural models are a dense representation of language that avoid
what is known as the curse of dimensionality [13].

Feed-forward neural networks are an example of a neural conversion model. They
have advantages over statistical conversion models modelling n-grams that use HMMs
or WFSTs in that they are not limited by data sparsity or the inability to learn semantic
and syntactic information, which means that they can even model unseen combinations
of words not observed in training. Modelling unseen word combinations is necessary for
ensuring that the viseme-to-word converter is not limited to predicting combinations of
words only observed in training for any given combination of words.

The output of a feed-forward network at a certain timestep will always be conditioned
on a window of the previous N − 1 outputs, which a softmax layer is applied to. As
observed in Equation (5), the fully connected layer ak (for class k corresponding to one of
N classes) uses only hidden state from the previous n− 1 steps. Increasing the window
size requires more weight parameters, which increases the complexity of the model [13].

P(wt = k|wt−n+1, ..., wt−1) =
eak

∑N
i=1 eai

(5)

However, similarly to N-grams, feed-forward networks still suffer from the funda-
mental problem in that they use fixed-size windows to give context whereby the output
of a timestep is only conditioned on a limited number of previous timesteps. They are
not always able to utilise all the context necessary in exploiting semantic or syntactic
information needed to distinguish between words that share identical visemes.

Recurrent Neural Networks (RNNs) on the other hand are capable of conditioning
the output of a model on all the previous words in a sentence. Equation (6) provides the
expression for the hidden state ht, which is dependent on the current input xt at time t,
and hidden state from the previous step ht−1, which will in turn be dependent on the
output of previous timesteps. The hidden state will, therefore, always be dependent on the
hidden state from all previous timesteps. The output of a particular timestep yt is given
in Equation (7). Unlike the feed-forward network, RNNs are not constrained by sequence
length, and longer sentences have no effect on the weight parameters [14].

ht = H(Wxhxt + Whhht−1 + bh) (6)

yt = Whyht + by (7)

Statistical models predict words according to ratios of counts for sequences of words
within a window of n words according to Equation (8). Neural models with a fixed context
predict words according to the relationship of feature vectors within a fixed window of
n words according to Equation (9). Neural models with unlimited context predict words
according to the relationship of feature vectors for all previous words (Equation (10)).
Figure 1 shows the taxonomy of the different viseme-to-word conversion models. They
can be decomposed into statistical models, neural models with fixed context, and neural
models with unlimited context.
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P(wt|w1, ..., wt−1) =
count(wt−N+1, ..., wt−1, wt)

count(wt−N+1, ..., wt−1)
(8)

P(wt|w1, ..., wt−1) = f (wt|wt−n+1, ..., wt−1) (9)

P(wt|w1, ..., wt−1) = f (wt|w1, ..., wt−1) (10)

Most RNNs used for language modelling take the form of either LSTMs (Long Short
Term Memory Networks) or GRUs because traditional vanilla RNNS are susceptible to the
problem of vanishing or exploding gradients for very long sequences. LSTMs and GRUs
have memory cells to alleviate this problem. A GRU [15] consists of memory cells with
weights W and a function H applied to the input according to Equation (5). Each cell at
a timestep t will have an input gate x, update gate u and reset gate r. All parameters are
updated according to Equations (11)–(14).

ht = u⊗ h̃t + (1− u)⊗ ht−1 (11)

ut = σ(Wxuxt + Whuht−1 + bu) (12)

h̃t = tanh(Wxhxt + Whh(r⊗ ht−1) + bh) (13)

rt = σ(Wxrxt + Whrht−1 + br) (14)

Figure 1. Taxonomy of viseme-to-word conversion models.

GRUs are able to select whether a unit for a timestep should have short or long term
dependency. Reset gates help to capture short-term dependencies while update gates
capture long terms dependencies, and this helps GRUs in ignoring parts of sequences when
needed. The reset gate r and update gate u can be switched on and off by containing values
close to one and zero, respectively, and Equations (15)–(17) have been derived, indicating
how a GRU behaves when the reset and update gate variables approach asymptotic limits.

A GRU behaves similarly to a vanilla RNN when both gates are switched on, as
indicated by Equation (15). When the update gate is switched off, the hidden state gives
more attention to the previous hidden states (Equation (16)), while setting off the reset
gate would cause the GRU to give more attention to the current input at that timestep
(Equation (17)). With this in mind, a GRU-based language model is better at modelling
shorter length dependencies within a sentence for values of r close to zero, which make it
less susceptible to the possibility of compound errors.

lim
(u,r)→(1,1)

ht = (Wxhxt + Whhht−1 + bh) (15)

lim
(u,r)→(0,1)

ht = ht−1 (16)

lim
(u,r)→(1,0)

ht = (Wxhxt + bh) (17)



Sensors 2021, 21, 7890 6 of 28

2.2. Comparison of Viseme-to-Word Conversion Models

Table 1 provides a summary of some of the approaches to two-stage visual speech
recognition that use visemes as the intermediate class. TCD-TIMIT [16], LiLiR [17], RM-
3000 [18], and LRS2 [19] are examples of sentence-based audio-visual datasets that were
used for training and validation which contain videos of different people speaking a variety
of sentences.

In one study by Fenghour et al. [20], a Long-Short Term Memory Network (LSTM) was
used that takes visemes as an input and predicts the words that were spoken by individuals
from a limited dataset with some satisfactory results. This configuration presupposes that
the identities of individual visemes are already known; thus, its robustness to misclassified
visemes has not been verified. Moreover, the sentences that are predicted are often not
grammatically sound in terms of syntax, and many sentences predicted incorrectly have
large grammatical perplexity.

Lan and Harvey [5] classified words from decoded visemes using HMMs with a
bigram language model to predict words once spoken visemes had been classified from
videos of spoken sentences from the LiLiR corpus. Visemes were classified with an accuracy
of 45.67% while the word accuracy achieved was 14.08%.

Thangthai et al. [3] decoded visual speech in the form of both visemes and phonemes
for four different first-stage classification methods whilst using a WFST for the second-
stage conversion when predicting spoken words. Every one of the four systems performed
viseme classification with greater accuracy than phoneme classification. However, a
greater accuracy was observed at the second stage in the word conversion process because
the efficiency in performing phoneme-to-word conversion was higher than that of the
viseme-to-word conversion. The main reason for better results being achieved when using
phonemes instead of visemes is that there will be always be more ambiguity with the use
of visemes as there are significantly more mapping options available [3].

Table 1. Two-stage speech recognition approaches where CI and CD refer to context-independent
and context-dependent models, and SAT referss to speaker adaptive training.

Approach Viseme
Format

1st Stage
Feature
Extractor

First Stage
Classifier

Second Stage
Classifier Dataset

Unit
Classif.
Acc. (%)

Word
Classif.
Acc. (%)

Lan and
Harvey [5] Bigram LDA + PCA HMM-GMM HMM LiLiR 45.67 14.08

Almajai [6] Bigram LDA HMM HMM HMM LiLiR - 17.74

Almajai [6] Bigram LDA+MLLT HMM HMM LiLiR - 22.82

Almajai [6] Bigram LDA+MLLT+SAT HMM HMM LiLiR - 37.71

Almajai [6] Bigram LDA+MLLT+SAT HMM Feed-forward LiLiR - 47.75

Bear and
Harvey [4] Bigram Active Appearance

Model HMM HMM LiLiR 8.51 4.38

Thangthai [3] Bigram Discrete Cosine
Transform CD-GMM + SAT WFST TCD-TIMIT 42.48 10.47

Thangthai [3] Bigram Discrete Cosine
Transform CD-DNN WFST TCD-TIMIT 38.00 9.17

Thangthai [3] Bigram Eigenlips CD-GMM + SAT WFST TCD-TIMIT 44.61 12.15

Thangthai [3] Bigram Eigenlips CD-DNN WFST TCD-TIMIT 44.60 19.15

Howell [2] Bigram Active Appearance
Model CD-HMM HMM RM-3000 52.31 43.47

Fenghour [20] Cluster N/A N/A Encoder-Decoder
LSTM LRS2 N/A 72.20

Fenghour [1] Cluster ResNet CNN Linear Transformer GPT-Transformer
based Iterator LRS2 95.40 64.60

It may seem inherent that the intermediate units to be modelled should be visemes
when there is no audio available. However, the availability of context and good accuracy
being attained at the first stage, would make the use of phonemes more preferable for the
prediction of sentences than visemes. The increased ambiguity that one has to overcome
with the use of visemes as opposed to phonemes is due to there being far more words in
the English language that share visemes than phonemes [2,3,21–23], meaning that there
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are significantly fewer mapping options to be considered when performing conversion for
word prediction.

It is for this reason that Howell et al. [2] preferred to use phonemes as the intermediate
class. They acknowledge that even with both perfect feature extraction and a perfect perfor-
mance for first stage classification, second stage conversion will always be limited because
an HMM or WFST based conversion model will fail to predict semantic details when
distinguishing between semantically different words such as “Hepburn”/“Campbell”,
“barge”/“march”, and “six”/“since” or syntactic details when there is confusion of plural
and singular versions of a word that ends with a viseme corresponding to same for the
letter “s”, e.g., “threat”/“threats” [2].

Almajai [6] experimented with three different methods of classifying visemes includ-
ing Linear Discriminant Analysis(LDA) with an HMM, LDA with Maximum Likelihood
Linear Transform(MLLT), and an LDA/MLLT/Speaker Adaptive Training(SAT) hybrid;
but it was the LDA+MLLT+SAT classifier that recorded the best result for viseme classifica-
tion. They then used two different algorithms, an HMM and a feed-forward neural network,
to perform word conversion, and the feed-forward network was the better performing
network of the two, recording an accuracy of 47.75% compared with the feed-forward
network achieving 37.71%.

The lip reading system proposed by Fenghour et al. [1] used a viseme-to-word con-
verter to match clusters of visemes to word combinations by iteratively combining words
and calculating perplexity scores. A Generative Pre-Training (GPT)-based transformer [24]
is used to calculate perplexity scores of word combinations in order to determine the most
likely combination of words given the clusters of visemes that are inputted. Perplexity is a
measure of grammatical correctness; thus, it is expected that the most likely combination
of words to have been uttered given a set of visemes is the combination with the lowest
perplexity score.

The model used by Fenghour et al. [1] matches clusters of visemes to words in a
lexicon mapping and is contingent on visemes being classified correctly. Visemes being
misclassified in one cluster will not only cause error in word matching for that one word
but will in turn cause compound errors in the combination process during the iterations
due to the conditional dependence of word combinations. This means that one word being
misclassified can cause other words to also be misclassified as well.

Other important studies in the field that have utilised visemes as part of a two-stage
conversion process include Sterpu and Harte who used a Discrete Cosine Transformation
with an HMM to classify visemes with an HMM for word conversion [25]. Peymanfard et al.
used a neural network architecture consisting of a Convolutional Neural Network(CNN)
frontend with an attention transformer backend to classify visemes and then a attention-
transformer to predict words [26]. The full results of the viseme classification for both these
works has not been disclosed.

Many of the conversion models listed in Table 1 lack the discriminative power to be
able to learn semantic and syntactic information needed to distinguish between words that
share identical visemes [2]. This is because of the lack of context available due to their fixed
size context windows, and to increase the size of the context window only increases the
computational complexity of the model. The conversion model proposed here uses a GRU
network that can exploit context from an unlimited number of timesteps regardless of the
length of sentence, which itself would not affect model complexity.

In addition to being effective at exploiting unlimited previous context to discriminate
between words sharing identical visemes, the proposed conversion model is also robust to
misclassified visemes because it can capture both long and short term dependencies unlike
the conversion model used by Fenghour [1]. It is, therefore, less prone to cascading errors.

Another limitation of the word converter used in [1] is its inefficiency. The architectural
model proposed in this paper uses significantly less parameters and takes significantly less
time in executing the prediction of a spoken sentence for one viseme sequence.
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The word converter proposed in this paper is trained on a large dataset with a wider
range of vocabulary than the converter in Fenghour et al.’s work [20], which was only
trained on words and sentence contained in the much smaller and limited TIMIT cor-
pus [27]. A curriculum learning strategy such as that of Chung et al. [20] was also used
in the training phase to ensure that the network can better model natural language by
predicting shorter N-grams. The proposed approach falls into the category of neural
conversion models.

For a viseme-to-word converter to be accurate, it has to be effective in classifying
words from visemes that have been classified correctly but must also be robust to the
possibility of visemes that have not been classified correctly. This section is devoted to
presenting theoretical justifications for why the proposed approach is more effective in
addressing these scenarios than other conversion methods.

It is apparent that the majority of viseme-to-word converters that used either HMMs,
WFSTs, or even Feed-forward networks were ineffective with a low conversion performance.
The reason for this is that such models are unable to use enough context to disambiguate
between commonly confused words that share visemes. In Section 2.3, an explanation
is given as to why the Attention based GRU model [28] proposed is more effective in
discriminating between words corresponding to identical visemes, and it is because they
are able to use more contextual information in extracting lexical rules to learn the syntactic
and semantic differences between words.

The GPT-based iterator used in [1] that predicts words using perplexity calculations
has a very high conversion performance for correctly classified visemes; however, it is
nonetheless is highly susceptible to the presence of incorrectly classified visemes. Incor-
rectly classified visemes result in wrong predictions for the individual word which in
turn causes error propagation in the predicted word sequence of the outputted sentences.
The GRU model proposed here is supposed to be susceptible to the impact of incorrectly
classified visemes due its ability to model both short and long term dependencies.

2.3. Syntactic and Semantic Disambiguation

Given the visemes decoded, a language model is required in order to determine the
most probable combination of words to have been uttered and it has to be robust to the
possibility of visemes being misclassified. According to Equation (18), for a set of given
visemes V, a language model will predict the most likely set of words W∗ that have been
uttered for different combinations of words W [29]. Table 2 provides an example of a set of
visemes and the words that are most likely to correspond those visemes.

W∗ = arg max
W

P(V|W)P(W) (18)

Table 2. A sequence of visemes and its corresponding word match.

Visemes <sos> ’T’ ’AH’ <space> ’T’ ’ER’ ’P’ ’W’ ’AH’ ’T’ <space> ’W’ ’AA’ ’T’ <eos>

Words <sos> “THE” “SURPRISE” “WAS” <eos>

Classifiers with language models that have been previously used for viseme-to-word
conversion such as N-grams have been ineffective due to the algorithms’ inability to
discriminate between words that share visemes but are different either syntactically or
semantically. An example of syntactically distinct words sharing identical visemes would
be the case of plural and singular versions of a word that end with a viseme corresponding
to a consonant with same viseme as that for the letter “s”. Examples of semantically distinct
words sharing identical visemes that are confused are those words that have an identical
likelihood of being preceded by a common word in a bigram [2].

If the context window is long enough, it can capture subject-verb agreement, which
is a grammar rule that can be used to determine if a noun is singular or plural and, thus,
address the problem of syntactic disambiguation. The subject-verb agreement is a situation
whereby the status of a noun subject being singular or plural can be determined by the
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form of the verb. If one takes the sentence “the keys to the cabinet are on the table” as an
example, the word “keys” is in agreement with the word “are” and if enough context is
captured, the correct syntactic form of the noun can be determined [30].

To maximise the probability of distinguishing between words that are syntactically
different, one would need to utilise context either side of the subject noun meaning that
both left and right context [31] are required and unidirectional RNNs will only be able
to exploit left context. Bidirectional RNNs can exploit left and right context; however,
a bidirectional network uses twice the number of parameters and more computational
overhead to train and evaluate the model.

Intuitively, one can conclude that having access to greater context provides language
models more discriminative power and would help to differentiate between words that are
semantically different. A noun can be disambiguated by using relationship analysis. Noun
phrases will follow different patterns that are characterised between the different types of
words that noun phrases contain. The phrase categories can be narrowed to adjective-noun
phrases, verb-adjective-noun phrases, and subject-verb-object phrases [32]. The identity of
a noun can be determined by the adjective describing it or the verb action it is performing,
and the more context there is available for a language model, the greater the probability of
it being predicted.

3. Methodology

Given a sequence of visemes, the objective is to predict the possible sentence spoken
by someone given that only the lip movements or visemes of the person speaking are
known and given that there is the possibility of an error or misclassification in the input
viseme sequence. In this section, an overall framework is proposed for the viseme-to-word
conversion with a component for testing its robustness to misclassified viseme sequences.
The entire process consists of two main components: a viseme-to-word conversion model
for performing the viseme-to-word conversion and a noisifying component for performing
data augmentation to vary the errancy of the input visemes. The performance of the system
is evaluated by comparing sentences predicted by the viseme-to-word converter to the
ground truth of the actual sentences and then measuring the edit distance [33] (which is
the minimum number of character-level operations required to correct the actual sentence
to the ground truth).

One aim of this study is to model and improve upon the performance of viseme-to-
word conversion reported in another study [1]—particularly with attention to misclassified
visemes because the word detector used relies on visemes being decoded with 100%
precision. In addition to modelling the robustness of the viseme-to-word converter, the
conversion performance attained is also sufficient for solving the problem of why visemes
are not widely used as a classification schema in lip reading, which is down to the perfor-
mance of viseme-to-word conversion being inadequate because of the failure to pick up
on semantic and syntactic information needed to distinguish between words that share
identical visemes (as discussed in Section 2.3). Four models have been utilised to convert
visemes to words directly, and these include the following:

• An Attention based sequence model using GRUs;
• A GPT-based iterator that uses perplexity scores;
• A Feed-Forward Neural Network;
• A Hidden Markov Model.

Figure 2 outlines the framework of a lip reading system that uses solely visual cues.
This framework comprises a viseme classifier followed by a viseme-to-word converter
where an image-based classification system takes image frames of a person’s moving lips to
classify visemes. Once the visemes have been recognised, a word detector uses the output
of the viseme classifier as the inputs in order to determine which words were spoken. For
the conversion of visemes to words, a variety of sequence modelling networks could be
used to determine the most likely set of words to have been uttered given the visemes that
had been decoded.
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Some sequence-modelling approaches are prone to the possibility that one incorrectly
decoded word causes the other words in the rest of the outputted sequence to also be
predicted incorrectly. This is why, for the purpose of evaluating the robustness of a viseme-
to-word converter, data augmentation techniques are used to add noise to viseme sequence
using techniques that include deletion, insertion, substitution, and swapping so as to
model the performance of the viseme-to-word converter under varying levels of noise.
The augmentation or noisification techniques are described in more detail in Section 3.4.
However, robustness performance results have only been reported for the GRU model and
GPT-based iterator because the priority of a viseme-to-word converter is its efficiency.

Overall, there are three instances that the viseme-to-word detection’s performance
is being reported. For all three of these instances, their respective performances will be
compared with the perplexity-based viseme-to-word converter discussed in Section 3:

1. Visemes with 100% accuracy where the identity of spoken visemes are known;
2. The outputs of the viseme classifier reported in [1];
3. Perturbed visemes with added noise whereby the errancy is varied.

Viseme Classifier

Recognized Visemes

Word
Detector

Decoded Sentences

Actual Visemes

Data Augmentation

Perturbed Visemes

Viseme-to-
Word Converter

Decoded Sentences

Viseme-based Lip Reading SystemModelling System

Figure 2. Modelling of viseme-to-word conversion.

3.1. Data

The dataset used in this research is the LRS2 dataset [19]. It consists of approxi-
mately 46,000 videos covering over 2 million word instances, a vocabulary range of over
40,000 words, and sentences of up to 100 ASCII characters from BBC videos. This paper
is all about modelling how robust the viseme-to-word converter is to noise and misclas-
sifications; thus, the details about the videos will not be discussed here. Additionally,
videos from the LRS3-TED dataset [34] have also been used for Scenarios 1 and 3 per-
taining to visemes with 100% accuracy where the identity of spoken visemes are known
and where the errancy of visemes is varied. This dataset is more challenging because the
sentences are on average longer in length and it consists of a vocabulary covering over
50,000 possible words.

Lip reading datasets such as LRS2 consist of labels in the form of subtitles. These
subtitles are strings of words that need to be converted to sequences of visemes in order to
provide labels for the viseme classifier. The conversion is performed in two stages: First,
they are mapped to phonemes using the Carnegie Mellon Pronouncing Dictionary [35],
and then the phonemes are mapped to visemes according to Lee and Yook’s approach [36].
The GRU-based viseme-to-word converter uses 17 classes or input tokens in total; these
include the 13 visemes, a space character, start of sentence (SoS), end of sentence (EoS), and
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a character for padding. All the defined classes are listed in Table 3. All viseme sequences
are padded to 28 characters, which is the length of the longest viseme sequence.

There is no official standard convention for defining precise visemes, and even the
precise total number of visemes and different approaches to viseme classification have used
varying numbers of visemes as part of their conventions with different phoneme-to-viseme
mappings [8,36–40]. All the different conventions consist of consonant visemes, vowel
visemes, and one silent viseme, but Lee and Yook’s [36] mapping convention appears to be
the most favoured for speech classification, and it is the one that has been utilised for this
paper. It is accepted, however, that there are multiple phonemes that are visually identical
on any given speaker [41,42].

For the classifier, an output token will be assigned for every single word that is
contained within sentences that make up labels for the training data, and there will be
four additional tokens: “<start>,” “<end>,” “<pad>,” and “<unk>.” The “<start>” token
becomes appended to the start of every sentence, with the “<end>” token being appended
to the end of every sentence, while “<unk>” is a token for modelling any words that do
not appear in the training phase.

Table 3. Viseme Classes used for input to viseme-to-word converter [36].

[pad], AA, AH, AO, CH, ER, EY, F, IY, K, P, T, UH, W, <sos>, <eos>, [space]

3.2. Viseme Classifier

The Viseme Classifier used is identical to that used in [1], and it relies on the same
Preprocessing and Visual Frontend. Videos consist of images with red, green, and blue
pixel values and a resolution of 160 pixels by 160 pixels, plus a frame rate of 25 frames/s.
Identical pre-processing is used whereby videos proceed through the same stages of
sampling, facial landmark extraction, grayscale conversion, and cropping around the
boundary of the facial landmarks. Image data augmentation is then applied in the form
of horizontal flipping, random frame removal, and pixel shifting, which is then followed
by z-score normalisation. This results in reduced image dimensions of 112 × 112 × T
dimensions (where T corresponds to the number of image frames).

The viseme classifier itself follows the transformer [43] architecture with an encoder-
decoder structure using multi-head attention layers used as building blocks albeit with
modifications to the decoder topology. The encoder used is a stack of self-attention layers
and the decoder consists of three fully connected layer blocks. The viseme classifier takes
pre-processed images of lips as input to predict sequences of visemes using the 17 classes
referred to in Section 3.1. The network was trained on all 45,839 training samples of the
LRS2 dataset with 1243 samples used for validation.

3.3. Viseme-to-Word Converters

In order to demonstrate the effectiveness of neural language models with unlimited
context, the performance of an Attention-based GRU has been compared with two other
conversion models, each of which are representative of viseme-to-word conversion models
from the two categories listed in Figure 1 of Section 2.2, and these include a bigram Hidden
Markov Model (to represent statistical language models) and a Feed-Forward Model (to
represent neural language models with a fixed window). A third model in the form of a
GPT-based iterator has also included for comparison in performance to demonstrate the
Attention-based GRU’s robustness to incorrectly classified visemes.

3.3.1. Hidden Markov Model

The Hidden Markov Model(HMM) is similar to that used by Vogel et al. [44], which
was used for a statistical machine translation task. Visemes can be modelled as individual
visemes or as clusters where groups of visemes make up a word. Unlike the approaches of
works reported in [1,20], this approach classifies words based on sequences of individual
visemes. The HMM uses a bigram language model to predict words given the inputted
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visemes corresponding to one of seventeen tokens, and the language model is accompanied
with Laplace smoothing and a Katz backoff. The bigrams used to train the model are all
extrapolated from one of either the LRS2 and LRS3 training sets.

3.3.2. Feed-Forward Neural Network

The feed-forward neural network used implements a language model similar to that of
Bengio et al. [13] and uses a context window of the same size as HMM model. The network
consists of a dense layers with 1024 nodes plus a softmax layer with classes corresponding
to all possible tokens contained within one of the LRS2 and LRS3 datasets. The network
is trained using the cross-entropy loss function with the training set split into batches of
64 samples each. During the training phase, the Adam optimiser [45] is implemented
with default parameters (β1 = 0.9, β2 = 0.999, and ε = 10−8) and initial learning rate
10−3. A curriculum learning strategy is used to train the network, similar to the training
performed for Chung et al.’s model [20]. For the first iteration, sentences are clipped to one
word followed by two words in the next iteration, then three words, then four, and finally
the full length of sentences. The rationale behind this is to better learn the grammatical
structure of word combinations found in natural language by being able to learn N-grams
of variable lengths.

3.3.3. GPT-Based Iterator

For a spoken sequence of visemes V = (v1, v2, . . . , vN) where vi corresponds to every
ith viseme, W = (w1, w2, . . . , wN) represents any given combination of words that map to
those visemes, where wi corresponds to every ith word within the string of words. Given
that visemes have a one-to-many mapping relationship with phonemes, which results in a
situation of a cluster of visemes that map to several different words, it is expected that the
combination of words that are most likely to have been uttered would be the combination
that is most grammatically correct and, thus, the combination with the greatest likelihood
of occurrence. The string of words W̌ that is expected to have been uttered for a set of
visemes would be the combination that has the greatest likelihood. A sequence of visemes
V can map to any combination of words WC for a combination C that falls within the overall
set of combinations C∗. The solution to predicting the sentence spoken is the combination
of words given the recognised visemes, which has the greatest probability as expressed in
Equation (19).

W̌ = arg max
CεC∗

P(WC|V) (19)

Perplexity is a measure of the quality of a language model, because a good language
model will generate sequences of words with a larger probability of occurrence resulting in
smaller perplexity. The Perplexity-based Word Detector of [1] maps cluster of visemes to
words through an iterative procedure.

Word matching is performed in different stages, shown in Figure 3, and the World
Lookup stage is the very first stage. This is where every single cluster of visemes needs to
be mapped to a set of words containing those visemes according to the mapping given by
the Carnegie Mellon Pronouncing (CMU) Dictionary [35]. Once the word lookup stage is
performed, the next stage of Word Detection is the Perplexity Calculations. The numerous
possible choices of words that map to the visemes are combined, and perplexity iterations
are performed to determine which combination of words is most likely to correspond to
the uttered sentence, given the visemes recognised.
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Figure 3. Processes of word detector.

The word detector uses GPT to calculate perplexity by taking the exponential of the
cross-entropy loss for a particular combination of words. Equations (20)–(22) below de-
scribe the relationship between perplexity PP, entropy H, and probability P(w1, w2, ..., wN)
of a particular sequence of N words (w1, w2, ..., wN) [46]. PP can expressed as the exponen-
tiation of entropy H in Equation (20). The per-word entropy Ĥ is related to the probability
P(w1, w2, ..., wN) of words (w1, w2, ..., wN). The value of P(w1, w2, ..., wN) that results in
the choice of words selected as the output is that which results in the minimisation of
entropy in Equation (21), further resulting in the minimisation of perplexity provided in
Equation (22) [46].

PP = eH (20)

Ĥ = − 1
N

ln P(w1, w2, ..., wN) (21)

PP = P(w1, w2, ..., wN)
− 1

N (22)

When performing a conversion of visemes to words, some selection rules are imple-
mented, as shown in Algorithm 1. If a viseme sequence has only one cluster matching to
one word, that one word is selected as the output; whereas if a viseme sequence has only
one cluster matching to several words, the word with largest expectation is selected as
the output. This is determined by word rankings found in the Corpus of Contemporary
American English (COCA) [36]. If a viseme sequence has more than one cluster, the words
matching to the first two clusters are combined in every possible combination for the first
iteration, and the combinations with the lowest 50 perplexity scores are kept. If there are
more clusters in the sequence to be matched, then these combinations are in turn combined
with the words matching with the next viseme cluster, keeping combinations with the
lowest 50 perplexity scores at each iteration until the end of the sequence is reached. The
selection of the lowest 50 perplexity scores at each iteration is based on an implementation
of a local beam search with width 50.

One advantage of the language model of the GPT-based iterator is that when predicting
a word at a particular timestep, it is able to base the prediction on all previous words
predicted in the sentence. For a sentence of K words, the choice of the Kth word can
be conditioned on all the previous K − 1 words as a context, which makes it a better
implementation of Markov chains (Equation (23)). One disadvantage of this is that for
long sentences, it would create more computational overhead, but it also makes the model
more prone to errors if one word in the sentences is predicted incorrectly. The GPT-iterator
calculates perplexity scores of words in combination; thus, one incorrect word causes
cascading errors.

P(w1, w2, ..., wN) = P(w1)P(w2|w1)...P(wi|w1, w2, ..., wi − 1) (23)
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Algorithm 1 Rules for Sentence Prediction

Require: Viseme Clusters V, Beam With B, Coca Rankings C, Word Lexi-
con mapping L, Predicted Output O, Perplexity scores for sentences ps

if V.length = 1 and LV .length = 1 then
Select 1 Word Match

O← LV

if V.length = 1 and LV .length > 1 then
Select Highest ranked word according to COCA

O← C−1(max{CL} : w)

if V.length > 1 then
Exhaustively combine words matching to Vn=0:1

Select Combinations with lowest B Perplexity scores for Vn=0:1

ps ← mins∈B{s : PP(s)}
sents← p−1

s (PP(s) : s)

for For n = 2, n < V.length, n ++ do
LV ← Perform word matches for Vn

Combine sentences from sents with words from LV

Select Combinations with lowest B Perplexity scores

ps ← mins∈B{s : PP(s)}
sents← p−1

s (PP(s) : s)

ps ← min{s : PP(s)}
O← p−1

s (PP(s) : s)

3.3.4. Attention-GRU

Similarly to [20], the neural network architecture used for word detection follows a
Recurrent Neural Network(RNN) Encoder-Decoder structure modelled according to neural
machine translation whereby for a given input sequence of visemes x, a sequence of words
y (Equation (24)) is outputted. However, the RNN here is in the form of a GRU not an LSTM;
moreoveer, the input here takes the form a sequence of individual visemes as opposed to
clusters of visemes and so only requires 17 tokens given in Table 3 to be encoded.

y = arg max
IεI∗

(y|x) (24)

An encoder-decoder framework (Figure 4) takes an input sequence of vectors x =
x1, . . . , xt where xt corresponds to a vector and inputs into a vector c with hidden state ht
at time t. The vector c is generated from the sequence of hidden states while f and q are
non-linear variables. Vectors ht and c are provided in Equations (25) and (26) [47]. For this
network, the encoder and decoder each consist of a GRU with 1024 nodes and a softmax
layer with each possible word from the two corpuses LRS2 and LRS3 encoded as a class.
Sequences of visemes are the sequence inputs and they consist of 17 input tokens.

ht = f (xt, ht−1) (25)

c = q({h1, ..., ht−1}) (26)

The decoder is trained to predict the next word yt in a sequence given the context
vector c and all the previously predicted words y1, ..., yt. The decoder defines a probability
p(y) given in Equation (27) over the prediction probability p(y) by considering the joint
conditional probability of all other previous words. A sentence predicted at time t follows
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with probability p(yt) follows the expression given in Equation (28), where g is a nonlinear
and st is a the hidden state of the GRU.

p(y) =
T

∏
t=1

p(yt|y1, . . . , yt, c) (27)

p(yt|y1, . . . , yt, c) = g(yt−1, st, c) (28)
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Sequences of visemes are inputted into the encoder, while teacher forcing is used to
provide the inputs for the decoder (as seen in Figure 4). During training, the ground truth
for the previous timesteps would be used as the decoder inputs, whereas for validation,
the predicted outputs of the previous timesteps provide the inputs to the decoder.

The neural network architecture uses Bahdanau’s attention mechanism [47] for learn-
ing to align and predict sequences. The mechanism consist of components that include
an alignment score, attention weights, and a context vector. The alignment score is a com-
ponent for learning the mapping relationship between different inputs and outputs. The
network is trained using identical hyper-parameters to the feed-forward neural networks
and the same curriculum learning strategy.

The rationale behind the decision to use Bahdanau attention is arbitrary as the majority
of neural machine translation model toolkits (which the proposed approach is modelled on)
use Bahdanau attention, and the reported difference in performance between Bahdanau
attention and Luong attention [48], for instance, has not been very significant.

One obvious advantage of this architecture is that it allows the overall speech recog-
nition system to use fewer parameters (roughly 16 million parameters) in comparison to
other lipreading systems such as the transformer based network of Afouras et el. [49] used
for decoding sentences from LRS2, which used roughly 100 million parameters. Moreover,
the GPT-based iterator for the viseme-to-word converter uses GPT to calculate perplexity
for every word combination made at each stage of the iterative procedure, meaning that
the number of times the model will have to be evaluated will increase exponentially with
the number of words contained in an uttered sentence. The iterator uses a beam search
width of 50; thus, a minimum of 50n−1 perplexity iterations would need to be performed
for a sentence with n words.

3.4. Data Noisification

Data noisification [50] is implemented for the purpose of evaluating how robust the
viseme-to-word classifier is to errancy in the inputted visemes by adding noise in the form
of misclassification to the inputs. Noisification is implemented by adding small pertur-
bations to the input visemes, and there are four different techniques being implemented.
These four techniques include random deletion, insertion, substitution, and swapping [50].
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Random Deletion [50] is a technique where random visemes are deleted according to
a probabilistic metric αrd. The total number of visemes nrd that is deleted for a sequence
with nv total visemes is the equivalent product of αrd and nv rounded to the nearest integer
given in Equation (29).

nrd = αrdnv (29)

Random Swapping [50] involves the swapping of random visemes implemented
according to a probabilistic metric αrs and the total number of visemes nv. The number of
swap operations nrs that takes place is governed by the outcome of Equation (30). This
is simply the product of αrs and nv rounded to the nearest integer. The two visemes that
become swapped are chosen by generating two random numbers to determine the positions
of the two respective visemes to be swapped.

nrs = αrsnv (30)

Random insertion [50] is a process where random visemes are inserted along parts
of the viseme sequences according to probabilistic metric αrs and the number of visemes
nv. Similarly to random swapping, the number of insertion operations to be performed
is calculated by using a similar equation. The number of insertions nri that occurs is
governed by the outcome of Equation (31), which is the product of αri and nv rounded to
the nearest integer.

nri = αrinv (31)

The choice of a viseme that does is inserted for the random insertion operation is
determined by a random number operation such that the identity of the viseme will be
generated according to a probability distribution matching the viseme distribution of LRS2
corpus. The rationale behind this is that when visemes are misclassified, they are most
likely to be classified as any of the most frequently appearing visemes found in the training
set. Figure 5 shows the cumulative probability distribution for visemes contained within
the LRS2 training set.

The other technique called Random Substitution [50] is where random positions
along the viseme sequence are chosen, and the viseme corresponding to that position is
substituted for another viseme. The number of substitutions that takes place is set by
Equation (32) where for nv total visemes and a probabilistic metric αsr for substitution,
a number of substitutions operations nsr take place. Similarly to the random insertion
operation, the new viseme being substituted will be generated according to a probability
distribution matching the viseme distribution of LRS2 training set.

nsr = αsrnv (32)

Figure 5. Probability distribution for generating visemes.
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3.5. Systems Performance Measures

The measures used to evaluate the viseme-to-word conversion are edit distance-based
metrics and are computed by calculating the normalized edit distance between ground
truth and the predicted sentence. Metrics reported in this paper include Viseme Character
Error Rate (CER), Word Error Rates (WER), and Sentence Accuracy Rate (SAR).

Error rate metrics used for evaluating accuracy are given by calculating the overall
edit distance. In order to determine misclassifications, one has to compare decoded speech
to actual speech. The general expression for Error Rate (ER) is given in Equation (33) where
N is the total number of characters in the actual speech, S is the number of characters
substituted for wrong classifications, I is the number of characters inserted for those not
picked up, and D is the number of deletions made for decoded characters that should not
be present. VER, CER, and WER are all calculated in this manner with the expressions
given in Equations (34)–(36), where V, C, and W correspond to either characters, words,
and visemes being substituted, deleted, or inserted.

ER =
S + D + I

N
(33)

VER =
VS + VD + VI

VN
(34)

CER =
CS + CD + CI

CN
(35)

WER =
WS + WD + WI

WN
(36)

The Sentence Accuracy Rate is a binary metric that takes the value of one if the
predicted sentence PP is equal to the ground truth PT ; otherwise, it takes the value of zero
(Equation (37)).

SAR =

{
1, PP = PT

0, PP 6= PT
(37)

4. Experiment and Results

For the training and evaluation of the viseme-to-word converters mentioned in
Section 3 excluding the GPT-based interator, LRS2 sentence data described in Section 3.1
have been used with 80% of all sentences used for training (37,666 samples) and 20%
of sentences being utilised for testing (9416 samples). k-Fold cross validation has been
used with a fold value for k = 5, and for each fold, a different set of 9416 samples were
used. Viseme-to-word conversion has also been performed for sentences from the LRS3
corpus with 26,588 samples for training, 6477 samples for testing, and k = 5 for k-Fold cross
validation. All neural network simulations were implemented in TensorFlow and trained
on a single GeForce GTX 1080 Ti GPU with 11 GB memory.

The metrics reported include CER, WER, SAR, and word accuracies (WAR). Perfor-
mance results for word prediction are given for the following three situations: (1) correct
visemes, (2) visemes classified as outputs of the viseme classifier reported in [1], and (3)
perturbed visemes with added noise to vary the errancy. For Situation 1, the final perfor-
mance results reported are averaged over each of the folds for the k-Fold cross validation.
However, for situations two and three, model k-Fold old one was used for both the LRS2
and LRS3 corpuses; thus, the results were reported for that particular fold.

Situation 2 is significant because it is identical to substituting the viseme-to-word
converter used in [1] with the GRU-based converter proposed in this paper, whilst using
the same viseme classifier for classifying visemes.

For the third situation, the accuracy of incident visemes is altered by using the nois-
ification process described in Section 3.4 where all probabilistic indicators are modified
to vary viseme accuracy. The probabilistic indicators αrd, αri, αrs, and αsr for deletion,
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insertion, swapping, and substitution, respectively, are all set to the same value αmod and in-
cremented to vary the noise level on the visemes being inputted. Once the viseme-to-word
detector has been trained, the trained network is evaluated on different incident viseme
accuracies ranging from 70% to 100% to examine its robustness to noise.

The GRU architecture, feed-forward network and HMM were trained for several
epochs until no improvements in either the training or validation losses were observed. It
was at the point that the validation loss stopped converging that the performance of the
model was evaluated. In addition to modelling the GRU network’s performance under
different levels of viseme noise, it has also been compared with the performance of the
GPT-based iterator.

Tables 4 and 5 lists the performance metrics of all four models for Situation 1 for the
LRS2 and LRS3 corpuses when inputted visemes are known to be 100% correct. It it is
noticeable that the performances of all four models when decoding sentences from the
LRS3 set were not as good as those for LRS2, and this can be explained by the fact that the
LRS3 corpus consists of longer sentences and a deviation between the predicted sentence,
and ground truth becomes more likely as the sentence lengths increase.

Table 6 gives the performance metrics of the four architectures for Situation 2 using
the output of the viseme classifier in [1] where VER ≈ 4 %, and it is clear that the Attention
based GRU and GPT-based iterators are significantly more effective in their conversion
compared with the feed-forward network and HMM because they are able to exploit larger
context windows.

The Attention based GRU outperforms the GPT-based iterator for Situation 1 where
the identity of visemes is known with 100% accuracy. However, even with the smallest
noise added to viseme inputs, the difference between the performances of the two models
diverge, and the GRU network is clearly more resilient to perturbations in the input viseme
sequences. Tables 9 and 10 both provide samples of how some sentences are predicted
by all four models along with time elapsed for execution. Confusion matrices have been
plotted in Figures 6–9 for the GPT-based iterator, GRU network, Feed-forward network,
and HMM correspondingly.

Additionally, the resilience of the Attention based GRU to perturbations compared
with the GPT-transformer based iterator is further observed when more noise is added to
the input viseme sequences by analysing the performance results of situation three. The
difference in character and word error rates recorded by both models grows even further
apart with the increase in errancy of visemes as shown in Table 7 and Figures 10 and 11
(for LRS2) or Table 8 and Figures 12 and 13 (for LRS3).

The improvement in performance of predicting sentences with the GRU network
especially with perturbed inputs can be explained by two main factors. The first is that
word matching is performed on an individual viseme level rather than being performed
on a cluster level such as for the perplexity-based iterator; thus, if there is a word with one
viseme being decoded incorrectly, the word it is contained in can still be identified correctly
because the network is designed to classify visemes in combination.

This is not the case for the GPT-based iterator that maps clusters to words, meaning
that one viseme being decoded incorrectly would cause the entire cluster to be matched
to the wrong words. An example of this can be observed with the sentence “for a brief
time” being decoded as “or a brief time” by the GPT-based iterator. The reason for this
incorrect prediction is that the first viseme “F” has been incorrectly decoded as “AO”, yet
the Attention based GRU is able to predict the spoken sentence correctly.

The second reason for there being a better resilience is that the GRU network is better
at modelling shorter groups of words [51]. It does not suffer from the problem posed in the
mapping of viseme clusters to words using the GPT-based iterator whereby compound
errors occur in the combination of words during the iterations and in which the sentence
being decoded is based on the conditional dependence of word combinations.

The GPT-iterator model uses GPT to calculate perplexity scores of word combinations
matching to viseme clusters in an iterative manner starting from the beginning of the
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sentence as opposed to being used for word prediction. If one viseme is misclassified,
the input cluster would then be wrong, resulting in incorrect word matches not only for
that one cluster but would also cause words further along the sequence to be incorrectly
predicted because the words in the rest of the sentence are all dependent on words that have
been previously predicted. Moreover, due to the curriculum learning strategy deployed for
training the GRU network, it is better at recognising shorter N-grams [52–54].

When looking at the differences in how some sentences were decoded by both systems,
it is clear that the system with the GRU network is less affected by compound errors in the
prediction because when one word has been predicted incorrectly, it will be less likely that
other words in the outputted sentence would also be classified incorrectly too.

In addition to GRU network being more robust to noisy inputs than the GPT-based it-
erator, it is also more efficient and requires less overhead, which is why it takes significantly
less time to execute than the GPT-based iterator. The GPT-based iterator uses approximately
11 times the number of parameters as the GRU network does, and as observed in Table 9, it
takes significantly more time when decoding visemes.

When comparing the conversion of sequences of visemes to words for all four models
for some samples in Tables 9 and 10, it is noticeable that the accuracies of the two models
utilising unlimited context, namely the GPT-based Iterator and Attention based GRU, are
significantly more accurate in their conversions compared with both the Feed-Forward
network and Hidden Markov Model that utilise fixed-context windows. For instance, for
the sequence of visemes that corresponds to the sentence “for a brief time”, the last viseme
cluster corresponding to the word “time” was actually predicted by both the Feed-Forward
Network and Hidden Markov Model as “type”. The words “time” and “type” are both
homopheme words, yet they are both semantically different, and a longer context window
is needed to be able to exploit semantic information to predict the correct word.

Figure 6. Confusion Matrix for GPT-based Iterator.

Figure 7. Confusion Matrix for Attention-based GRU.
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Figure 8. Confusion Matrix for Feed-Forward Network.

Table 4. Performance of viseme-to-word converters for Situation 1 on the LRS2 dataset.

Converter Fold No. CER (%) WER (%) SAR (%) WAR (%)

GPT-based Iterator Fold 1 10.7 18.0 56.8 82.0

GPT-based Iterator Fold 2 11.4 19.5 55.1 80.5

GPT-based Iterator Fold 3 11.2 19.1 54.8 80.9

GPT-based Iterator Fold 4 12.0 20.3 54.2 79.7

GPT-based Iterator Fold 5 11.0 18.6 54.9 81.4

GPT-based Iterator Average 11.3 ± 0.5 19.1 ± 0.9 55.2 ± 1.0 80.9 ± 0.9

Attention-based GRU Fold 1 6.2 8.8 74.9 91.2

Attention-based GRU Fold 2 6.9 9.7 74.2 90.3

Attention-based GRU Fold 3 7.5 10.6 73.4 89.4

Attention-based GRU Fold 4 7.4 10.4 73.4 89.6

Attention-based GRU Fold 5 7.1 10.2 73.8 89.8

Attention-based GRU Average 7.0 ± 0.5 9.9 ± 0.7 73.9 ± 0.6 90.1 ± 0.7

Feed-Forward Network Fold 1 31.7 42.7 9.4 57.3

Feed-Forward Network Fold 2 32.4 43.4 8.6 56.6

Feed-Forward Network Fold 3 33.0 44.1 7.8 55.9

Feed-Forward Network Fold 4 32.8 43.9 8.1 56.1

Feed-Forward Network Fold 5 32.6 43.5 8.1 56.5

Feed-Forward Network Average 32.5 ± 0.5 43.5 ± 0.5 8.4 ± 0.6 56.5 ± 0.5

Hidden Markov Model Fold 1 34.0 44.5 9.0 55.5

Hidden Markov Model Fold 2 35.3 46.2 7.8 53.8

Hidden Markov Model Fold 3 36.1 49.8 6.5 50.2

Hidden Markov Model Fold 4 35.8 48.0 8.0 52.0

Hidden Markov Model Fold 5 35.2 45.9 7.4 54.1

Hidden Markov Model Average 35.3 ± 0.8 46.9 ± 2.1 7.7 ± 0.9 53.1 ± 2.1
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Table 5. Performance of viseme-to-word converters for Situation 1 on the LRS3 dataset.

Converter Fold No. CER (%) WER (%) SAR (%) WAR (%)

GPT-based Iterator Fold 1 18.8 31.7 36.2 68.3

GPT-based Iterator Fold 2 19.7 32.5 34.8 67.5

GPT-based Iterator Fold 3 20.3 33.3 33.7 66.7

GPT-based Iterator Fold 4 19.4 32.2 35.3 67.8

GPT-based Iterator Fold 5 18.6 31.3 36.3 68.7

GPT-based Iterator Average 19.4 ± 0.7 32.2 ± 0.8 35.3 ± 1.1 67.8 ± 0.8

Attention-based GRU Fold 1 10.2 15.0 59.2 85.0

Attention-based GRU Fold 2 10.5 15.4 59.0 84.6

Attention-based GRU Fold 3 11.2 16.1 58.2 83.9

Attention-based GRU Fold 4 10.9 15.8 58.2 84.2

Attention-based GRU Fold 5 11.5 16.8 57.6 83.2

Attention-based GRU Average 10.9 ± 0.5 15.8 ± 0.7 58.4 ± 0.7 84.2 ± 0.7

Feed-Forward Network Fold 1 38.5 49.9 7.1 50.1

Feed-Forward Network Fold 2 39.4 51.3 6.3 48.7

Feed-Forward Network Fold 3 41.1 52.1 5.4 47.9

Feed-Forward Network Fold 4 39.6 51.6 6.2 48.4

Feed-Forward Network Fold 5 39.3 51.3 6.3 48.7

Feed-Forward Network Average 39.6 ± 0.9 51.2 ± 0.8 6.3 ± 0.6 48.8 ± 0.8

Hidden Markov Model Fold 1 41.3 52.1 7.0 47.9

Hidden Markov Model Fold 2 42.5 54.2 6.1 45.8

Hidden Markov Model Fold 3 43.3 54.9 5.4 45.1

Hidden Markov Model Fold 4 42.6 54.4 5.8 45.6

Hidden Markov Model Fold 5 42.2 53.8 6.3 46.2

Hidden Markov Model Average 42.4 ± 0.7 53.9 ± 1.1 6.1 ± 0.6 46.1 ± 1.1

Table 6. Performance of viseme-to-word converters for Situation 2.

Viseme-to-Word Converter CER (%) WER (%) SAR (%) WAR (%)

GPT-based iterator 23.1 35.4 33.4 64.6

Attention-based GRU 14.0 20.4 49.8 79.6

Feed-Forward Network 67.2 78.7 2.9 21.3

Hidden Markov Model 71.4 81.7 2.8 18.3
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Table 7. Performance of viseme-to-word converters under varying noise levels on the LRS2 dataset.

αmod VER (%) Attention-Based GRU GPT-Based Iterator
CER (%) WER (%) CER (%) WER (%)

0 0.0 5.8 8.6 10.7 18.0

5 3.1 12.9 18.4 21.2 35.7

6 3.7 14.8 20.9 21.9 37.0

7 4.4 17.1 24.1 22.3 37.5

8 5.3 18.8 26.5 26.3 44.3

10 7.3 24.9 33.7 32.5 54.8

15 11.1 31.7 43.0 40.4 68.1

20 16.2 40.9 54.4 43.5 73.4

25 20.3 48.2 63.0 59.2 100.0

30 23.9 53.4 68.4 67.5 113.9

35 27.7 57.2 74.5 72.7 122.7

Table 8. Performance of viseme-to-word converters under varying noise levels on the LRS3 dataset.

αmod VER (%) Attention-Based GRU GPT-Based Iterator
CER (%) WER (%) CER (%) WER (%)

0 0.0 10.2 15.0 18.8 31.7

5 2.8 22.5 31.5 35.5 62.4

6 3.5 25.0 35.8 37.6 64.6

7 4.5 29.8 41.7 38.0 63.2

8 5.2 32.8 45.8 45.6 77.1

10 7.6 41.5 56.8 56.9 93.7

15 11.0 53.6 72.1 70.6 118.2

20 16.5 70.8 90.7 76.1 127.3

25 20.1 80.8 108.3 102.0 169.8

30 23.9 92.9 117.1 116.4 199.8

35 27.5 99.3 127.9 125.7 205.5

Figure 9. Confusion Matrix for Hidden Markov Model.
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Figure 10. CER performance under varying noise levels (evaluation on LRS2 corpus).

Figure 11. WER performance under varying noise levels (evaluation on LRS2 corpus).

Figure 12. CER performance under varying noise levels (evaluation on LRS3 corpus).

Figure 13. WER performance under varying noise levels (evaluation on LRS3 corpus).
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Table 9. Examples of decoded sentences from the two viseme-to-word converters.

Actual
Subtitle

Actual
Visemes

Predicted
Visemes

GPT-Based Iterator Attention-Based GRU
Decoded
Subtitle

Execution
Time (s)

Decoded
Subtitle

Execution
Time (s)

WHEN
THERE
ISN’T
MUCH
ELSE
IN THE
GARDEN

(’W’, ’EY’, ’K’),
(’T’, ’EY’, ’W’),
(’IY’, ’T’, ’AH’, ’K’, ’T’),
(’P’, ’AH’, ’CH’),
(’EY’, ’K’, ’T’),
(’IY’, ’K’), (’T’, ’AH’),
(’K’, ’AA’, ’W’, ’T’, ’AH’, ’K’)

(’W’, ’EY’, ’K’),
(’T’, ’EY’, ’W’),
(’IY’, ’T’, ’AH’, ’K’, ’T’),
(’P’, ’AH’, ’CH’),
(’EY’, ’K’, ’T’),
(’IY’, ’K’), (’T’, ’AH’),
(’K’, ’AA’, ’W’, ’T’, ’AH’, ’K’)

WHEN
THERE
ISN’T
MUCH
ELSE
IN THE
GARDEN

147.35

WHEN
THEY’RE
ISN’T
MUCH
ELSE
IN THE
GARDEN

0.08

SORT OF
SECOND
HALF
OF
OCTOBER

(’T’, ’AO’, ’W’, ’T’), (’AH’, ’F’),
(’T’, ’EY’, ’K’, ’AH’, ’K’, ’T’),
(’K’, ’EY’, ’F’),
(’AH’, ’F’),
(’AA’, ’K’, ’T’, ’AO’, ’P’, ’ER’)

(’T’, ’AO’, ’W’, ’T’), (’AH’, ’F’),
(’T’, ’EY’, ’K’, ’AH’, ’K’, ’T’),
(’K’, ’EY’, ’F’),
(’AH’, ’F’),
(’AA’, ’K’, ’T’, ’AO’, ’P’, ’ER’)

SORT OF
SECOND
HALF
OF
OCTOBER

32.86

SORT OF
SECOND
HALF
OF
OCTOBER

0.05

WELL
INTO
NOVEMBER

(’W’, ’EY’, ’K’),
(’IY’, ’K’, ’T’, ’UH’),
(’K’, ’AO’, ’F’, ’EY’, ’P’, ’P’, ’ER’)

(’W’, ’EY’, ’K’),
(’IY’, ’K’, ’T’, ’UH’),
(’K’, ’AO’, ’F’, ’EY’, ’P’, ’P’, ’ER’)

RAN
INTO
NOVEMBER

2.83
WELL
INTO
NOVEMBER

0.03

WE CAN
JUST
ABOUT
GET AWAY
WITH IT
NOW

(’W’, ’IY’), (’K’, ’EY’, ’K’),
(’CH’, ’AH’, ’T’, ’T’),
(’AH’, ’P’, ’EY’, ’T’),
(’K’, ’EY’, ’T’), (’AH’, ’W’, ’EY’),
(’W’, ’IY’, ’T’), (’IY’, ’T’,)
(’K’, ’EY’)

(’W’, ’IY’), (’K’, ’EY’, ’K’),
(’CH’, ’AH’, ’T’, ’T’),
(’AH’, ’P’, ’EY’, ’T’),
(’K’, ’EY’, ’T’), (’AH’, ’W’, ’EY’),
(’W’, ’IY’, ’T’), (’IY’, ’IY’),
(’K’, ’EY’)

WE CAN
JUST
ABOUT
GET AWAY
WITH IIE
KAYE

323.84

WE CAN
JUST
ABOUT
GET AWAY
WITH IT
NOW

0.07

AND IF
YOU WANT
WONDERFUL

(’AH’, ’K’, ’T’), (’IY’, ’F’),
(’K’, ’UH’), (’W’, ’AA’, ’K’, ’T’),
(’W’, ’AH’, ’K’, ’T’, ’ER’, ’F’, ’AH’, ’K’)

(’AH’, ’K’, ’T’), (’IY’, ’F’),
(’K’, ’UH’), (’W’, ’AA’, ’K’, ’T’),
(’W’, ’AH’, ’K’, ’T’, ’ER’, ’F’, ’AH’, ’K’)

AND IF
YOU WANT
WONDERFUL

35.19
AND IF
YOU WANT
WONDERFUL

0.05

FOR A
BRIEF
TIME

(’F’, ’AO’, ’W’), (’AH’),
(’P’, ’W’, ’IY’, ’F’),
(’T’, ’AH’, ’P’)

(’AO’, ’AO’, ’W’), (’AH’),
(’P’, ’W’, ’IY’, ’F’),
(’T’, ’AH’, ’P’)

OR A
BRIEF
TIME

21.95
FOR A
BRIEF
TIME

0.05

IT WILL
CHANGE
LIVES

(’IY’, ’T’), (’W’, ’IY’, ’K’),
(’CH’, ’EY’, ’K’, ’CH’),
(’K’, ’IY’, ’F’, ’T’)

(’T’, ’T’), (’W’, ’IY’, ’K’),
(’CH’, ’EY’, ’K’, ’CH’),
(’K’, ’IY’, ’F’, ’T’)

THS WE’LL
CHANGE
LIFFE’S

27.53
THIS WILL
CHANGE
LIVES

0.05

I THINK
IT’S
BRILLIANT

(’AH’), (’T’, ’IY’, ’K’, ’K’),
(’IY’, ’T’, ’T’),
(’P’, ’W’, ’IY’, ’K’, ’K’, ’AH’, ’K’, ’T’)

(’AH’), (’T’, ’IY’, ’K’),
(’IY’, ’T’, ’T’),
(’P’, ’W’, ’IY’, ’K’, ’K’, ’AH’, ’K’, ’T’)

EYE ’TIL
IT’S
PRINGLE’S

13.24
I THING
IT’S
BRILLIANT

0.05

BUT IT’S
A DECENT
SIZE

(’P’, ’AH’, ’T’), (’IY’, ’T’, ’T’),
(’AH’), (’T’, ’IY’, ’T’, ’AH’, ’K’, ’T’),
(’T’, ’AH’, ’T’)

(’P’, ’AH’, ’T’), (’IY’, ’T’, ’T’),
(’AH’), (’T’, ’IY’, ’T’, ’AH’, ’K’, ’T’),
(’T’, ’AH’, ’T’)

BUT IT’S
I DIDN’T
SUSS

79.88
BUT IT’S
A DECENT
SIZE

0.06
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Table 10. Examples of decoded sentences from the two viseme-to-word converters.

Actual
Subtitle

Actual
Visemes

Predicted
Visemes

Hidden Markov Model Feed-Forward Network
Decoded
Subtitle

Execution
Time (s)

Decoded
Subtitle

Execution
Time (s)

WHEN
THERE
ISN’T
MUCH
ELSE
IN THE
GARDEN

(’W’, ’EY’, ’K’),
(’T’, ’EY’, ’W’),
(’IY’, ’T’, ’AH’, ’K’, ’T’),
(’P’, ’AH’, ’CH’),
(’EY’, ’K’, ’T’),
(’IY’, ’K’), (’T’, ’AH’),
(’K’, ’AA’, ’W’, ’T’, ’AH’, ’K’)

(’W’, ’EY’, ’K’),
(’T’, ’EY’, ’W’),
(’IY’, ’T’, ’AH’, ’K’, ’T’),
(’P’, ’AH’, ’CH’),
(’EY’, ’K’, ’T’),
(’IY’, ’K’), (’T’, ’AH’),
(’K’, ’AA’, ’W’, ’T’, ’AH’, ’K’)

WHEN
THEY’RE
ISN’T
BE
JUST
IN THE
GARDEN

0.07

WHEN
THEY’RE
ISN’T
JUST
BE
IN THE
GARDEN

0.08

SORT OF
SECOND
HALF
OF
OCTOBER

(’T’, ’AO’, ’W’, ’T’), (’AH’, ’F’),
(’T’, ’EY’, ’K’, ’AH’, ’K’, ’T’),
(’K’, ’EY’, ’F’),
(’AH’, ’F’),
(’AA’, ’K’, ’T’, ’AO’, ’P’, ’ER’)

(’T’, ’AO’, ’W’, ’T’), (’AH’, ’F’),
(’T’, ’EY’, ’K’, ’AH’, ’K’, ’T’),
(’K’, ’EY’, ’F’),
(’AH’, ’F’),
(’AA’, ’K’, ’T’, ’AO’, ’P’, ’ER’)

SORT I’VE
SECOND
HALF
I’VE
WHICH

0.04

SORT I
SECOND
HALF
OF
OCTOBER

0.05

WELL
INTO
NOVEMBER

(’W’, ’EY’, ’K’),
(’IY’, ’K’, ’T’, ’UH’),
(’K’, ’AO’, ’F’, ’EY’, ’P’, ’P’, ’ER’)

(’W’, ’EY’, ’K’),
(’IY’, ’K’, ’T’, ’UH’),
(’K’, ’AO’, ’F’, ’EY’, ’P’, ’P’, ’ER’)

WHEN
INTO
NOVEMBER

0.03
WHEN
INTO
NOVEMBER

0.04

WE CAN
JUST
ABOUT
GET AWAY
WITH IT
NOW

(’W’, ’IY’), (’K’, ’EY’, ’K’),
(’CH’, ’AH’, ’T’, ’T’),
(’AH’, ’P’, ’EY’, ’T’),
(’K’, ’EY’, ’T’), (’AH’, ’W’, ’EY’),
(’W’, ’IY’, ’T’), (’IY’, ’T’,)
(’K’, ’EY’)

(’W’, ’IY’), (’K’, ’EY’, ’K’),
(’CH’, ’AH’, ’T’, ’T’),
(’AH’, ’P’, ’EY’, ’T’),
(’K’, ’EY’, ’T’), (’AH’, ’W’, ’EY’),
(’W’, ’IY’, ’T’), (’IY’, ’IY’),
(’K’, ’EY’)

WE CAN
JUST
ABOUT
GET AWAY
WITH IT
HOW

0.07

WE CAN
JUST
ABOUT
GET AWAY
WITH IT
NOW

0.07

AND IF
YOU WANT
WONDERFUL

(’AH’, ’K’, ’T’), (’IY’, ’F’),
(’K’, ’UH’), (’W’, ’AA’, ’K’, ’T’),
(’W’, ’AH’, ’K’, ’T’, ’ER’, ’F’, ’AH’, ’K’)

(’AH’, ’K’, ’T’), (’IY’, ’F’),
(’K’, ’UH’), (’W’, ’AA’, ’K’, ’T’),
(’W’, ’AH’, ’K’, ’T’, ’ER’, ’F’, ’AH’, ’K’)

AND IF
KNEW WANT
WONDERFUL

0.04
AND IF
YOU WANT
WONDERFUL

0.05

FOR A
BRIEF
TIME

(’F’, ’AO’, ’W’), (’AH’),
(’P’, ’W’, ’IY’, ’F’),
(’T’, ’AH’, ’P’)

(’AO’, ’AO’, ’W’), (’AH’),
(’P’, ’W’, ’IY’, ’F’),
(’T’, ’AH’, ’P’)

FOR I
THIS
TYPE

0.04
FOR A
BIG
TYPE

0.05

IT WILL
CHANGE
LIVES

(’IY’, ’T’), (’W’, ’IY’, ’K’),
(’CH’, ’EY’, ’K’, ’CH’),
(’K’, ’IY’, ’F’, ’T’)

(’T’, ’T’), (’W’, ’IY’, ’K’),
(’CH’, ’EY’, ’K’, ’CH’),
(’K’, ’IY’, ’F’, ’T’)

THIS WILL
CHANGE
LIVES

0.04
THIS WILL
CHANGE
LIVES

0.05

I THINK
IT’S
BRILLIANT

(’AH’), (’T’, ’IY’, ’K’, ’K’),
(’IY’, ’T’, ’T’),
(’P’, ’W’, ’IY’, ’K’, ’K’, ’AH’, ’K’, ’T’)

(’AH’), (’T’, ’IY’, ’K’),
(’IY’, ’T’, ’T’),
(’P’, ’W’, ’IY’, ’K’, ’K’, ’AH’, ’K’, ’T’)

I THINK
IT’S
BRILLIANT

0.04
I THINK
IT’S
BRILLIANT

0.04

BUT IT’S
A DECENT
SIZE

(’P’, ’AH’, ’T’), (’IY’, ’T’, ’T’),
(’AH’), (’T’, ’IY’, ’T’, ’AH’, ’K’, ’T’),
(’T’, ’AH’, ’T’)

(’P’, ’AH’, ’T’), (’IY’, ’T’, ’T’),
(’AH’), (’T’, ’IY’, ’T’, ’AH’, ’K’, ’T’),
(’T’, ’AH’, ’T’)

BUT IT’S
A DECENT
SUSS

0.05
BUT IT’S
A DECENT
SIZE

0.05
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5. Conclusions

A viseme-to-word conversion model has been proposed that is robust, quick to execute,
and effective at discriminating between words that share identical visemes. Its perfor-
mance has been compared with three other conversion model approaches. The model has
been proven to be effective at disambiguating between words that are semantically and
syntactically different as well as being able to model long and short term dependencies
in ordr to render it robust to incorrectly classified visemes. The converter’s robustness
has been verified on the LRS2 and LRS3 corpuses, and when implemented in a neural
network-based architecture for lip reading sentences from the LRS2 dataset, a 79.6% word
accuracy rate was recorded—an improvement of 15.0% from the previous state of the art.

Future research includes improving the robustness of viseme-to-word conversion
further by using techniques such as augmentation in the training phase. Moreover, there
are other types of networks that could be used to enhance the overall word accuracy
further such as bidirectional RNNs as these can exploit right-to-left context in addition
to left-to-right context for word prediction. There is also merit in considering the use of
either Attention-Transformers or Temporal Convolutional Networks as conversion models
because they can process inputs in parallels as opposed to RNNs, which process inputs
sequentially.

It would also be ideal if it was possible to exploit knowledge regarding words that
either consist or do not consist of unique visemes sequences, as has been conducted for the
case of viseme-to-word conversion when the identities of the inputted visemes are known
with absolute precision.
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