
ar
X

iv
:1

21
2.

36
33

v2
  [

m
at

h.
C

O
]  

13
 A

pr
 2

01
4

Pancyclicity when each cycle must pass exactlyk
Hamilton cycle chords
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Abstract It is known thatΘ(logn) chords must be added to ann-cycle to produce a pancyclic
graph; for vertex pancyclicity, where every vertex belongsto a cycle of every length,Θ(n) chords
are required. A possibly ‘intermediate’ variation is the following: given k, 1 ≤ k ≤ n, how many
chords must be added to ensure that there exist cycles of every possible length each of which passes
exactlyk chords? For fixedk, we establish a lower bound ofΩ

(

n1/k) on the growth rate.

Keywords: extremal graph theory, pancyclic graph, Hamilton cycle.

A simple graphG on n vertices ispancyclicif it has cycles of every lengthl, 3 ≤ l ≤ n. The
study of these graphs was initiated by Bondy’s observation [1, 2] that, for non-bipartite graphs,
sufficient conditions for hamiltonicity can also be sufficient for pancyclicity. In general, we
may distinguish, in a pancyclic graphG, a Hamilton cycleC; then the remaining edges ofG
form chords ofC. We can then ask, givenk ≤ l ≤ n if, relative toC, a cycle of lengthl exists
which uses exactlyk chords. This suggests ak-chord analog of pancyclicity: do all possible
cycle lengths occur when cycles must use exactlyk-chords of a suitably chosen Hamilton
cycle?

We accordingly define a functionc(n, k), n ≥ 6, k ≥ 1, to be the smallest number of chords
which must be added to ann-cycle in order that cycles of all possible lengths may be found,
each passing exactlyk chords. No Hamilton cycle can use exactly one chord of another Hamil-
ton cycle, so that whenk = 1 cycle lengths must lie betweenk andn − 1. The function is
undefined fork > n. We define the function forn ≥ 6 becausen = 4, 5 are too restrictive to be
of interest to us.

Our aim in this paper is to investigate the growth of the function c(n, k) asn increases, for
fixed k.

Example 1 Label the vertices around the cycle C6, in order, as v1, . . . , v6. Add chords v1v3

and v1v4; the result is a pancyclic graph. It also has cycles of all lengths≤ 5 each passing
exactly one of the chords. If v2v6 is added then cycles exist of all lengths≥ 3, each passing
two chords. If two further chords, v2v4 and v4v6, are added then cycles exist of all lengths
≥ 3, each passing three chords. For 4-chord cycles we require six chords to be added, i.e.
C(6, 4) = 6. Six suitably chosen chords are also sufficient for5− chord and6− chord cycles:
C(6, 5) = C(6, 6) = 6.

Lemma 2 (1) c(n, 1) =

⌊

n− 3
2

⌋

.
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(2) c(n, k) ≥ k, with equality if and only if k= n.

(3) c(n, n− 1) = n.

Proof. (1) follows from the observation that a chord inCn forming a 1-chord cycle of lengthk
automatically forms a 1-chord cycle of lengthn+ 2− k.

(2) is immediate from the definition ofc(n, k).

(3) LetG consist of an (n−1)-cycle, together with an (n−1)-chord cycle on the same vertices.
Choose vertexv: let the chords atv be xv andyv and its adjacent cycle edges beuv andvw,
with u, v,w, x, y appearing in clockwise order around the cycle. Replacev and its incident
edges with two verticesvu andvw, with edgesvuvw, uvu, vww, xvw andyvu. The (n− 1)-chord
cycle inG becomes an (n− 1)-chordn-cycle. Add ann-th chordxvu to give an (n− 1)-chord
(n− 1)-cycle. �

Table 1 supplies some small values/bounds forc(n, k). The lower bounds are supplied by
Corollary 7 (see below); except for those values covered by Lemma 2, exact values and upper
bounds were found by computer search.

k
1 2 3 4 5 6 7 8 9 10 11

n 6 2 3 5 6 6 6

7 2 3 5 6 6 7 7

8 3 4 5 6 6 7 8 8

9 3 4 5 6 7 8 8 9 9

10 4 4 5 6 ≥ 6 ≥ 7 ≥ 8 ≥ 9 10 10

11 4 4 ≥ 5 ≥ 6 ≥ 7 ≥ 7 ≥ 8 ≥ 9 ≥ 10 11 11

12 5 4 ≥ 5 ≥ 6 ≥ 7 ≥ 7 ≥ 8 ≥ 9 ≥ 10 ≥ 11 12

13 5 4 ≥ 5 ≥ 6 ≥ 7 ≥ 8 ≥ 8 ≥ 9 ≥ 10 ≥ 11 ≥ 12

Table 1. Values ofc(n, k) for 6 ≤ n ≤ 13 and 1≤ k ≤ 11.

Our aim is to comparec(n, k) with the number of chords required for pancyclicity and for
vertex pancyclicity, in which each vertex must lie on a cycle of every length.

The following lower bound is stated without proof in [1]:

Theorem 3 In a pancyclic graph G on n vertices the number of edges is not less than n− 1+
log2(n− 1). �

For the sake of completeness we observe that theorem 3 follows immediately from the follow-
ing lemma:

Lemma 4 Suppose p chords are added to Cn, n≥ 3. Then the number N(n, p) of cycles in the
resulting graph satisfies

(

p+ 2
2

)

≤ N(n, p) ≤ 2p+1 − 1.

Proof. EmbedCn convexly in the plane. Suppose the chords added toCn are, in order of
inclusion,e1, e2, . . . , ep. Say thatei intersectsej if these edges cross each other when added to
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the embedding ofCn. Let ni be the number of new cycles obtained withei is added. Thenni

satisfies:

1. ni ≥ i + 1, the minimum occurring if and only if theej are pairwise non-intersecting for
j ≤ i;

2. ni ≤ 2i, the maximum occurring if and only ifei intersects withej for all j < i, giving
ni =

∑i
j=0

(

i
j

)

.

Now 1+
p

∑

i=1

(i + 1) ≤ 1+
p

∑

i=1

ni ≤ 1+
p

∑

i=1

2i and the result follows. �

The exact value of the minimum number of edges in ann-vertex pancyclic graph has been
calculated for smalln by George et al [5] and Griffin [6]. For 3≤ n ≤ 14 the lower bound in
theorem 3 is exact; however, it can be seen that, forn = 15, 16, we must add four chords to
Cn to achieve pancyclicity while the argument in the proof of lemma 4 can only account for
three.

As regards an upper bound on the number of chords required forpancyclicity, [1] again as-
sertsO(logn), again without a proof. A logn construction has been given by Sridharan [7].
Together with theorem 3 this gives an ‘exact’ growth rate forpancyclicity: it is achieved by
addingΘ(logn) chords toCn.

In contrast,vertex pancyclicity, in which every vertex lies in a cycle of every length has been
shown by Broersma [3] to requireΘ(n) edges to be added toCn. Our question is: where
between logn andn doesc(n, k) lie? For fixedk, we find a lower bound strictly between the
two: Ω(n1/k).

Let us for the moment restrict tok ≥ 3. Suppose we addp chords toCn, 3 ≤ k ≤ p ≤
(

n
2

)

− n.

Suppose that thesep added chords include ak-cycle. We will useK(k, p), defined fork ≥ 3,
to denote the maximum number ofk-chord cycles that can be created in the resulting graph.
Then 1≤ K(k, p) by definition andK(k, p) ≤ 2p+1 − 1 by lemma 4. By lowering this upper
bound we can increase the lower bound on C(n,k).

Theorem 5 K(k, p) ≤
(

p
k

)

+ k

(

p− k
k− 1

)

+

(

p− k
k

)

.

We will use the following Lemma to prove theorem 5:

Lemma 6 Suppose that a set X of chords is added to Cn. In the resulting graph the maximum
number of cycles passing all edges in X is

{

1 if X contains adjacent chords
2 if no two chords of X are adjacent

Proof. Let G be the graph resulting from adding the chords ofX to Cn. We may assume
without loss of generality thatG has no vertices of degree 2, since such vertices may be
contracted out. For a given cycle inG passing all chords ofX, let H denote the intersection
of this cycle with theCn. ThenH consists of isolated vertices and disjoint edges, andH is
completely determined once any of these vertices or edges isfixed. If two chords are adjacent
this fixes an isolated vertex ofH; if no two chords are adjacent then there is a maximum of
two ways in which a single edge ofH may be fixed. �
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Proof of theorem 5. By definition ofK(k, p) we must use a set, sayS, of k chords to create ak-
cycle. We add new chords toS, one by one. On adding ther-th additional chord, 1≤ r ≤ p−k,
we ask how manyk-chord cycles use this chord. For any such a cycle the previous r−1 chords
will be split betweenS and non-S chords: withi chords fromS being used, 0≤ i ≤ k− 1, this
can happen in

(

k
i

)(

r − 1
k− i − 1

)

ways. Sincei > 1 forces two adjacent chords inS to be used, summing overi, according to
lemma 6, and then overr gives

K(k, p) ≤ 1+
p−k
∑

r=1















2
1

∑

i=0

(

k
i

)(

r − 1
k− i − 1

)

+

k−1
∑

i=2

(

k
i

)(

r − 1
k− i − 1

)















.

This simplifies (e.g. using symbolic algebra software such as Maple) to give the result. �

Corollary 7 For given positive integers k and n, with3 ≤ k ≤ n and n≥ 6, the value of c(n, k)
is not less than the largest root of the following polynomialin p:

Π(p; n, k) =

(

p
k

)

+ k

(

p− k
k− 1

)

+

(

p− k
k

)

− n+ k− 1.

�

We finally extend our analysis to include the casesk = 1, 2:

Corollary 8 Let n≥ 6 be a positive integer. Then for k≥ 1 fixed, c(n, k) is of orderΩ
(

n1/k).

Proof. Fork = 1 the required linear bound was provided in lemma 2.

For k = 2 an analysis similar to that used in the proof of theorem 5 shows that the number of
2-chord cycles which may be created by addingp chords toCn is at mostp2 − p − 1. So to
have 2-chord cycles of all lengths from 3 ton we requirep2 − p− 1 ≥ n− 2. In this case we

can solve explicitly to get the boundp ≥
1
2

(

1+
√

4n− 3
)

.

Now supposek ≥ 3. In order to have allk-chord cycles of all lengths betweenk andn we must
have

n− k+ 1 ≤
(

p
k

)

+ k

(

p− k
k− 1

)

+

(

p− k
k

)

≤ f (k)pk,

for some functionf (k). Thereforepk ≥ (n− k+ 1)/ f (k) so, fork fixed, p = Ω
(

n1/k). �

Remarks 9 1. We are suggesting that the value of c(n, k) may be ‘intermediate’ between
pancyclicity and vertex pancyclicity in the sense that the number of chords it requires
to be added to Cn may lie betweenlogn and n. Thus far we have only a lower bound
in support of our suggestion. Moreover, a comparison of the growth orders,Ω(logn)
as opposed toΩ

(

n1/k), suggests that this is very much a ‘for large n’ type result. The
equationln n = n1/k has two positive real solutions for k≥ 3, given in terms of the
two real branches of the Lambert W function [4]. In particular ln n exceeds n1/k for
n > e−kW−1(−1/k), and this bound grows very fast with k: at least two orders of magnitude
per unit increase! To give a specific example, k= 10, the log bound exceeds the 10-th
root bound until the number of vertices exceeds about3.4× 1015. Until then, so far as
our analysis goes, we might expect ‘most’ pancyclic graphs to be 10-chord pancyclic.
However we suggest that, in the long term, a guarantee of thisimplication, analogous
to hamiltonicity guaranteeing pancyclicity, will not be found.
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2. We would like to know if c(n, k) is monotonically increasing in n. However, it is still open
even whether pancyclicity is monotonic in the number of chords requiring to be added
to Cn (the question is investigated in [6]). We believe that c(n, k) it is not increasing
in k and c(n, 1) > c(n, 2) for n = 12, 13 confirms this in a limited sense. Our n1/k lower
bound instead suggests the possibility that c(n, k) is convex for fixed n, as a function of k.

3. We observe that, unlike pancyclicity, the property of having cycles of all lengths each
passing k chords is not an invariant of a graph: it depends on the initial choice of
a Hamilton cycle. For example, in figure 1, there are cycles ofall lengths≤ 9 each
passing exactly one of the c(10, 1) = 4 chords of the outer cycle but there is no 4-cycle
passing exactly one chord of the bold-edge Hamilton cycle.

Figure 1: No 4-cycle uses exactly 1 chord of the bold-edge Hamilton cycle.
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