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Abstract 

Deep lip-reading is the combination of the domains of computer vision and natural language 

processing. It uses deep neural networks to extract speech from silent videos. Most works in 

lip-reading use a multi staged training approach due to the complex nature of the task. A 

single stage, end-to-end, unified training approach, which is an ideal of machine learning, is 

also the goal in lip-reading. However, pure end-to-end systems have not yet been able to 

perform as good as non-end-to-end systems. Some exceptions to this are the very recent 

Temporal Convolutional Network (TCN) based architectures. This work lays out preliminary 

study of deep lip-reading, with a special focus on various end-to-end approaches. The 

research aims to test whether a purely end-to-end approach is justifiable for a task as 

complex as deep lip-reading. To achieve this, the meaning of pure end-to-end is first defined 

and several lip-reading systems that follow the definition are analysed. The system that most 

closely matches the definition is then adapted for pure end-to-end experiments. Four main 

contributions have been made: i) An analysis of 9 different end-to-end deep lip-reading 

systems, ii) Creation and public release of a pipeline1  to adapt sentence level Lipreading 

Sentences in the Wild 3 (LRS3) dataset into word level, iii) Pure end-to-end training of a TCN 

based network and evaluation on LRS3 word-level dataset as a proof of concept, iv) a public 

online portal2 to analyse visemes and experiment live end-to-end lip-reading inference. The 

study is able to verify that pure end-to-end is a sensible approach and an achievable goal for 

deep machine lip-reading.  

 

 

 

 

 

 

 

 

 

 

 

 

 
1 https://github.com/thpkml/lrs3_word 
2 https://lsbu-analytics.org/deeplip/playground  

https://github.com/thpkml/lrs3_word
https://lsbu-analytics.org/deeplip/playground/
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1. Introduction 

With the advancement in deep neural network technology and increasing compute power, 

automatic lip-reading (ALR) is evolving from its traditional multi staged process towards a 

more end-to-end (E2E) approach as shown in Figure 1. While the traditional approach 

requires a much more involved feature extraction and processing stage, modern E2E 

approaches make use of neural networks that automatically extract the relevant features. 

Also, in the non-E2E systems, the features are passed through Support Vector Machines 

(SVM) for classification or a sequence of features are passed through a Hidden Markov 

Model (HMM); while E2E systems use deep neural network based backend to process the 

extracted features. The thesis presents a preliminary study of ALR revolving around the E2E 

approach. This chapter summarises the aims and objectives of this study, the research 

questions, methodology, contributions and findings. The meaning of E2E lip-reading is 

defined in detail in section 2.3. 

 

 
Figure 1. A typical non E2E  lip-reading system using a Hidden Markov Model (HMM) (left) vs an E2E 

system (right) 

1.1. Aims and objectives 

The study aims to investigate the extent to which E2E deep learning paradigm is applicable 

to deep lip-reading. To this end, it has the following objectives:  

i) Explore the concept of E2E in general and define its meaning in the context of deep 

learning and deep lip-reading.  
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ii) Set the deep lip-reading lay-of-the-land beginning with its meaning, applications and 

challenges. 

iii) Survey methods, tools and techniques that have helped advance deep lip-reading 

from its traditional multistage roots to the modern E2E process.  

iv) Evaluate various E2E works in deep lip-reading based on the criteria set for E2E.  

v) Conduct experiments on a selected ‘E2E’ method and analyse the performance and 

generalisability when trained fully E2E.  

1.2. Research questions 

The research attempts to answer the following questions: 

i) What is the ideal definition of E2E in deep lip-reading? 

ii) How are the breakthrough methods, tools and techniques in deep learning, especially 

in speech and image processing,  aiding the E2E approach? 

iii) Do the seemingly E2E state-of-the-art works in lip-reading meet the full extent of E2E 

as defined in this study? 

iv) Is the quest for pure E2E deep lip-reading pragmatic or idealistic? 

1.3. Methodology 

After an analysis and comparative evaluation of  9 different E2E systems with state-of-the-

art in deep lip-reading, one of the systems: a TCN based E2E (Martinez et al., 2020) is 

selected for further experimentation. Details of why this specific system was chosen is 

presented in section 3.6.10. In order to test whether a pure end-to-end training of the whole 

deep lip-reading system is justifiable, the following tasks and experiments are performed:  

i) Retraining the model from the scratch, as opposed to the original work which 

includes an additional pretraining phase, on the original dataset Lipreading in the 

Wild (LRW) (Chung and Zisserman, 2016). Observation of its training and test 

performance on LRW.  

ii)  Creation of a completely new word-level dataset from a sentence-level LRS3 dataset 

(Afouras et al, 2018). 

iii) Evaluation of original pretrained model on the new more challenging LRS3 dataset to 

observe how well the E2E model generalises to newer data.  

iv) Evaluation of the newly E2E trained model on the new LRS3 word-level dataset.   
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1.4. Contributions and questions answered 

The study has been able to answer the research questions (1.2) at varying levels of success. 

Additionally, resources and sub-projects created during the project have been made publicly 

available, when deemed useful, as a part of the contributions as listed:  

i)  The meaning of E2E lip-reading has been formulated and the pros and cons of this 

approach are evaluated.  

ii) Deep learning methods, tools and techniques that are helpful for the E2E approach 

have been identified and discussed.  

iii) It has been discovered that most alleged E2E lip-reading systems still include a 

multistage/module process, thus not completely matching the full meaning of E2E. It 

has also been found in most cases that although the systems could be trained purely 

E2E, they were not, due to performance lag. However, newer TCN based models have 

the ability to become purely E2E while still able to set new performance records.  

iv) It has been concluded that the quest for fully E2E lip-reading systems is sensible and 

promising.  

 

Other contributions:  

These are contributions not strictly focussed on E2E but can be of good value to lip-reading 

researchers. The dataset conversion pipeline (section 4.3, 4.4, Figure 27) can be used to 

create a novel word-level dataset to test the generalizability of E2E lipreading systems 

trained on other word-level datasets. The online tool can be used for a deeper 

understanding of visemes and phonemes before using them as classes in lip-reading systems.  

v) The pipeline designed for LRS3-sentence to LRS3-word has been made available for 

public use3. 

vi) A web based tool is created and made publicly available with following 

functionalities:   

a) A t-SNE (t-distributed Stochastic Neighbour Embedding) based interactive 

viseme plot to analyse word-similarity clusters in English language. 

b) Text-phoneme-viseme inter-conversion tool 

 
3 https://github.com/thpkml/lrs3_word  

The dataset can be acquired with 
permission from the owners 

https://github.com/thpkml/lrs3_word
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c) Live sentence-level lip-reading using user’s webcam video 

1.5. Organisation of the thesis 

The rest of the paper is organised as follows:  

● Chapter 2:  

A detailed introduction to ALR is provided including the process and 

applications. Challenges unique to ALR are laid out and potential solutions 

discussed. The meaning of ‘end-to-end’ (E2E) is formalised in the context of 

lip-reading and the limitations of E2E learning are analysed. 

● Chapter 3: 

The chapter begins with a general review of methods, tools and techniques 

applied in ALR. Each topic is reviewed in the context of E2E lip-reading. A brief 

review of non E2E approaches to lip-reading is provided. Finally, as the main 

content of the chapter, 9 different E2E lip-reading systems are thoroughly 

evaluated.  

● Chapter 4:  

The chapter lays out the details of the experiments performed for this 

research and the analysis of the results.  

● Chapters 5, 6: 

Conclude the research and lay out topics for continuation of the research in 

the future. 
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2. Automatic lip-reading and the end-to-end approach 

ALR is the training and use of computer algorithms to lipread. This chapter provides a 

detailed insight on the topic starting gradually from the general meaning and process of lip-

reading, machine lip-reading and its applications. The E2E approach is then defined both in a 

general context and in ALR. Lip-reading faces a set of challenges unique to the field. The 

subsequent sections discuss these challenges, possible solutions and how the advantages 

and limitations of the E2E approach relate to these challenges.  

2.1. Lip-reading: what, why and how 

2.1.1. What is lip-reading? 

There is more to understanding speech than simply speaking and hearing. Speech 

information is multimodal. The obvious and the dominant audio, and the often 

underappreciated visual cues betrayed by lip movement, tongue and teeth. The importance 

of visual information in speech intelligibility, especially in the presence of audio chatter, was 

demonstrated by Sumby and Pollack (1954). Speech perception using just the visual 

information is referred to as lip-reading or Visual Speech Recognition (VSR). In human 

communication where speakers are visible, the visual information, especially the lip 

movements, can influence the recognition of speech. A demonstration of this is the following 

example from a 1976 experiment (McGurk and MacDonald, 1976): 

 

Lip movements in the video ⇒ /ga/ 

Overlaid audio ⇒ /ba/ 

Listeners report hearing ⇒ /da/ 

  

In the actual experiment, when the lips were saying ‘gaga’ and the voice was saying ‘baba’ 

the viewer would report hearing ‘dada’; a sound non-existent in the utterance. This 

phenomenon, now known as ‘McGurk Effect’, proves the importance of lip-reading in speech 

recognition. 

 

Machine Lip-reading 

Machine lip-reading, also known as ALR involves training an algorithm to read lips. Most 

traditional approaches to machine lip-reading had two clear stages: extraction of visual 
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features from a silent talking video and processing the sequence of features back into the 

uttered word/sentence. Features used to be generally handcrafted and purely optical. 

Statistical models like HMMs (Levinson et al., 1983) were the predominant choice for 

sequence processing. A seminal work by Goldschen et al. (1997) captured geometric features 

of the oral cavity which were then processed and clustered to generate ‘codewords’. 

Sequences of ‘codewords’ were then fed into a HMM, the first use of HMM in VSR, to model 

the temporal dynamics. Movellan (1994) opted for richer representation than handcrafted 

lip metrics and showed improved performance by modelling images as Gaussian mixtures, 

although the model also used HMM and was trained to classify only four numeric words 

‘one’ - ‘four’. Other common feature extractors for the days of yore include Principal 

Component Analysis (PCA)  (Basu et al., 1999) and Active Appearance Model (AAM) 

(Matthews et al., 2002) of grey-scaled image frames. 

 

Deep Lip-reading 

The progress in deep neural network technology: Restricted Boltzmann Machines (RBMs) 

(Lee et al., 2007), Convolutional Neural Networks (CNNs) (Krizhevsky et al., 2017) and 

Recurrent Neural Networks (RNNs) (Hochreiter and Schmidhuber, 1997;   Cho et al., 2014) 

has also been reflected in machine lip-reading. The aptly named ‘deep lip-reading’ systems 

started utilising neural networks like RBMs (Ngiam et al., 2011) and CNNs for feature 

extraction and RNNs like Long-Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 

1997) and Gated Recurrent Units (GRU) (Cho et al., 2014) for sequence processing.  

 

E2E Deep Lip-reading 

Earlier deep lip-reading still decomposed the task into two stages: learning the visual 

features and processing the sequence of features to predict units of speech. Currently, 

there’s been a move towards E2E deep lip-reading where a network is able to train in a 

single cycle. E2E technique, being the focus of this survey, will be introduced in detail in the 

section 2.2. and discussed throughout this dissertation.  
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2.1.2. Why is lip-reading done ? (the applications) 

Besides the obvious applications of ALR such as: an aid to increase noise tolerance in audio 

speech recognition, visual aid to speech perception in face to face communication etc., 

researchers in the domain often come up with other creative applications: They include:  

● Car-phone dialling, considering the engine and road noise (Movellan, 1994) 

● A more secure, friendlier, unobtrusive  biometric measurement vs retina scan, 

fingerprints etc (Messer et al., 1999) 

● A visual-enhanced computer voice recogniser  (Matthews et al., 2002) 

● A multimodal authentication tool on top of face and voice (Palanivel and 

Yegnanarayana, 2008) 

● A forensic tool in counter-terrorism and law-enforcement (Theobald et al., 2006) 

● Creating speech-driven facial animations (Vougioukas et al., 2018) 

● An aide to sign language robotics (Gholipur et al., 2021) 

● We suggest a Google Glass like device that does live lip-reading and annotates on the 

glass screen. 

 

All of these applications demand the ALR state-of-the-art to improve significantly in accuracy 

as well as computation time for it to be practical. One recent example (Ma et al., 2021) 

towards this effort is the use of efficient Depthwise-Separable Temporal Convolution (DS-

TCN) based models with Knowledge Distillation that runs 8.2 × faster while matching the 

accuracy of the state-of-the-art in word based prediction. 

2.1.3. How is lip-reading done? (the process) 

As it is somewhat evident by now, automatic lip-reading involves the following two main 

stages (Figure 2), regardless of whether the system is trained in multiple phases or E2E. The 

input video is first passed through a feature extractor which greatly reduces its 

dimensionality. The extracted features are then used to predict the uttered text e.g. word 

video to a word. If the ALR system classifies a sequence of extracted features into smaller 

speech units like phonemes, visemes or characters, such units then need to be combined 

and aligned properly to reproduce the uttered speech text e.g. sentence video to characters 

to a sentence.  
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Figure 2. The 2 steps of lip-reading 

 

The following is a list of methodologies for the two stages in chronological order, found in 

the literature. A detailed discussion on various ALR methods and techniques is covered in 

later section [Methodologies]: 

Table 1: Various approaches for feature extraction and sequence processing in lip-reading.  

Task Approach Year References 

 
 
 
 
 
Feature 
extraction 
(frontend) 

Dynamic time-warping of visual 
features extracted from the oral 
cavity 

1984 Petajan 

Mapping power-spectra from static 
images 

1989 Yuhas et al.  

Optical flow 1989 Mase and Pentland 

Discrete Cosine Transform (DCT) on 
face Region of Interest (ROI) 

2001 Potamianos et al. 

Eigenlips 1994, 
2016 

Bregler and Konig, 
Wand et al.  

Histogram of Oriented Graphics (HOG) 2005, 
2016 

Dalal and Triggs, 
Wand et al. 

Deep Bottleneck Features (DBF) 2016 Petridis and Pantic 

Fully Connected Networks (FCN) 2017 Petridis et al. 

CNN 2017 Stafylakis and 
Tzimiropoulos 

 
 
 
Sequence 
Processing 
(backend) 

HMM 1997, 
2001 

Goldschen et al., 
Potamianos et al. 

Support Vector Machine (SVM) 2016 Wand et al. 

LSTM 2016 Petridis and Pantic 
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Temporal CNN 2020 Martinez et al. 

Transformer 2018 Afouras et al. 

2.2. Frontend-backend combinations 

Various deep neural network based frontend+backend combinations have been tried for lip-

reading in recent years. The choice of frontend and backend networks can determine 

whether the whole network can be trained E2E. Table 2 lists some of the outstanding works. 

Most combinations allow for an E2E training but some implement a pre-training stage for 

faster convergence. A detailed review of the architectures for their E2E nature is provided in 

section 3.6. 

 

Table 2: Common DNN-based combinations for feature extractor frontend and classifier 

backend for lip-reading. A detailed breakdown of DNN and non-DNN combinations can be 

found in Fenghour et al. (2021)’s survey. 

Frontend Backend Examples 

CNN CNN (Chung and Zisserman, 2016) 

CNN 

Long Short Term Memory 

(LSTM)+ Attention (Chung and Zisserman, 2016; Lu and Li, 2019) 

Autoencoder 

LTSM, Bidirectional LSTM 

(BLSTM) (Petridis and Pantic, 2017; Petridis et al., 2018) 

3-Dimensional 

CNN (3DCNN) + 

ResNet 

BLSTM, Bidirectional 

Gated Recurrent Unit 

(BGRU), Transformer 

(Afouras et al, 2018; Stafylakis and 

Tzimiropoulos, 2017) 

3DCNN + 

ResNet TCN  (Martinez et al., 2020; Ma et al., 2021) 

 

2.3. End-to-end lip-reading 

This section discusses the following:  

● The general meaning of ‘end-to-end’ 
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● The meaning of ‘end-to-end’ in machine learning 

● Defining the meaning of ‘end-to-end’ deep lip-reading 

 

In general, ‘end-to-end’ refers to the way any process is carried out. According to the 

Cambridge online dictionary, depending on the context it could mean: 

● ‘From the very beginning of the process to the very end’ 

● ‘Including all the stages of a process’ 

 

In machine learning however, ‘end-to-end’ has a relatively more specific meaning. It 

generally refers to a complex learning system with a single model, where there are no 

intermediate stages. For some, a Machine Learning (ML) system that claims to be ‘end-to-

end’ must have these features (Glasmachers, 2017): 

● All modules should be differentiable (capable to learn e.g. through gradient descent). 

● It should follow an unified training scheme. 

 

There has been a significant push towards E2E ML systems in recent years. Two main drivers 

of this trend are: the availability of vast quantities of training data in a plethora of domains 

and the breakthroughs in sophisticated, deep neural network architectures (CNN, LSTM, 

ResNet, Transformer) able to learn complex E2E relationships using these datasets. Some of 

the primary motivations behind the E2E ‘revolution’ are:  

● An attempt to move from the traditional multistage ML processes towards single 

Neural Network based processes.  

● A quest to let the data speak for itself (an algorithm with very little human bias that 

can better expose the latent truth in the data).  

● Getting the human out of the loop (the learning process).  

 

While unifying a complex multistage ML process enables Neural Networks to learn a more 

complex mapping, it comes at the cost of explainability of the results. The deeper the 

network and the purer the E2E process, the darker its ‘black-box’ nature.  

 

An example of why getting the human out of the loop is a good idea is the case of phonemes 

in automatic speech recognition (ASR). Linguists as well as Natural Language Processing 
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(NLP) researchers have been considering phonemes as the fundamental/natural units of 

spoken language. Consequently, when early ASR systems were trained, the learning systems 

were ‘force-fed’ phonemes without much consideration whether converting an audio 

waveform to phonemes to make it ‘easier’ for the machines was actually helping (Ostendorf 

and Roukos, 1989). Turns out, letting an E2E NN learn its own feature representations 

achieves better performance than using phonemes as intermediate classes. Keeping humans 

in the loop and using handcrafted features also keeps our assumptions and biases in the 

model. It also takes more time and effort to conduct a ML project. Hence, training a system 

E2E and letting it learn its own feature representation seems like the best way to let the data 

speak for itself. One cost to taking humans away from the loop is the taking away also of our 

hard earned skills, experience and expertise that could in fact save us time and require less 

data (Glasmachers, 2017). These are conflicting views but nonetheless, the ML momentum is 

towards E2E.  

 

In deep lip-reading, the expectation from any architecture that claims to be E2E is the direct 

mapping of visual or audio-visual input into text label sequences as shown in Figure 3. The 

input to an ALR system is a sequence of vectors each representing an image frame of a 

video. Usually some form of encoder network maps this high dimensional input into a lower 

dimensional feature sequence of the same length. These features are then aligned and 

decoded to produce the output sequence which is different (usually smaller) than the input 

sequence e.g. 100 image frames to 30 ASCII characters.  
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Figure 3: A typical E2E sequence model that takes a sequence of inputs and outputs a 

sequence. Lip-reading is a special case of a sequence model.  

Note: This is a typical representation of an E2E architecture. It is not necessarily the defining 

structure as many E2E systems do not have a clear encoder-decoder separation as the whole 

system acts as a single complete structure.  

 

where, xi  is the ith item of input sequence X of length T,  

fi  is the ith item of feature sequence F of length T and 

li  is the ith item of label sequence L of length N 

 

Depending on which definition of ‘end-to-end’ from this discussion the researchers follow, 

there have been quite a few different flavours of ‘end-to-end’ ALR systems. Some seemingly 

end-to-end systems will be individually analysed in detail in section 4.3.  

 

2.4. The limitations of end-to-end learning 

While there are several benefits of E2E learning, it has its limitations and potential pitfalls. As 

the push for E2E is growing, so is the complexity of neural network architectures. It should 

not be forgotten that current neural networks themselves are modular structures. Hence, is 

it right to blindly treat every task as best suited for E2E? The limitations of E2E approach are 

laid out as follows (Glasmachers, 2017): 

i) E2E sounds automated and enjoys a high degree of automation but is not fully 

automated:  

a) Human designers are still required, e.g. to design neural network layers with 

specific roles (e.g. the design of CNNs for computer vision) 

ii) Problem decomposition is at the core of engineering (‘Divide-and-conquer’) 

a) The E2E paradigm seems to ignore that. 

b) It naively/dangerously assumes that mapping any random initial state to a 

non-trivial goal state using a simple gradient descent is a straightforward 

process. 

iii) Data requirement grows exponentially for unmodelled interactions between 

modules. 
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iv) It is harder to know/ensure that the modules are learning what is intend off them i.e.  

E2E is a blacker box in terms of Artificial Intelligence (AI) explainability. This stems 

from the fact that E2E networks are relatively deeper and they take more control 

away from the human designers (e.g. learn their own features).  

v) The efficiency of an E2E system is inversely proportional to the network complexity. 

a) For very complex networks, the E2E approach can fail completely. It is better 

to train modules one at a time in such cases.  

b) Unsupervised pre-training followed by fine-tuning can solve the issue. 

2.5. Addressing the unique challenges in lip-reading and E2E lip-reading 

Lip-reading is an extremely difficult task both for humans and machines. Some of the major 

challenges of the machine lip-reading and corresponding efforts towards their solutions are 

presented in this section. A discussion of how these challenges affect the E2E approach is 

also provided. The following challenges are addressed: 

● Homopheme 

● Dataset challenge 

● Video quality 

● Network depth 

● Context 

● Unseen classes 

● Lip-reading in non-English 

● Speaker dependence/variability

 

Homophemes  

Visemes are the units of spoken language based on unique lip movements made during 

utterance. They are the visual equivalent of phonemes.  ‘Homophemes’ are words with 

identical visemes. In the absence of audio information and/or context, these words are 

almost impossible to distinguish as they produce identical lip movements. They pose one of 

the toughest challenges in lip-reading. Figure 4 shows an example of a homopheme pair (the 

words: ‘GAME’ and ‘NAME’ which have the same viseme sequence [k, ey, p]) from the 

lipreading dataset LRS3-TED (Afouras et al., 2018). 
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a) Word: ‘GAME’, Visemes: [k, ey, p] 

 

b) Word: ‘NAME’, Visemes: [k, ey, p] 

 

c) Visemes placed side to side 

Figure 4: Frame sequences for utterance of homopheme words a) ‘GAME’ b) ‘NAME’ in LRS3-

TED (Afouras et al., 2018). 

To understand the extent of this challenge, a python script was written to generate 

homophemes for any given sentence. One output of the script is as follows: 

Input sentence: “What is your name” 

Sounds/Phonemes in each word: 

- what : [['W', 'AH1', 'T'], ['HH', 'W', 'AH1', 'T']]  

- is : [['IH1', 'Z'], ['IH0', 'Z']] 

- your : [['Y', 'AO1', 'R'], ['Y', 'UH1', 'R']] 

- name : [['N', 'EY1', 'M']] 
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Visemses based on these sounds/phonemes: 

- what: [‘W’, ‘AH’, ‘T’] 

- is: [‘IY’, ‘T’] 

- your: [‘K’, ‘AO’, ‘W’] 

- name: [‘K’, ‘Ey’, ‘P’] 

Number of words with visemes identical to each of the given word:  

[what, is, your, name]  ⇒  [40, 13, 29, 76] 

Number of possible sentences that look visibly similar to ‘what is your name’: 

1,146,080 

A few examples of these 1,146,080 sentences based on the CMU vocabulary (a 

pronouncing dictionary from Carnegie Mellon University):

○ wass id nohr kepp 

○ rus ede lor gape 

○ wise it corr lamme 

○ whyte ease loehr hemm 

○ wright it corps lam 

○ wythe is horr hamme 

○ weisse ede lore labbe 

○ was id your hemme 

○ what it core nahm 

○ white eat cor heppe

 

As it can be seen, the majority of these sentences do not make semantic sense. 

Nevertheless, it goes on to stress the fact that there are over 1 million word combinations 

that look almost exactly the same as the sentence ‘what is your name’. Naturally, the 

problem gets worse for longer sentences. Lip-reading models need the assistance of an 

external language model or need to learn their own implicit language model (Afouras et al, 

2018) in order to narrow down the options through the use of context. The challenge was 

also tackled by Fenghour et al., (2020) using a Generative Pre-Training transformer (GPT) to 

learn a language model for visemes to word conversion. The group has also attempted 

disentangling homophemes using perplexity analysis (Fenghour et al., 2020).  

 

Homophemes pose a great challenge to the E2E approach to lip-reading as it necessitates 

the learning of the context. This makes the already complex E2E learning even more difficult. 

Although this is intuitive logic, it needs to be tested. The test would require a homophemic 

and a non-homophemic dataset to compare the performance of an E2E lip-reading system.  
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Dataset Challenges 

The task of learning to lipread is highly complex. This has been reflected in the usage of huge 

neural networks with tens of millions of parameters (Afouras et al, 2018) to match the 

complexity of the task. This generates another problem: the need for training datasets with 

sizes to match these neural networks. Hence, E2E lip-reading systems require even bigger 

datasets.  

 

In the early days of ALR, with handcrafted features and light-weight models, the focus was to 

create datasets in a controlled environment with as little ‘noise’ as possible, so as not to 

underfit the models (Matthews et al., 2022; Messer et al., 1999; Sanderson, 2002). An 

exhaustive, detailed list of audio-visual datasets from over two decades is available in this 

survey (Fernande-Lopez and Sukno, 2018). 

 

One of the earlier attempts to fill the data void is the CUAVE dataset (Patterson et al., 2002) 

The creators highlight the fact that researchers were forced to create their own dataset and 

available datasets suffered from speaker dependency. Their dataset containing 7,000 

utterance samples of 36 speakers pronouncing 10 numeric words, despite spurring several 

researchers in audio-visual speech recognition, is now too limited for modern lip-reading 

architectures.  

  

GRID corpus (Cooke et al., 2006) focusses on the quality and quantity of audio-visual 

recordings. With 34,000 high quality clips of 34 speakers uttering English phrases, it is a 

sizable dataset and hence is still being used in smaller scale experiments. TCD-TIMIT dataset 

(Harte and Gillen, 2015) mixes some professionally trained lipspeakers among other 

speakers to see whether they would have an advantage over regular speakers. As expected, 

the experiments show that they do and by a significant margin. However, a model trained on 

lipspeakers would not be of much use for ALR applications in the real world. Creators of 

OuluVS2 dataset (Anina et al., 2015) cite the low counts of speakers, utterances and 

constrained viewing angles in existing datasets to justify the need for their multi-view 

dataset with non-rigid mouth motion. Petridis et al. (2020) present the performance of a 

single model on various small-scale datasets. It is one of the commonly used datasets even 

now. Shillingford et al. (2019) mention the lack of open-vocabulary large scale datasets for 
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visual speech recognition and create Large Scale Visual Speech Recognition (LSVSR) dataset 

attempts to fill that gap with 3,886 hours’ worth of video clips. Their new model based on 

LSVSR also set a new benchmark that significantly outperforms professional human lip-

readers in Word Error Rate (WER). 

 

More recent attempts have been towards creating audio-visual datasets that try to mimic 

the real world. Hence, they try to incorporate ‘defects’ like shaky videos, non-frontal faces 

etc. with the aim of training lip-reading models to be robust towards such defects during 

inference. To get around the time and cost of hand-labelling, which is one of the biggest 

challenges in creating large datasets, the group came up with an ingenious pipeline that 

‘watch’ videos, capture the talking heads and use the audio and the subtitles to 

automatically create the labels. These ‘in the wild’ datasets have been the basis of most new 

breakthrough lip-reading models (Chung and Zisserman, 2016; Chung et al., 2017; Stafylakis 

and Tzimiropoulos, 2017; Afouras et al, 2018; Shillingford et al., 2019; Martinez et al., 2020). 

The BBC-Oxford LRW dataset (Chung and Zisserman, 2016), based on BBC programs, with 

400,000 utterances of 500 English words from over 1,000 different speakers is arguably the 

best available word-level dataset to date. The creators went on to create even larger 

sentence-level datasets Lip-reading Sentences in the Wild 2 (LRS2) (Chung et al., 2017), also 

based on BBC programs and LRS3 (Afouras et al, 2018), based on TED talks on YouTube. 

Table 3 lists some of the large wild datasets.  

 

Lip-reading datasets for non-English language are starting to crop up too, although currently 

just a handful. Some examples are: the Mandarin dataset LRW-1000 (Yang et al., 2019) and 

the Romanian language dataset LLRo (Jitaru et al., 2020), just to name a few. 

 

Considering human-labelling effort as one of the biggest obstacles in creating lip-reading 

dataset, zero-shot learning (Xian et al., 2019; Wang et al., 2019) that is aimed at classifying 

images in the lack of labelled training data, has also been suggested.  
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Table 3: Some large wild datasets currently available for lip-reading 

Name Year Segment Classes Samples Vocabulary 

LRW 2016 Word 500 478,764 500 

LRS2 2017 Sentence 17,428 118,116 41,427 

LRS3-TED 2018 Sentence  118,516 51,000 

LRW-1000 2018 Word 1,000 718018 1,000 

 

Although, bigger and bigger lip-reading datasets are created and made available recently, 

the scale is nowhere near e.g. ImageNet on vision tasks with millions of samples, GPT-3 on 

language tasks with the whole of Wikipedia as dataset. It remains to be seen to what extent 

a complex E2E lip-reader trained on wild and noisy data like LRS3, would improve if the 

dataset was much bigger. 

 

Video Quality Challenges 

Datasets made up of clean, high quality, frontal-face videos and precise hand labelling do 

make it easier to train lip-reading models. However, these models will struggle in the wild as 

most real world videos will have some of the opposite qualities. This experiment (Seymour et 

al., 2008) is one effort towards comparing the performance of image transformation based 

feature extractors in a clean version of a dataset and a version which was intentionally 

corrupted with ‘jitters’. Jitters seemed to have a stronger negative effect to feature 

extraction compared to other defects like blurring.  An example of video quality differences 

is shown in Figure 5. Figure 5.a) shows an image frame of a lipreading video from the GRID 

dataset (Cooke et al., 2006) where there’s very little background noise, the speaker’s face is 

clearly visible and placed centrally in the image. There is also very little head movement 

between image frames in the video (not possible to depict here). This type of clean input 

reduces the workload of an ALR system and helps achieve better performances. Figure 5. b) 

on the other hand is an exact opposite. It is an image frame of one of the lipreading videos 

from the LRS2 dataset (Chung et al., 2017). It has a noisy background, blurry image, head 

movement (in the video) and is of a lower definition (quality). Inputs like this pose a lot of 

challenges to an ALR system and consequently, performances on such ‘wilder’ datasets are 

relatively lower.  
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a) 

 

b) 

Figure 5. Video quality differences between a) GRID dataset (Cooke et al., 2006)  b) In-the-

wild LRS2 dataset (Chung et al., 2017) 

 

The extent to which a tiny perturbation in an image can fool a network into completely 

misclassifying the image was demonstrated by Su et al. (2019), where the image was 

‘attacked’ by a noise as small as a single pixel. This effect can multiply in lip-reading where 

multiple image frames are used for classification. 

  

In the context of E2E lip-reading, video quality is a tricky factor. One needs to decide 

whether to implement a smaller model on a high quality laboratory dataset or a complex E2E 

model on a large wild dataset. While E2E systems trained on a high quality dataset do 

produce good results (Assael et al., 2016), the performance degrades on wild datasets even 

if the datasets are significantly bigger e.g. LRS3 (Afouras et al., 2018 ).  

 

Network Depth Challenges 

It is an open fact that training very deep neural networks is difficult as well as time and data 

consuming (Srivastava et al., 2015; He et al., 2016). Most lip-reading architectures are quite 

deep networks with 10s of millions of parameters (Afouras et al., 2018). Training the 

networks E2E means learning a very complex mapping between an input video to the output 

text. This approach necessitates even deeper networks.   
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To this end, a concept of ‘Highway Networks’ (Srivastava et al., 2015) has been proposed 

aimed at easing gradient-based training of very deep networks. Highway Network has been 

implemented in lip-reading by Xu et al. (2018) in their novel LCANet, which achieved a 12.3% 

improvement on Word Error Rate (WER)  over the then state-of-the-art methods on the 

GRID corpus. 

One seminal work on easing the training of deep networks is the ResNet (He et al., 2016) 

where the network layers are reformulated to learn residual functions with respect to the 

layer inputs and the resulting network was proven to be more easily optimisable while 

gaining in accuracy from increased depth. The use of ResNet as a part of the visual frontend 

has been a common trend in modern lip-reading architectures (Afouras et al, 2018; Assael et 

al., 2016). The instability of deep networks against small perturbations has also led to the 

development of ‘stability training’  technique (Zheng et al., 2018) with proven increase in 

their robustness in image classification tasks.  

 

Context 

One aspect where machine lip-reading systems consistently fall well behind human lip-

readers is the use of context (Fernandez-Lopez and Sukno, 2018). The problem of context 

has been tackled by some with the use of external language models with expensive beam 

searches. If a network is required to learn the context on its own i.e. its own simplistic 

language model in an E2E fashion, the sequence processing part of the lip-reading 

architecture is often a deep attention based network. Transformers are commonly used to 

learn the context (Afouras et al, 2018). However, this makes the overall architecture quite 

deep forcing a multistage training strategy involving pretraining of separate modules. This 

strategy is what we would desire to evolve out of in the quest for purer E2E lip-reading. The 

human ability to arbitrarily fetch context from seemingly infinite timesteps is something an 

ALR system can currently only aspire to do.  

 

Unseen Classes 

Most current ALR approaches undertake lip-reading as a classification problem where the 

classes can be individual words, phrases or even sentences. This creates a problem in 

inference where the model trained on a limited class training set comes across an unseen 
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class. E.g. a model trained on LRW dataset (Chung and Zisserman, 2016) with 500 word 

classes is shown a word e.g. ‘apple’ which is not in the training data.  

 

The most straightforward solution to this issue would be to go out and gather more data 

with a bigger vocabulary. But advances in ML techniques like zero-shot learning and 

Generative Adversarial Networks (GANs) have been used to get around the issue. Singla et 

al., (2020) have been able to improve the accuracy of phrase classification on Oulu dataset 

by 27% with their novel implementation of zero-shot learning using GANs to generate 

samples of new classes.  

 

Other Languages 

To no one’s surprise, the majority of lip-reading experiments are done and hence the 

resulting progress has been made in the English language. Given the language agnostic 

applications of lip-reading, progress surely is needed in non-English ALR research. To this 

end, over the years, whatever progress has been made can be roughly grouped into two 

different bins: i) creation of datasets (Yang et al., 2019; Jitaru et al., 2020) etc. to train the 

models directly on the target language ii) use of relatively language independent features 

like visemes in English language dataset with an expectation of implementing it for a second 

language (Fenghour et al., 2020). 

 

 Zhao et al. (2019) have pointed out the fact that even with the availability of target language 

dataset, Chinese Mandarin poses higher ambiguity to conventional lip-reading architectures 

because of its tone/pitch-based semantics unlike the word/sentence-based English. Their 

proposed Cascade Sequence-to-Sequence Model for Chinese Mandarin (CSSMCM), designed 

to model tones based on visual features and syntactic structure and trained on their own 

Chinese Mandarin Lip-reading (CMLR) dataset, surpasses the state-of-the-art frameworks. 

Transfer learning from English dataset trained models to a second language is yet another 

option (Jitaru et al., 2021).  

 

Languages that pose higher ambiguity might require a deeper network with matching 

complexity or require a human expert to design intermediate features. Neither of the two 



29 

facilitates the E2E approach. A deeper study is required to create novel network 

architectures that can efficiently train E2E on a highly complex language.   

 

 

 Speaker Dependence/Variability 

Speaker dependence refers to the fact that ALR systems do not perform as well with test 

speakers that were not present in the training data. Speaker variability can mean any or a 

combination of factors ranging from the differences in lip shape, lip thickness, facial hair etc. 

to accents and non-lip gestures. It adds to the complexity of the task and makes E2E ALR 

more difficult.  

 

A detailed survey on speaker dependence in lip-reading is provided by Burton et al. (2018). 

Their experiment shows that their speaker-independent tests, where the speakers in the test 

dataset are not included in the training dataset, underperforms the speaker-dependent 

state-of-the-art on the TCD-TIMIT dataset. Another quite common speaker variability issue is 

the viewing angle of the speaker's face. A model trained on predominantly frontal-face data 

will not be as effective for faces in various profile view angles. One ingenious solution to this 

problem is proposed by Cheng et al. (2020), where the LRW dataset is augmented with 

synthetically generated faces at various angles using a 3D Morphable Model (3DMM). Their 

experiment for word recognition on the LRS2 dataset achieves a 2.55% improvement. Figure 

6 illustrates how different the inputs can be for the same output (word ‘ABOUT’ in this case). 

There are variabilities present in facial angle, facial hair, presence/absence of glasses, eye 

movements, shadows, skin tone, frame coverage (% of the frame occupied by the face) etc.  

 

 

Figure 6: The same word ‘ABOUT’ uttered by two quite different speakers.  
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The most natural way to create an E2E speaker-independent ALR model would be to use a 

dataset that contains all sorts of variabilities. However, such a dataset will have to be very 

large to allow enough samples for each variation.  

2.6. Rationale and criteria for a pure E2E ALR system 

Rationale for choosing E2E 

If the E2E approach has some obvious limitations, why then should it be pursued? Taking a 

step back from the finer issues, challenges, solutions etc. and looking at the bigger picture, it 

is apparent that  liberating humans out of the loop for full automation is the machine 

learning ideal. E2E is an approach in that direction. However, since what is currently 

available in that front is nowhere near perfection, some caution is necessary. At least for 

now, an expertly human designed architecture followed by ‘full automation’ seems to be the 

way to go for E2E. A detailed discussion of the rationale is provided in section 4.1. 

 

Criteria for pure E2E ALR 

We propose that a pure E2E ALR system should meet the following criteria:  

i) All modules of the pipeline should be differentiable.  

ii) Gradients should flow from one end of the system to the other end.  

iii) It should follow a unified training scheme without any:  

a) modular training.  

b) pretraining stages including curriculum learning.  

iv) Pre-processing should be kept at a minimum: 

a) Non-intelligent processing such as grey-scaling to reduce input size, cropping 

the frames to a given size etc. can be included. 

b) Intelligent processing such as the use of externally trained ROI detectors 

should not be included. The ALR system itself should be able to learn to focus 

on ROIs through training.  

v) If the system works at the sentence-level, it should learn its own language model to 

align the intermediate outputs such as characters, visemes, phonemes, words etc 

into sentences. It should not depend on an externally trained language model for the 

alignment of these speech units.   
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3. Literature Review 

The chapter is divided into the following sections:  

i) A review of the feature extraction techniques in ALR 

ii) Various classification schemas and how they affect the E2E approach 

iii) A review of various tools and techniques used in lip-reading and where applicable, a 

discussion of how each of them relate to the E2E approach 

iv) A discussion on how ALR uses language models to decipher the output 

v) A review of a few pre-E2E and non-E2E ALR approaches 

vi) A review of several different E2E ALR systems 

3.1. Feature extraction in lip-reading: visual and temporal 

Extraction of visual features from a talking video is the first stage of ALR. Researchers have 

tried a variety of techniques in the past in an attempt to best represent the rich input 

information.  Traditional feature extraction techniques in VSR tend to fall into the categories 

(Dupont and Luettin, 2000) shown in Figure 7:  

 

 

Figure 7: Traditional feature extraction techniques in lip-reading. 

 

i) Image-based: images of the speaking mouth are used directly at grey-level or after 

some transformation to create the feature vectors. 

ii) Motion-based: assumption that movements in the images during the utterance must 

be related to speech and hence should be useful for decoding. 

iii) Geometric-feature-based: consider metrics like mouth height, width, 

perimeter/opening etc. to contain important information.  
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iv) Model-based: create a model of lip contours or other speech articulators into a low 

dimensional space.  

 

All four techniques relate to non E2E systems of the pre deep learning era. Human 

assumptions are used to decide what features the lip-reading systems would find most 

useful. The evolution of deep neural network architectures have made these techniques 

redundant to some extent by learning the suitable features automatically. This has enabled 

E2E training of ALR systems. However, due to the huge volume of information contained in a 

lip-reading video, even these E2E systems go through various pre-processing stages.  

 

A universal trend to reduce the volume of information in input video is to ignore areas in the 

image frames outside of the face/mouth region. Cropping a mouth ROI by hand is 

prohibitively expensive, especially for large datasets. Luckily, there are great tools available 

to automate that process. DLIB (Davis, 2009) is an excellent open source toolkit that comes 

with methods and a trained model to detect faces and up to 68 facial landmarks from 

images. It has been extensively used in ALR for mouth ROI detection as a part of data pre-

processing. Figure 8 shows a typical usage of the library on video image frames. As shown in 

stages a) to e), the original image frames go through a face detector that uses 68 different 

landmarks for eyebrows, eyes, nose, mouth and jawline. The pixel coordinates for these 

landmarks can be used to crop various regions of interest in the image e.g. the mouth area 

for lip-reading. The information can also be used to correct the facial angle relative to the 

image frame as illustrated in Figures 8.c), d) and e). 

 

a) Original frames 

 

b) Face detected and cropped 
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c) Face rotated based on lip bisector 

 

d) A more severe case of rotation correction (3 angled faces rotated to vertical) 

 

e) Mouth ROI detected and cropped after rotation 

 

Figure 8: Mouth ROI detection using DLIB (Davis, 2009) python library 

 

Another tool for face detection often found in lip-reading literature is RetinaFace (Deng et 

al., 2019). However, it only detects 5 facial landmarks and seems to struggle when face size 

in images is large.  

 

The following sections review various techniques developed in an attempt to best capture 

the spatial and temporal information present in VSR/AVSR (Audio Visual Speech Recognition)  

data. The varying levels of success of each technique is also presented.  

 

Zhao et al. (2009) introduced the use of Local Binary Pattern (LBP) (Ojala et al., 1994) 

operator, in an effort to represent both spatial and temporal information from grey-scaled 

image frames for lip-reading. Their experiment on AVLetters database achieved a new high 

classification accuracy of 62.8%.  

 

Considering the amount of unnecessary or even adversarial information a talking face video 

contains relative to the amount of information in the output, a clever technique (Tang et al., 

2015) extracts spatiotemporal features from only the significant regions rather than the 
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whole frame. The proposed method saves a considerable amount of computation time by 

reducing noise and also is able to achieve a high classification rate on YouTube, KTH and 

Hollywood2 datasets. While this experiment was performed on a video classification task, it 

can be used for ALR. 

 

Rekik et al. (2014) have implemented HOG and Motion Boundary Histogram (MBH) to 

extract visual and motion features. Their SVM based system has achieved a good 

performance on speaker dependent lip-reading.  

 

An attempt towards a compact representation of visual information has been made by Zhou 

et al. (2014) via the use of latent variables that separately encodes: 

● variation between speakers; 

● variations caused due to the utterance. 

 

In the very related domain of video classification, which also involves the extraction of 

appearance as well as motion information, Tang et al. (2019) cite the high computational 

cost of using optical flow as the motion information extractor. To solve this, MoNet, a novel 

network, is proposed, that successfully ‘hallucinates’ motion from just appearance features 

without the use of optical flow. This technique has been shown to reduce the computation 

cost by almost half.  

 

Wu et al. (2016) have presented a novel lip descriptor that uses both geometric and 

appearance information to tackle the issue of varying utterance mannerisms that often lead 

to false prediction. An advanced face landmark detection method is utilised to generate a set 

of geometric features.  

 

Evolution of CNNs has given rise to researchers experimenting with their 3-dimensional 

versions 3DCNNs, now with a time dimension to not only efficiently capture the spatial 

information like its 2D counterpart, but also the temporal features (Tran et al., 2015). CNNs 

are also much simpler to understand and easier to train. Weng and Kitani (2019) have taken 

the 3-dimensional CNNs even further and swapped what is called a conventional 
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combination i.e. 3DCNN+2D ResNet with their 2-stream 3DCNN to achieve a 5.3% word 

accuracy improvement on the LRW art.  

 

A video contains two types of information: spatial and temporal. If we assume that there is a 

lot more information in the spatial dimension compared to the temporal dimension, which is 

a fair assumption, then why not treat the two information differently via two different 

channels in the network? The SlowFast (Feichtenhofer et al., 2019) network does exactly 

that. It passes the visual information on a pathway at a low frame rate to capture spatial 

semantics, while a faster pathway at a higher frame rate, but lighter with reduced channel 

capacity, captures motion features. This technique achieves the state-of-the-art in video 

recognition tasks. Implementation of SlowFast in lip-reading seems promising but is yet to be 

seen.  

3.2. Classification schemas in lip-reading 

The choice of a classification schema can determine whether or not an ALR system can be 

trained E2E. Majority of current lip-reading systems are designed to decode longer speech 

segments like words, phrases and sentences (Fenghour et al., 2020). A common technique 

across most of these systems is the use of words or characters as labels for classification 

(Stafylakis and Tzimiropoulos, 2017; Chung and Zisserman, 2016; Chung et al., 2017; Afouras 

et al, 2018; Assael et al., 2016). Systems with these class schemas can in theory be trained 

E2E and some are. Since the use of words as classes can be troublesome for inference of 

unseen words, few other alternatives to ASCII characters viz. visemes and phonemes have 

been tried with a fair amount of success. However, the use of visemes/phonemes as classes 

can require a separately trained decoder e.g. the ‘viseme-to-word’ converter of Fenghour et 

al. (2020); thus not allowing the whole system to be trained fully E2E.  The following is a 

discussion of different techniques to improve performance using visemes or phonemes as 

classes.  

 

Quoting the language dependence of visemes, although words, characters and phonemes 

are relatively highly language dependent, Bastanfard et al. (2009) have attempted a viseme 

classification system for lip-reading of Persian language using their own visemes. The claim 

for visemes’ language dependence has been supported by the fact that Tehrani Persian 
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language without any accent does not contain any diphthong unlike e.g. English. Eigenlips of 

each phoneme is used to create the corresponding viseme. The classification result indicates 

the robustness of their algorithm.  

 

Bear and Harvey (2016) proposed a novel two-pass method where phoneme classifiers were 

trained on pre-trained viseme classifiers. One possible motivation behind the study is the 

suggestions from earlier works that phoneme classification can outperform viseme 

classification under the right circumstances (Howell et al., 2016). Nevertheless, the novel 

algorithm is able to achieve a better classification accuracy compared to previous results in 

lip-reading.  

   

Two major ways of classifying visemes have been pointed out (Cappelletta and Harte, 2011): 

i) using facial image, lip shapes and other visual speech articulators; 

ii) using phonemes to map visemes: which are further divided into linguistic and data-

driven methods. 

The later approach is much simpler and allows for an easier preparation of a dataset and 

hence is more commonly used. A detailed comparison (Jachimski et al., 2017) of viseme 

classification approaches has shown that a combination of geometrical and linguistic 

features results in a better clustering of newly defined visemes. 

 

Using phonetic visemes as the only cues, Fenghour et al. (Fenghour et al., 2020) have been 

able to set a new 15% lower WER on the LRS2 dataset. Their ALR system has two stages:  

i) input video to visemes classifier; 

ii) video to text converter. 

Besides, unlike word based systems, the viseme based system seems to be able to recognise 

words not seen during training. Usage of external text data to train a viseme-text converter 

is also used by this system (Peymanfard et al., 2022).  

 

A purely phoneme based model has been shown to perform quite well too. This work (El-

Bialy et al., 2022) investigates various classification schemas but implements phonemes as 

class labels to achieve a 10% lower WER on LRS2 dataset.  
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There seems no apparent winner in the debate between visemes vs phonemes as being the 

better class label for lip-reading. A comprehensive comparison between the two has been 

carried out by Thangthai et al. (2018) based on the TCD-TIMIT corpus. The results can be 

summarised into two findings: 

i) Phonemes outperform visemes in word accuracy 

ii) Visemes achieve higher accuracy at the unit level (at the level/stage of classification 

of visemes given the images) but suffer in accuracy during sentence/word 

construction using these predicted visemes (Fenghour et al., 2020).  

 

Figure 9 summarises the various classification schemas found in lip-reading literature. Using 

video image frames as input, the ALR system can be tasked to classify any of the label types 

viz. visemes, phonemes, characters, words or sentences. Then depending on the objective, 

the final output is generated in the required format viz. characters, words, sentences.  

 

Figure 9: Various classification schemas seen used in lip-reading literature 

3.3. Various tools and techniques in lip-reading 

3.3.1. Audio-visual fusion 

Pure lip-reading only takes cues from visual information like lip movement and other 

secondary speech articulators. However, research on AVSR is more abundant than pure VSR. 

This is due to the fact that ASR has a lot more widespread applications compared to 

somewhat niche VSR. Including visual information has been thoroughly proven to 

significantly improve speech recognition, especially in noisy audio settings. Having said that, 
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innovations made in AVSR, sometimes even in ASR, almost always benefit VSR/ALR. With this 

in mind, the following is a brief survey of audio-visual fusion technologies developed over 

the years.  

  

By training audio and visual branches of a network separately before fusing them into a new 

hidden layer and following with yet another deep network trained on the joint feature space, 

Mroueh et al. (2015) have been able to reduce the phoneme error rate by more than 5% 

compared to audio-only networks. Their pre-processing includes cropping a 64 x 64 pixel 

mouth ROI and reducing it to 60 using Linear Discriminant Analysis (LDA).  

 

Tao and Busso (2018) observed that when the audio information was clean, adding visual 

cues did not help much. It rather often negatively affected speech recognition by adding 

more variability. To this end, a gating layer in the deep neural network was added to 

diminish the effect of visual information that was not helpful. The system seemed to perform 

slightly better or at least as good compared to an audio only system with the same high 

quality audio.  

 

Visual cues were utilised to decipher audio in settings with multiple speakers or presence of 

background noise (Ephrat et al., 2018). The experiment not only demonstrated this, but also 

produced a new dataset AVSpeech that contained 1000s of hours of video clips from the 

internet. The issue of overlapped speech has also been tackled by Yu et al. (2020) using their 

integrated audio-visual network. The system tried to implicitly separate and recognise both 

modalities with a single cost function and was able to significantly outperform its audio-only 

baseline using overlapped speech data simulated using the LRS2 dataset.  

 

Figure 10 shows a simplification of the WLAS model (Chung et al., 2017) for sentence-level 

decoding. The raw audio waveform is converted to Mel Frequency Cepstral Coefficients 

(MFCC) before feeding it to an RNN. The visual data (image frames) pass through a CNN 

before also feeding into an RNN. The outputs of the audio and visual RNNs are then 

concatenated and fed into another RNN and a FCN to produce the output sequence 

(sentence). 
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Figure 10: Typical Audio-Visual Fusion method in lip-reading.  

 

We can see that although AVSR and VSR have many things in common and benefit each 

other, audio-visual fusion is not a primary factor determining the E2E-ness of a lip-reading 

system.  

3.3.2. The use of CNNs 

Since their inception in the modern form in the 90s, CNNs  have become the backbone of 

computer vision tasks. ALR makes abundant use of CNNs, first beginning with the frontend as 

visual feature extractor, then gradually in the classification backend. This section discusses 

the various types and techniques of CNNs used in lip-reading, their contributions in the 

progress of this domain as well as how some of them are helping the E2E quest.  

 

CNN’s importance in image classification has been known for decades now, but its ability to 

extract spatiotemporal features was cemented by this seminal work (Karpathy et al., 2014) 

on video classification.  

 

Besides image classification, ConvNets are also found to be good at sequence modelling. One 

might be curious as to why ConvNets would be chosen for sequence processing over RNNs 

like LSTMs or GRUs, which are specifically designed for the purpose. In fact, evidence is piling 
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in favour of ConvNets for sequence processing tasks. It is useful to note here that as the 

sequences get longer RNNs become harder to train and suffer from gradients disappearing 

or exploding over longer range updates. A thorough comparison has been experimented by 

Bai et al. (2019) to see which one is the clear winner for sequence modelling. Their work 

challenges the conventional default relationship between sequence modelling and RNNs.  

 

ConvNets are very efficient at reducing input dimensions and use a fraction of the number of 

parameters compared to e.g. a similarly sized FCN. However, deeper networks designed for 

heavier tasks can still be very computationally expensive. ShuffleNet (Zhang et al., 2018) is a 

CNN variant aimed at lower computing power devices and hence required the network to be 

a lot more computationally efficient. To achieve this, it has utilised two novel operations:  

● pointwise group convolution; 

● channel shuffle. 

Experiments on ImageNet (Krizhevsky et al., 2017) classification tasks have shown that while 

being a lot lighter in terms of parameters, it has comparable accuracy to much bigger 

ConvNets like AlexNet. This success of ShuffleNet has made them useful in E2E lip-reading as 

evidenced in (Martinez et al., 2020).  

 

One observation that has been made from training very deep ConvNets over the years is that 

if they have shorter connections between layers close to the input and the output, they train 

faster and better. DenseNet (Huang et al., 2017) builds onto this idea by connecting all layers 

to each other as in a feed forward NN. DenseNets have been shown to ameliorate the 

vanishing gradient problem inherent in very deep networks. The direct connections 

strengthen the propagation and reuse of features and significantly cut the number of 

parameters. Chen et al. (2020) have made use of DenseNet in lip-reading in combination 

with residual bidirectional LSTM (resBi-LSTM) for sentence level Mandarin. In an attempt to 

learn finer level lip movement this work (Chen et al., 2020) proposes yet another ConvNet 

variant called hierarchical pyramidal convolution (HPConv), which achieves a 1.53% gain on 

LRW WER state of the art.  

Ma et al. (2021) raise the LSW state-of-the-art even further with a novel DS-TCN that also 

runs significantly faster than the original LRW model.  
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3.3.3. Connectionist Temporal Connection 

Lip-reading, like any sequence-to-sequence (seq2seq) task, faces these two common 

difficulties: 

i) alignment of the output; 

ii) output post-processing. 

 

To this end, many recent E2E NLP tasks have adopted techniques like Connectionist 

Temporal Connection (CTC), attention and RNN Transducer (Wang et al., 2019). 

 

The emergence of CTC (Graves et al., 2006) has accelerated the growth in the number of 

deep neural networks in NLP that are trained E2E by tackling the two difficulties as follows: 

i) CTC does not require the segmentation and alignment of labels in the training 

data as it produces its own alignment of the output labels. It does so by first 

enumerating all possible hard alignments then aggregating them to generate 

soft alignments. 

ii) Post processing from an intermediate output e.g. phonemes into the final 

graphemes is not required either as CTC directly outputs the target labels.  

 

Solving these two problems allows the network to be trained E2E by mapping input 

sequence directly to target sequence. However, CTC inherently assumes during hard 

alignment that the output labels are independent of each other, thus not being able to learn 

the context/language model. This necessitates lip-reading systems to make use of an 

external language model to decipher semantics from the outputs, thus questioning their 

‘E2E’-ness. Another issue with CTC arises when the output sequences are longer than the 

input sequence. CTC is not designed for scenarios like such and hence is helpless. Although in 

lip-reading, since it usually takes one or more frames of an average frame-rate video to 

articulate a character, input sequences are typically longer than output sequences. This 

means CTCs don’t often come across such scenarios. However, they cannot be totally 

avoided without human intervention during data cleaning: e.g., an analysis of the LRS2 

training set with 45839 video samples shows that in 27 of the samples (0.058%), the number 

of characters in the label is higher than the number of frames in the video.  
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Figure 11 illustrates the basics  of how CTC collapsing works. For this case, characters are 

used as the class labels, but the labels can also be phonemes, visemes etc. A character is 

predicted for each input image frame of a lip-reading video. Repeated characters are merged 

and a blank token provides a workaround to identify characters that are actually repeated in 

ground truth labels.  

 

Figure 11. CTC collapsing works by predicting a token for each input (frame in this case). 

Repeated tokens are merged. Frames with no information will generate a ‘blank token’: ‘Ɛ ’ 

which can be ignored.  

 

How it works: 

𝐹𝑟𝑎𝑚𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 (𝑋)  =  [𝑥1, 𝑥2, . . , 𝑥𝑇]   

𝑂𝑢𝑡𝑝𝑢𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 (𝑌)  =  [𝑦1, 𝑦2, . . , 𝑦𝑉]  

The frame-sequence length (T) does not necessarily equal the output sequence length (V),   

In the example shown in Figure 11:  

𝑓𝑖𝑟𝑠𝑡 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 =  [𝑅, 𝑅, 𝐸, 𝐸, 𝐴, 𝐿, 𝐿, Ɛ, 𝐿, 𝑌, 𝑌, < 𝑆 >, 𝑆, 𝑆, 𝐼, 𝐼, 𝑀, 𝑀, 𝑀, 𝑃, 𝑃, 𝑃, 𝐿, 𝐿, 𝐸] 

𝑌 =  [𝑅, 𝐸, 𝐴, 𝐿, 𝐿, 𝑌, < 𝑆 >, 𝑆, 𝐼, 𝑀, 𝑃, 𝐿, 𝐸] 

CTC allows any similar alignment that ultimately maps to Y after the ‘merge and drop Ɛ’ 

process.  Hence, other valid alignments could be:  

[𝑅, 𝑅, 𝑅, 𝐸, 𝐴, 𝐿, 𝐿, Ɛ, 𝐿, 𝐿, 𝑌, < 𝑆 >, 𝑆, 𝑆, Ɛ, 𝐼, 𝐼, 𝑀, 𝑀, 𝑃, 𝑃, 𝐿, 𝐿, 𝐿, 𝐸] 

[𝑅, 𝐸, 𝐸, 𝐴, 𝐴, 𝐿, 𝐿, Ɛ, 𝐿, 𝑌, 𝑌, < 𝑆 >, 𝑆, 𝑆, 𝑆, 𝐼, 𝑀, 𝑀, 𝑀, Ɛ, 𝑃, 𝑃, 𝐿, 𝐿, 𝐸]  

etc. 

At each input step (t) e.g., of a RNN network, the CTC provides a output probability 

distribution (pt ) over all characters in the set X plus the blank character (Ɛ): 
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𝑝𝑡(𝑎 | 𝑋)  

Calculated over the outputs: {𝑅, 𝐸, 𝐴, 𝐿, 𝑌, < 𝑆 >, 𝑆, 𝐼, 𝑀, 𝑃, Ɛ} 

For a given (X, Y) pair, the CTC loss function can be summarised as: 

CTC conditional probability =  

marginalisation over the set of all valid alignments (probability for each alignment per  time-

step) 

 

𝑝(𝑌 | 𝑋)  =  ∑

𝐴𝜖𝐴𝑋,𝑌

∏

𝑇

𝑡=1

𝑝𝑡(𝑎𝑡 | 𝑋) 
(1) 

 

where,  𝑝(𝑌 | 𝑋) is the conditional probability, 𝑇 is the total number of time-steps and 𝐴 is 

the alignment.  

 

One problem with this approach is, for the majority of sequence tasks, the possible number 

of valid alignments can be quite big. This makes calculating the loss very computationally 

expensive. A solution to that is merging alignments that result in the same output at a given 

time-step with a dynamic programming algorithm. 

3.3.4. RNN Transducer 

RNN-transducer (Graves, 2012) also enables E2E training of lip-reading systems by producing 

alignments like the CTC loss function. It also uses a ‘blank’ character and calculates and 

aggregates the probabilities to get the target sequence. But unlike CTC, it does not make the 

assumption of labels’ independence as each state influences the updates of the subsequent 

state and the output labels. Also unlike CTC, it does not suffer from the problem of output 

sequence length being greater than the input. The use of RNN-transducers in lip-reading has 

enabled some performance improvements (Makino et al., 2019). However, RNN-transducers 

have been known for being hard to train unless they go through a modular pre-training 

stage. Also it has been pointed out that having to encode the input as a fixed length vector 

limits its encoding ability  (Wang et al., 2019). 
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Let 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑇) be an input sequence of length 𝑇 in the set 𝑋* of all sequences over 

an input space 𝑋, and 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑈) be an output sequence of length 𝑈 in the set 𝑌* 

of all sequences  over an output space 𝑌. The RNN transducer defines a conditional 

distribution given by:  

 𝑃(𝑦 𝜖 𝑌*|𝑥) = ∑𝑎 𝜖 𝛽−1(𝑦) 𝑃(𝑎|𝑥) (2) 

where 𝑎 𝜖 𝑌* are the alignments, and 𝛽 ∶ 𝑌* → 𝑌* removes null symbols from the 

alignments in 𝑌*.   

 

Figure 12: RNN-transducer (Graves, 2012) 

 

The network consists of three sub-networks as shown in Figure 12:  

i) Transcription network (𝐹(𝑥)): A bidirectional RNN encoder that transcribes input 

sequence  𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑇)  into a transcription(feature) sequence 𝐹 =

(𝑓1, 𝑓2, . . . , 𝑓𝑇) . At input 𝑥𝑡  at any time 𝑡, the encoder outputs 𝑓𝑡 = 𝐹(𝑥𝑡), a |𝑉| + 1 

dimensional vector.  

ii) Prediction network 𝑃(𝑙): A RNN decoder network with one input layer, a single 

hidden layer and an output layer that works as a language model by working out the 

interdependencies between output labels. The network has a hidden state (ℎ𝑛) and 

an output value (𝑔𝑛) for each label  (𝑙𝑛)  in any location 𝑛 𝜖 [1, 𝑁].  
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𝑔𝑛  =  𝑃(𝑙[1:𝑛−1]) (3) 

iii) Joint network 𝐽(𝑓, 𝑔): Aligns the input and output sequence. For 

encoder(transcription) output vector (𝑓𝑡) , prediction output vector (𝑔𝑛) and label 

𝑘 𝜖 𝑌  at output location (𝑛), the output density function 𝑒 is given by: 

𝑒(𝑘, 𝑡, 𝑛)  =  𝑒𝑥𝑝(𝑓𝑡
𝑘 + 𝑔𝑛

𝑘) (4) 

 

𝑝(𝑘 𝜖 𝑌|𝑡, 𝑛) =   
𝑒(𝑘,𝑡,𝑛)

∑𝑘′ 𝜖 𝑉′ 𝑒(𝑘′,𝑡,𝑛)
       , ∀  𝑡 𝜖 [1, 𝑇],

𝑛  𝜖 [1, 𝑁] 

(5) 

 

3.3.5. Attention 

Attention mechanism (Bahdanau et al., 2015) greatly supports the E2E approach by enabling 

the network to learn its own implicit language model. This means a separately trained 

external language model, which is against the E2E ideal, is not always required.  

 

Attention was originally applied to Neural Machine Translation (NMT) has since been 

commonly applied (Afouras et al, 2018; Chung et al., 2017; Petridis et al., 2018) to ALR due 

to the similarity of the two tasks i.e. sequence to sequence modelling. One major benefit of 

attention based E2E seq2seq is that it does not necessitate the input to be encoded into a 

fixed length vector. Encoder-decoder structures that utilise the attention mechanism enable 

implicit soft alignment between the inputs and outputs.  

 

A variant of attention called Transformer (Vaswani et al., 2017) has been successfully used 

by Afouras et al (2018) to set the state-of-the-art in sentence level lip-reading on LRS2 

dataset. It seemingly outperforms their fully convolutional as well as RNN based 

architectures in WER. Transformer also learns its own implicit alignment and does not 

depend completely on external language models compared to their other two models, 

although the use of a language model trained on the LRS2 subtitle corpus does seem to 
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improve its performance marginally. It is to be noted however that the visual frontend of this 

model was pretrained before the whole network was trained E2E. 

 

While the CTC assumes conditional independence between output characters, the attention-

based model learns its non sequential alignments. In an attempt to force monotonic 

alignments and avoid the conditional independence assumption, Petridis et al. (2018) make 

use of both the CTC and attention in a hybrid architecture (Watanabe et al., 2017) for lip-

reading. Their audio-visual based model trained on LRS2 dataset is able to reduce the WER 

by 1.3% compared to the audio-only state-of-the-art. Attention in combination with CTC has 

also been demonstrated to improve computation time and model accuracy by Xu et al. 

(2018) with their novel LCANet architecture.  

 

Figure 13 shows the original Transformer architecture (Vaswani et al., 2017). Input 

sequences go through a positional encoding stage that adds positional information to each 

input (as a Transformer does not have recurrence like RNNs). It is then fed to a multi-head 

self-attention mechanism where the same input embedding acts as key, query and value. 

This is detailed in Figure 14. The output of the encoder block is fed to the multi-head 

attention of the decoder as key and query.  The previous output of the decoder serves as the 

value after passing through its own multi-head attention mechanism.  
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Figure 13. Transformer architecture  (Vaswani et al., 2017) 

How it works: 

While most of the components of the Transformer are common across neural networks, the 

novel concepts: multi-head attention and positional encoding are summarised as follows:  

 

Let 𝑋m x n be the input matrix. 

Key (K), Query (Q) and Value (V) are generated as follows: 

 

𝐾 =  𝑊𝑘𝑋 

𝑄 =  𝑊𝑞𝑋 

𝑉 =  𝑊𝑣𝑋 

Where Wk , Wq and Wv are key, query and value weight matrices, respectively. 
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A scaled product of K and Q is taken as: 

𝑊𝑖 = 
𝑄𝑖

𝑇
𝐾𝑖

√𝑘
 

(6) 

Where k is the input embedding dimension. Attention scores are calculated as: 

𝑊𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥( 
𝑄𝑖

𝑇
𝐾𝑖

√𝑘
)𝑉𝑖 

(

7

) 

 

 

Figure 14. Scaled dot product (left) in a multihead-attention mechanism (right) (Vaswani et 

al., 2017). The use of multiple attention heads gives the network a greater 

discriminative power.  

 

The sinusoidal positional encoding has a simple role of providing a sort of position index to 

the items in the input sequence e.g. words in a sentence input. Without positional encoding, 

the network is permutation invariant e.g. it would not know the difference between a 

sequence {‘draw,’ ‘a’, ‘hand’} and  {‘hand,’ ‘a’, ‘draw’}. The simplest approach to include 

position information is to one-hot encode the positions of the inputs. The original approach 

instead uses sinusoidal embeddings.  

𝑃𝑘,2𝑖 = 𝑠𝑖𝑛(
𝑘

100002𝑖/𝑑),       𝑃𝑘,2𝑖+1 = 𝑐𝑜𝑠(
𝑘

100002𝑖/𝑑) (8) 

where, 𝑃 is the positional embedding for an input with position 𝑘 in a sequence of inputs, 𝑑  

is the embedding dimension of the input e.g. word/char or any other token and 𝑖 is the 

individual item of the input embedding. Hence, if 𝑑 = 4, 𝑤 is the current word with 
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embedding 𝑒𝑤, and 𝑒′𝑤 be the final embedding after including the positional embedding 

based on sinusoidal encoding: 

𝑒′𝑤 = 𝑒𝑤 + [𝑠𝑖𝑛(
𝑘

100000), 𝑐𝑜𝑠(
𝑘

100000), 𝑠𝑖𝑛(
𝑘

100002/4), 𝑐𝑜𝑠(
𝑘

100002/4)] (9) 

3.3.6. Teacher-student / knowledge-distillation 

As it must be apparent by now, the task of lip-reading has been approached via many 

different angles resulting in many different models with their own strengths and 

weaknesses. It then should naturally occur to anyone that combining the strengths of 

multiple models into one would surely create a more effective model. This is in fact possible 

and has been done (Caruana et al., 2006). Building on this work, Hinton et al. (2015) propose 

Knowledge Distillation of an ensemble of models into a single model with surprisingly good 

results on MNIST. Teacher-student is a similar concept where a larger teacher model 

transfers its knowledge to a smaller, faster student model. Teacher-student technique has 

been successfully implemented in AVSR by Li et al. (2019) where a teacher is trained on a 

large audio-only data. The student is then trained on a smaller audio-visual data to minimise 

the Kullback Leibler (KL) divergence between its output and the posterior distribution of the 

teacher.   

 

Knowledge distillation has also worked well in lip-reading (Zhao et al., 2020; Ma et al., 2021; 

Ren et al., 2021). 

3.3.7. Miscellaneous 

Other methodologies and techniques include:  

● VSR as dysarthric speech (Howell et al., 2016); 

● ASR is all you need (Afouras et al, 2020): training VSR models without requiring 

human labelled ground truth and instead distil from ASR trained model;  

● Dilated CNNs: a technique to increase CNNs receptive field while reducing its 

computational cost; 

● Beyond Lips : an effort to extract maximum information from non lip regions (Zhang 

et al., 2020); 

● Mutual Information Maximisation (Zhao et al., 2020). 
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3.4. The use of language models in lip-reading 

Whether a lip-reading model that uses a separately trained external language model (LM), 

can be considered an ‘E2E’ model, is debatable. But for the time being, language models 

seem to be a convenient way to deal with the alignment problem.  

 

For ALR systems that first classify ASCII characters and then look for their optimal alignment 

using CTC to build the output sentence, a character-aware language model is required. Given 

the computational complexity of training ALR systems, a beam search of significant width 

can grind the process almost to a halt. A language model that is character-aware, lightweight 

as well as efficient, is required. A potential option can be the work from Kim et al. (2016). 

Their CNN-LSTM based character based LM performs on par with the Penn Treebank state-

of-the-art despite being 60% lighter in terms of the number of parameters.  

Afouras et al. (2018) use the language models (Graves and Jaitly, 2014; Maas et al., 2015) 

with their LSTM+CTC and full-CNN+CTC with a high degree of success in performance but not 

as much in terms of computation.  

 

In an attention based sequence-to-sequence lip-reading system, the system learns: i) 

spatiotemporal feature extraction, ii) a language model and iii) alignment mechanism 

simultaneously (if trained properly E2E). Since the language model only learns from the text 

labels of the videos, when a separately trained external language model is used during 

inference, shallow fusion is used. Shallow fusion has been investigated in detail by Kannan et 

al. (2017) and shown to reduce WER by up to 9.1% on ASR. Their work has also been used by 

Afouras et al. (2018), where the system learns an internal language model from the text in 

the LRS2 training set while the external language model is trained on its superset, a larger 

LRS2 pretrain set text.  

 

Although LSTM based character-level language models have been successfully used in SR 

tasks, both ASR and VSR, it’s been shown (Al-Rfou et al., 2019) that a deeper attention-based 

character-level language model outperforms the LSTM or other RNN based LM variants by 

significant margins. However, the chase for accuracy with the use of heavier and heavier LMs 

is probably not the way to go for ALR systems striving for E2E. 
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3.5. Pre/Non end-to-end approaches in lip-reading 

In order to get a better overview of the motivation behind E2E approaches, the following 

first briefly discusses some pre E2E and non E2E approaches to ALR.  

 

Goldschen (1993) presents a lip-reading system that makes use of oral-cavity features where 

13, mostly dynamic, such features are introduced. The emphasis is given on the pure optical 

nature of the system and hence the following information is not used: 

● Syntax 

● Semantics 

● Acoustic 

● Contextual   

The system has two stages:  

● Optical processor 

● HMM based decoder 

The overall system is summarised in Figure 15. The optical processor first extracts the said 

features and clusters them to generate ‘codewords’. A codebook containing codewords from 

the whole training data is prepared. PCA is used to minimise the feature dimensions. A 

sentence recognition rate of 25.3% is achieved on TIMIT dataset.  

 

Figure 15: A traditional multistage non-E2E viseme-based ALR system that uses hand-crafted 

oral-cavity features and codewords sequence Goldschen, (1993).  

 

The concept of articulatory feature models used for pronunciation variation in ASR was 

extended to capture the visually-salient features in VSR by Saenko et al. (2005). The model 

uses SVM feature classifiers to produce inputs to a DBN and compares feature-based and 
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viseme-based units for inter-feature asynchrony. It was able to outperform models that do 

not take the asynchrony into account, in limited experiments.  

 

Given the computational overhead due to the redundant information on ‘holistic’ feature 

extraction where the whole mouth ROI is used, Lucey et al. (2008) attempt a patch-based 

analysis of the ROI in order to find the most informative patches for speech. Their 

experiment concretises the conventional assumption that central patches of the ROI are the 

most salient. But the experiment also shows that the holistic features from the entire ROI 

are more informative than the patches. However, the combination of holistic and patch-

based features seemed to improve the performance.  

 

Although most non E2E approaches are traditional, multistage and often pre-deep learning 

systems, many modern ALR systems have opted for a non E2E approach by design. In an 

attempt to train a relatively language agnostic lip-reading classifier, Fenghour et al. (2020) 

make use of visemes as classes. The choice of visemes as the classification schema for a 

sentence level lip-reading has coerced the ALR system to be broken into multiple stages as 

shown in Figure 16. The Visual Frontend, Viseme Classifier and the Word Detector are 

separate pretrained NN modules. While in theory, it would not be impossible to train the 

entire network E2E from scratch, it is unlikely that any significant amount of  learning will 

occur given the long complicated path the gradients flow.  

 

 

 

Figure 16. A modern multistage non-E2E viseme based sentence level ALR that first classifies 

visemes and uses a pretrained viseme-word converter (Fenghour et al., 2020). 

 

The system nevertheless does set a highly improved state-of-the-art WER on LRS2. However, 

it can be observed that if an ALR system has two-forked aims: language agnosticism (e.g. via 

viseme usage) and E2E training; a significant rethinking is required for a newer architecture.  
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3.6. Various end-to-end approaches in lip-reading 

This section analyses nine different E2E systems. The systems are investigated for the 

completeness of their E2E implementation, network architecture, datasets, classification 

schema and performance. Detailed discussion on their E2E nature is provided in the 

subsequent sections. Table 4 summarises the comparison. Evaluation of these systems based 

on the E2E criteria is presented separately in Table 5.  

 

Table 4: A summary of various E2E lip-reading systems. 

Year Frontend Backend Dataset Class Perform-
ance 

Reference  Is E2E? 

2016 FCN LSTM GRID word WAR 
79.6% 

Wand et al. E2E 

2016 CNN FCN LRW word WAR 
61.1% 

Chung et al. E2E  

2016 STCNN BGRU GRID ASCII SAR 
95% 

Assael et al. E2E* 

2017 ResNet BLSTM LRW word WAR 
83% 

Stafylakis et al. E2E* 

2017 CNN LSTM LRS2 ASCII WAR 
23.5%, 
49.8%* 

Chung et al. E2E, 
E2E* 

2017 FCN + 
LSTM 

BLSTM OuluVS2 phrase CA 
84.5% 

Petridis et al. E2E* 

2018 3DCNN + 
ResNet 

BGRU LRW word CA  82% 

98%✝ 

Petridis et al. E2E* 

2018 3DCNN + 
ResNet 

Transformer LRS2 ASCII WAR 
50% 

Afouras et al. E2E* 

2020 3DCNN + 
ResNet 

TCN LRW word WAR 
85.3% 

Martinez et al. E2E* 

 

*  - involves pretraining stages and hence not a purely E2E training scheme 

WAR - Word accuracy rate 

SAR - Sentence accuracy rate 

CA - Classification accuracy for the given class 

STCNN - Spatio-Temporal CNN 
✝ - CA of 98% using both audio and video streams. 82% for pure lip-reading (only video) 
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3.6.1. FCN + LSTM  

In this simplistic combination (Wand et al., 2016), feed forwards and LSTM networks are 

stacked together for a joint E2E training on GRID dataset. Compared to traditional non E2E 

feature-based approaches viz. Eigenlips and HOGs with SVM classifier, the E2E approach 

gained an advantage of 11.6% on WAR. The same experiment is also repeated with CNN 

replacing the FCN but with no improvements on performance. This has been assumed to be 

due to the small 40x40 mouth ROI containing just enough information.  

 

A major motivation behind the use of LTSM is the inability of SVM to classify sequences. 

Regardless of the length of the input e.g. a 5 video frame word ‘an’ and a 10 frame word 

‘anti’; a fixed vector length is enforced to feed an SVM. LTSMs can take variable length 

inputs.  

 

Although simplistic, since a unified training approach is used allowing gradients to back-

propagate through all the layers of the network, this is a very good example of an E2E deep 

lip-reading system. However, one downside to a simplistic nature of both the FCN frontend 

and vanilla LSTM backend as well as the use of a simple lab-generated dataset, is that the 

performance cannot be reflected in the wild. Nevertheless, it is a good proof of concept for 

E2E deep ALR.  

 

3.6.2. CNN + FCN 

This is the first ALR system to attempt word classification with a large lexicon (LRW). The task 

of lip-reading is taken as multi-way image classification which shows in the choice of VGG-M 

(Chatfield et al., 2014) architecture as the base. CNN has been used for its ability to capture 

spatio-temporal information as evidenced in action recognition. The size and details of the 

convolution operations can be seen in Figure 17. 
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Figure 17: Chung and Zisserman, (2016)’s Multi-Tower architecture 

 

Although not explicitly claimed to be pure E2E this work does train the network E2E. 

However, the main focus of the work is not on E2E and rather on moving from systems 

trained on small numbers of utterances in a controlled environment towards a more ‘in the 

wild’ data. Moreover, despite the practical limitations of word-level lipreading (discussed in 

detail in section 4.6.2), the videos in the dataset are made of words that are not uttered in 

isolation. The frames surrounding the target word contain co-articulation of other words, 

resembling real world continuous speech. While the ALR system does not use any externally 

trained ROI detector for a tight registration of the mouth parts, the dataset is already 

created with the use of such a detector. Not forcing the system to see a narrow ROI does 

make it robust to variations during inference. But a truly robust E2E system would ideally 

take videos with a broader view and learn to focus on the speech articulators by itself during 

training.  

3.6.3. STCNN + BGRU LipNet 

LipNet is the first ‘E2E’ sentence level deep lip-reading system. The network structure is 

illustrated in Figure 18. Image frames from a lip-reading video are input to a spatio-temporal 
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CNN. The sequence of outputs from this stage are processed by a BGRU. The overall network 

is trained with the CTC loss at the character level.  

 

 Figure 18: LipNet’s STCNN + BGRU architecture block diagram simplified (Assael et al., 2016).  

 

This is one of the major breakthroughs in sentence-level E2E lip-reading. The model emits 

character level probabilities which are then aligned into a sentence using CTC.  

 

The system is entirely E2E except for the inclusion of a pre-trained face detector during the 

pre-processing phase and the beam search used on CTC outputs which can be considered a 

non-E2E post-processing stage. Although the model is able to achieve an Sentence Accuracy 

Rate (SAR) of 95% on the GRID corpus, it remains to be seen whether the approach can 

withstand wilder datasets like LRS2 and LRS3. Analysing the generalizability of this E2E 

architecture on these datasets could be a potential future research topic. 

3.6.4. RESNET + BLSTM  

This work by Stafylakis and Tzimiropoulos, (2017) aims to move away from traditional two-

staged ALR to a single stage E2E process. The network, as illustrated in Figure 19, consists of 

STCNN ResNet combination frontend for feature extraction and a BLSTM backend for 

sequence modelling. It is trained on LRW dataset and achieves a WAR of 83%, an 

improvement of 6.8% on the state-of-the-art. 
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Figure 19: A simplified representation of the ResNet + BLSTM architecture (Stafylakis and 

Tzimiropoulos, 2017) 

 

Although the model could be trained E2E, given the complexity of the task and the network, 

a three-stage approach is taken: 

i) A TCNN backend is used instead of a BLSTM and trained until convergence 

ii) The TCNN backend is replaced with a  BLSTM and trained for 5 epochs while freezing 

the STCNN and ResNet based frontend.  

iii) Then the entire network is trained E2E.  

 

 The modular training process makes this ALR system diverge away from the E2E ideal. But 

given the complexity of the architecture, attempting pure E2E training would mean the 
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gradients will be too weak to train anything significant by the time they propagate back to 

the frontend. The future of E2E training should aim at solutions to the multi-stage training 

with simpler but more efficient networks that are better able to learn complex mapping in a 

single stage process. 

 

3.6.5. CNN + LSTM LRS2 

This is another seminal work by Chung et al. (2017) in lip-reading, this time with a focus on 

decoding longer speech sequences: phrases and sentences, from LRS dataset. Experiments 

are performed with and without the use of audio. A novel multi-module Watch, Listen, 

Attend and Spell (WLAS) architecture is proposed that operates at character level and is able 

to learn its own language model to connect them into sentences.  

 

Again, although all modules of the WLAS network are jointly trained E2E, the system first 

goes through a curriculum learning phase to accelerate learning and to reduce overfitting. 

This approach has been taken based on the report by Chan et al. (2015) which suggests that 

the longer the input sequence the slower the LSTMs converge, as the decoder finds it quite 

difficult to extract relevant information from all the input timesteps.  

 

Since curriculum learning introduces a multistage training where sequence length is 

gradually increased at each stage, whether to consider this experiment a pure E2E can be 

debated. Also, since the model uses both audio and video input, learning is mostly 

dominated by the much richer audio information. While this is very helpful in ASR in noisy 

settings, it is not a pure visual lipreading. When only the visual information is used the 

Watch, Attend and Spell (WAS) system  achieves a WAR of 23.5%. With curriculum learning, 

scheduled sampling and beam search, the WAR was raised to 49.8%. LSTM uses previous 

time step ground truth as the next step input during training, while such ground truth is not 

available during inference. Scheduled sampling uses the previous output at a given sampling 

rate instead of always using the ground truth. This makes the model better prepared for 

inference. Also, beam search can be considered a post processing stage that does help 

improve the performance but makes the system less E2E.  
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3.6.6. FCN & LSTM + BLSTM 

The work, an apparent E2E based on it’s title, aims to simultaneously: 

i) learn feature extraction from faces; 

ii) learn classification using extracted features; 

iii) achieve state-of-the-art on 2.  

The network as illustrated in Figure 20, consists of two streams: one for the regular mouth 

ROI image and one from a differential image. In each stream image features are encoded 

with a FCN and passed on to an LSTM to model temporal dynamics. LSTM outputs from both 

streams are then fed to a common BLSTM and target classes are predicted using a softmax 

layer.  

 

Figure 20: E2E lip-reading with LSTMs using Difference Images (Petridis et al., 2017) 

 

A two-stage training strategy is applied: 

i) pre-training the encoding layers with RBM 

ii) training the entire network E2E 

This approach is reported to help speed up training, but probably does not quite fit the ideal 

of single-stage E2E training. The system also uses a pre-trained mouth ROI detector (Dlib) 

before feeding the images frames to the encoding layers. Also the datasets used are quite 

small and made of extremely simplistic lab-generated videos. The ‘difference image’ 
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technique however does seem to contribute towards the 9.7% improvement (phrase 

recognition rate) on the OuluVS2 dataset baseline. This technique could be incorporated in  

 

other more efficient single stream architectures e.g. 3.6.9. as a second stream as well as with 

bigger and wilder datasets for a pure E2E experimentation.  

3.6.7. 3DCNN & ResNet + BGRU AVSR 

Petridis et al. (2018) have also applied the E2E BGRU based approach in a fashion similar to 

Stafylakis et al. (2017). However unlike their VSR task, this is an AVSR task and claims to be 

the first E2E AVSR model to use raw input: raw pixels and raw audio waveform. The use of 

raw pixels in image classification tasks is not new. However, the using raw audio waveform 

instead of the conventional Mel Frequency Cepstral Coefficients (MFCC) saves the system 

one additional processing stage. As discussed earlier, raw inputs to final target output is one 

of the ideals of an E2E system. In that sense, for an AVSR system, this work stands out as a 

relatively purer E2E.  

However, this system also suffers from the task-network complexity problem and reports 

poorer performance when trained entirely in E2E. Consequently, training is conducted in 

multiple stages as follows: 

i) Training stream 1 by replacing the backend BGRU with TCNN. 

ii) Training stream 2 similarly. 

iii) Replacing TCNN backend back with BGRU then freezing streams 1 and 2 to train the 

BGRU for 5 epochs. 

iv) Training the entire network E2E.  

 

The entire network architecture is illustrated in Figure 21, where a ResNet with a 3DCNN 

input layer processes the video frames in the visual stream while another ResNet processes 

the waveforms in the audio stream. Feature sequences thus generated are separately 

processed with BGRU in each stream before being combined into a single stream for 

classification.  
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Figure 21: E2E AVSR with BGRU (Petridis et al., 2018) 

 

It can be observed that, the use of RNN-heavy architectures make E2E training less effective 

due the long distance the gradients need to propagate. The audio stream of the architecture 

can be considered a more E2E approach as it directly uses raw audio waveforms as input 

without further conversion. The visual stream could similarly use a raw video of a talking 

head instead of processed mouth ROI. Following experiments could be performed based on 

this system:  

i) Same network and input but trained entirely E2E. 

ii) Raw inputs in both streams with the same network and E2E training. 

iii) Experiment 1. and 2., where the BGRUs are replaced by TCNs. 

3.6.8. 3DCNN & ResNet + Transformer  

This work (Afouras et al, 2018) in fact proposes three NN architectures for lip-reading, which 

are completely different besides a common frontend/vision module. The vision module is 

based on (Chung et al., 2017). All architectures are character based. The transformer based 

model is the best performing among the three.  A detailed exploration of the transformer 

network used in this system is presented in section 3.3.5. Training is conducted as follows:  
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i) Pretraining the vision module. 

ii) Using the trained vision module to generate features from all training data. 

iii) Freezing the trained vision module before training the transformer for sequence 

modelling. 

Although the work is highly contributory and sets state-of-the art on LRS2, it does not quite 

follow the E2E paradigm. To test the effectiveness of this system or its parts in E2E scenarios, 

following experiments could be run:  

i) The same system but trained purely E2E.  

ii) Experiment 1., but with visemes, phonemes or words as classes instead of characters.  

iii) Experiment 1., with the transformer backend replaced by a TCN.   

3.6.9. 3DCNN & ResNet + TCN  

For this approach (Martinez et al., 2020), a TCN-based architecture based on (Petridis et al., 

2018) is proposed where the BGRU backend is replaced with a TCN. The conventional 3-stage 

cumbersome training scheme is also simplified into a single stage using a Cosine Scheduler 

(Loshchilov and Hutter, 2017). Their experiment demonstrates that E2E single-stage training 

from scratch is not only feasible, but also can produce state-of-the-art results. This is 

evidenced by the models gain of 1.2% and 3.2% on LRW and LRW-1000 WAR state-of-the-art 

respectively. The superiority of the model mainly lies in its ability to train quickly. Compared 

to the 3-week training time of the 3-stage BGRU based models, this model can train in 1 

week with on-par performance. Since this system forms the basis of our experiments, its 

details are elaborated in section 4 and the reasons for selecting this system are presented in 

section 3.6.10.  

3.6.10. Comparative evaluation of the E2E systems 

All the 9 systems in 3.6.1. - 3.6.9. are compared in Table 5 based on how they meet our E2E 

criteria set in section 2.3.  

Architecture notations:  

i) FCN +  LSTM = a1 ii) CNN + FCN = a2 

iii) STCNN + BGRU = a3 iv) ResNet + BLSTM = a4 

v) CNN + LSTM = a5 vi) FCN & LSTM + BLSTM = a6 
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vii) 3DCNN & ResNet + BGRU = a7 viii) 3DCNN & ResNet + Transformer = a8  

ix) 3DCNN & ResNet + TCN = a9  

 
Table 5: Evaluation of various E2E ALR systems. 

 

 

Criteria for pure E2E based on 2.4. 

Words Sentences 
 

Comments a1 a2 a4 a6 a7 a9 a3 a5 a8 

1 All modules are differentiable 1 1 1 1 1 1 1 1 1  

2 Gradients flow from end to end 1 1 1 1 1 1 1 1 0 a8 is multistage 

3 Has no modular training 1 1 0 0 0 1 1 1 0  

4 Has no pretraining stage 1 1 1 1 1 0 1 0 0 

a5,a8 use curriculum. a9 

pretrains on difficult 

words 

5 Has no trained processing module 0 0 0 0 0 0 0 0 1 e.g. Dlib for ROI 

6 Learns its own language model    0   0 1 1 n/a to word level 

 Other evaluation criteria           

7 Uses wild data 0 1 1 0 1 1 0 1 1  

8 Lip-reads sentence level 0 0 0 0 0 0 1 1 1  

9 Possible to train E2E 1 1 1 1 1 1 1 1 0  

10 Training speed. 0 0 0 0 0 1 0 0 0 

a9 trains relatively 

significantly faster. 

 Overall score 5 6 5 4 5 6 6 7 5  

 

Table 5 evaluates 9 different E2E ALR systems based on 10 different criteria.  A score of 1 is 

given if an architecture meets the criteria, 0 if it does not and blank if the criteria does not 

apply. Within the constraints of our definitions of an E2E lip-reading system, the ALR system 

3.6.9. (a9) seems to tick the most boxes and hence can be considered a great example of 

such. The following are the reasons the experiments of this project are based on this system: 

● The project currently aims to run word-level experiments and ‘a9’ is word-level.  

● It trains much faster (80 epochs in a week) than other similarly scored word-level 

systems.  

● It uses the efficient and currently trending TCNs for sequence processing.  

● It is simple to run the system entirely in E2E with minimal changes (i.e. no pre-

training on difficult words).  

● The system is able to set a new baseline on LRW dataset despite being an E2E.  
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4. Proposed experiments 

This chapter lays out the details of the experiments performed to test the effectiveness of 

pure E2E ALR. Various E2E systems were analysed and compared for this purpose (section 3). 

The E2E experiments are based on the architecture by Martinez et al. (2020) (section 3.6.9.). 

The model is retrained for a few epochs and makes use of an additional dataset. Some 

experimental settings are tweaked in order to test the E2E concept. It should be reiterated 

that: designing a new architecture or setting a state-of-the-art is not within the current 

scope of this study but could form the aims for future research.  

4.1. Rationale 

E2E systems are one of the ideals of machine learning systems and AI in general. With 

decades of progress and hundreds of great works in the field of deep lip-reading, good E2E 

systems are still rare to find. One major hesitation seems to come from the push towards 

setting a state-of-the-art performance. This is evidenced by several great architectures, with 

a potential to train E2E, defaulting to multi-stage training with the sole aim of achieving a 

percentage gain. While this is by no means a censure to the convention of setting new 

records on benchmarks, as such records are a prime movers of the frontier, the fact remains 

that yet another prime objective of AI, i.e., E2E is pushed a bit into the shadows. It could 

probably be claimed that, had the primary drive been towards an E2E system and its 

perfection, records on benchmarks would surely have followed along. With this in mind, and 

the details covered in the coming sections, the proposed experiment has the following 

objectives/characteristics:  

i) Training a pure E2E deep lip-reading system.  

ii) Word based classification schema for simplicity. 

iii) Use of new in-the-wild dataset LRS3 to compare the performance of the original E2E 

model. 

iv) No pretraining stage in order to stay within the definition of pure E2E training. 
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4.2. Architecture 

Figure 22 shows a TCN with 4 layers with a receptive field of 16. Receptive field is a 

hyperparameter that needs to be set apriori. Since the input length is equal to the output 

length in a TCN, the receptive field is determined by the number of layers and the kernel 

size/dilation factor.  

 

Figure 22: A 4 layered TCN 

 

For the network in Figure 22:  

𝑛𝑢𝑚 𝑙𝑎𝑦𝑒𝑟𝑠 (𝑙)  =  4 

𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 (𝑘)  =  2 

𝑟𝑒𝑐𝑒𝑝𝑡𝑖𝑣𝑒 𝑓𝑖𝑒𝑙𝑑 (𝑅)  =  2𝑙(𝑘 − 1) (10) 

𝑅 =  24(2 − 1)  =  16 

Thus one advantage of using TCNs is the convenience with which a desired receptive field 

can be set based on the task. The example shows a causal TCN where the output is 

determined based solely on the past input steps. TCNs can also be designed to be non-causal 

by simply allowing each output to look at future timesteps when available and required. In 

Martinez et al., (2020), the non-causal variant is used since the whole input sequence is 

known beforehand. The network consists of multiple blocks where the stride size is 

calculated based on the block index.  

𝑠𝑡𝑟𝑖𝑑𝑒 (𝑠)  =  2𝑖−1 (11) 

𝑤ℎ𝑒𝑟𝑒, 𝑖 =  𝐵𝑙𝑜𝑐𝑘 𝑖𝑛𝑑𝑒𝑥 
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Figure 23: TCN network used by  Martinez et al., (2020) 

The experiment implements one of the several proposed network variants viz. the Multiscale 

TCN (MS-TCN) as shown in Figure 24. Since the activations at any given layer have the same 

temporal receptive field, in order to enable the network to see temporal information of 

different lengths, MS-TCN implements 3 different TCNs each with a different kernel size. The 

number of kernels is made to be a function of the number of TCN branches used.  

𝐺𝑖𝑣𝑒𝑛, 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 =  𝐶 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝐶𝑁 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 =  𝑛 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑟𝑛𝑒𝑙𝑠 =  𝑘 

𝑘 =  
𝐶

𝑛
  (12) 

This is illustrated in Figure  23, where n = 3.  

 

Figure 24: Multiscale TCN  with 3 TCN streams (Martinez et al., 2020) 
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The overall architecture is illustrated in Figure 25. It consists of 3DCNN and ResNet-18 

combination as the frontend to extract spatiotemporal features, which are then fed to a MS-

TCN to model the sequence. Finally a softmax layer is used with cross-entropy loss.  

 

Figure 25: TCN based lip-reading model (Martinez et al., 2020) 

4.3. Datasets 

The primary dataset in our experiments is Lip-reading Sentences in the Wild 3 (LRS3-TED), a 

collection of sentence clips from TED videos on YouTube. The LRW dataset is also used for 

retraining the model from scratch. Table 6 and Table 7 summarise the main characteristics of 

the two datasets.  

Table 6: LRW dataset statistics. The dataset is word based and contains around 1000 videos 

(samples) per word in the training set. There are 500 classes (unique words), i.e. the 

vocabulary size = 500.  

Set Classes (words) Samples Samples per Class 

Train 500 478764 800 - 1000 

Validation 500 25000 50 

Test 500 25000 50 
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Table 7: LRS3-TED dataset statistics. The dataset is created by trimming sentence clips from 

full TED videos. Each full video includes one speaker. E.g., there are 5090 speakers in the 

pretrain set. 

Set Full Videos Sentence clips Words Vocabulary 

Pretrain 5090 118,516 3,900,000 51,000 

Train-Val 4004 31,982 358,000 17,000 

Test 412 1,321 10,000 2,000 

 

Further details of the two datasets are included in appendix A.:  Datasets.  

 

Table 8: Statistics of the newly created word-level dataset from LRS3-TED (Afouras et al, 

2018). 

Set Classes (words) Samples Samples per class 

Train 500 142817 134 - 2241 

Val 500 56454  36 - 894 

Test 500 6022 3 - 36 

 

Table 8 shows the 500 words shortlisted version of the whole word-based conversion. The 

sample frequency (number of samples per class) varies for different words. E.g. for the 

training set, some words have 134 videos while some have as many as 2241 videos. 

 

Conversion of sentence-based LRS3 dataset into word-based: 

Since the experiments are word-based, the sentence-level LRS3 dataset first needs to be 

adapted as such, akin to LRW dataset. Figure 26 details the dataset conversion and the pre-

processing stages. As it can be seen from tables 7 and 8, there’s a lot of difference in both 

the structure, as well as the content of files between the two datasets. Two new word-level 

datasets are created from the sentence-level LRS3 dataset: 

i) A smaller word-wise split containing only 30% of LRS3 pretrain set (Trainval set is not 

used as it is a subset of pretrain set.). 

ii) A full size set using 100% of the LRS3 pre-train set. 
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The pretrain set is chosen for the creation of the new word-level datasets because it 

contains the timestamps for each word in the videos.  

The LRS3, hence also the word-level dataset created from it, are much more challenging 

compared to the LRW dataset:  

● Although LRW is a ‘wild’ dataset, it has been curated with special focus on 

maintaining an almost equal number of samples for each word. On the other hand, 

LRS3 is wilder still, and contains sentences of variable lengths with no special regards 

to word choice. Hence, when sentence videos from LRS3 are clipped by word to 

create word videos, the sample frequency of each word is as wild/natural as is 

normally spoken (TED talks in this case). E.g. The word ‘about’ appears 1277 times 

while the word ‘abilities’ appears only 149 times in the videos. This is a more natural 

representation of spoken English in the real world. However, severe imbalance in 

class frequency is avoided as that will require specialised techniques to achieve good 

classification results for minority classes. This is achieved by limiting the number of 

words to 500, equal to LRW. Only 500 words with the most numerous samples are 

selected from over 39,000. Hence, despite some difference in the number of samples 

for each class, there is not any particularly minor class.   

● Another challenge that is uncovered during the conversion is the fact that a lot of 

words do not get enough utterance duration and hence do not have enough number 

of frames for the lip-reading model. The model expects a minimum of 5 frames as its 

3D convolution kernel is 5 x 7 x 7. If variable length temporal augmentation of the 

frames is allowed during runtime, i.e. random removal of a few frames to improve 

model robustness to ‘jitter’, even more frames are required. This issue is resolved by 

yet more filtering: by minimum duration of 0.5s during the creation of videos and by 

minimum number of frames as 10. This is in stark contrast to a more organised LRW 

where each video has 29 frames with the target word lying roughly in the middle 

frames.  

● Speaker variability and other intra-class differences also seem to be a lot greater in 

LRS3 compared to LRW from manual comparison of random samples of clips from the 

two datasets. Head-pose and movement being the most common. While this 

variability helps build a more robust model, it also means a lot more data is required 

for training.   
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4.4. Pre-processing 

 Martinez et al., (2020) have taken precomputed face landmarks set for LRW to generate 

mouth ROIs. Further transformation and augmentation happens during the training run.  

 

Since the word-split version of LRS3 is used, the pipeline as shown in Figure 26, is created for 

the purpose. Runtime transformations and/or augmentations are the same as in the original 

work.  

 

 

Figure 26: Dataset conversion (LRS3 to word-level) and pre-processing pipeline.  

 

Face rotation: 

Dlib’s 68 face landmarks are used to rotate an angled face back to vertical as shown in Figure 

27.  

Lip corners:  𝐴 = (𝑥1, 𝑦1) and 𝐵 = (𝑥2, 𝑦2) obtained from landmarks 48 and 54.  

A horizontal drawn through A and a vertical line drawn through B intersect 

perpendicularly at 𝐶 = (𝑥2, 𝑦1).  

The correction angle to rotate 𝜃, is calculated as: 

 

𝑡𝑎𝑛𝜃 =  
𝐵𝐶

𝐴𝐶
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𝜃 =  𝑡𝑎𝑛−1 (
(𝑦1− 𝑦2)

(𝑥2− 𝑥1)
) 

(13) 

 

 

Figure 27: Face rotation using Dlib landmarks. See appendix for code snippet. 

4.5. Experiments 

The following experiments were planned towards E2E training as well as testing the 

robustness of the pretrained models  (Martinez et al., 2020; Assael et al., 2016; Afouras et 

al., 2018) on newer data. While some of the planned experiments were completed, some of 

the experiments, being outside the current scope of this study, will form the topics of our 

continued research in the domain.  

Experiments conducted: 

TCN based word-level E2E model  (Martinez et al., 2020): 

i) Training a model for 7 epochs on LRW E2E with no pretraining on the ‘difficult’ 

words. While the pretraining seems to make a slight improvement in the 

performance, as reported in the original work, it does not meet the ‘single, unified 

training’ of an ideal E2E approach. The training was stopped after 7 epochs as the 

system behaved predictably (which can be seen in the learning curves Figure 28 and 

the test accuracy in Table 9 and there was no further point to make or record to set.   
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ii) Testing the new model on:  

a) LRW test set;  

b) LRS3-Word test set. 

Experiments planned for the future:  

Follow up experiments to further consolidate the effectiveness of the E2E approach are 

listed in section 6 : ‘Recommendations for future work’. 

4.6. Results and Discussion 

4.6.1. Performance 

Table 9. Experiments and results (* - fully pretrained models) 

Experiment Dataset Epochs Mode Loss WAR Architecture 

1 LRW 7 train 1.8506 65.98% resnet_18_mstcn 

1.1. LRW  validation 1.1184 78.92% resnet_18_mstcn 

2 LRW  test 1.1299 78.57% resnet_18_mstcn 

3 LRS3  test 10.8272 0.17% resnet_18_mstcn 

4 LRW 80*   test 0.4760  87.94% resnet_18_mstcn 

5 LRS3 80*    test 9.1031  0.20% resnet_18_mstcn 

 

 

i) Resnet_18_mstcn is the best performing of several models from  (Martinez et al., 

2020).  

Figure 28 shows the training and validation losses and accuracies of the system over 7 

epochs of training.  
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a) 

 

b) 

Figure 28.  Accuracy (a) and loss (b) curves of the E2E system over 7 epochs 

 

The learning curves in Figure 28, are not presented to suggest that the model was sufficiently 

trained in only 7 epochs. Training until convergence is not the aim of this study as the 

original system is used almost as is and hence there’s no baseline to be improved. Since the 

system is almost unchanged compared to the original, except for the exclusion of pretraining 

on difficult words, the purpose of the training was to confirm that the system trains 

predictably. The pretraining stage was excluded as it is the only non-E2E aspect of the 

system as seen in Table 5 (besides the use of a pre-trained pre-processor).  The predictability 
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of the training can be already seen from 7 epochs and thus a considerable amount of time 

was saved.  

 

Since the model was only trained for 7 epochs, the plots in Figures 29 illustrate batch by 

batch progress in training accuracy in %. The first batch size 32 and the remaining updates 

are logged after every 1600 samples. The plots show batch/accuracy both in percentage.  
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a) 

 

b) 
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Figure 29: a) Accuracy over batch progress for each of the 7 epochs of training. b) 

Combined view of training accuracy over 7 epochs.  

 

The decision for num_epochs = 7 was taken based on the following factors: the time 

taken for training (approx. 36 hours for 7 epochs) as well as the tapering off of the 

accuracy as seen in the plots. This is not to suggest that the training further e.g. all 80 

epochs would not have improved the accuracy. However, that would have taken in 

excess of 21 days per experiment. Besides, it would be outside our objectives, given 

the current scope.  

ii) The test WAR of 78.57 % over the training accuracy 65.98% needs further 

investigation. One possible explanation is the fact that most test videos in LRW are 

handpicked for quality. 

iii) When tested on 500 label word-version of LRS3, the pretrained model (80 epochs) 

and the 7 epochs model achieves a very low WAR of 1.7% and 2% respectively. The 

primary reasons for such a low performance has been attributed to:  

a) The extreme variability in video frame numbers compared to the constant 29 

frames in LRW (despite the use of variable length training of the original 

model).  

b) Unseen classes, as not all words in the LRW and LRS3-Word videos are the 

same.   

c) The quality of the videos in LRS3-Word is often significantly lower than that in 

LRW.  

However, the test accuracy (WAR) of a fully trained model on the original LRW 

dataset does attain 87.9% as mentioned in the literature. 

4.6.2. Limitations of using words as classes 

Using words as class labels simplifies the networks, gets rid of the complexity of alignment 

and learning/use of language models. For such a network, a word is just a label and has no 

linguistic value that needs to be learned. A thus simplified network is relatively easier to train 

E2E. While this helps our push towards E2E, it is of little practical value.  
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For example, the TCN model (Martinez et al., 2020) uses the word labelled LRW dataset. 

Despite setting the state-of-the-art on the dataset and being able to train the model almost 

purely E2E, the model can only distinguish between 500 English words. A vocabulary of size 

500 is not nearly enough for any significant NLP task. This is not saying that the model could 

not be trained on a dataset with more words. It could simply be trained with the same 

procedure and settings on more words. But each new word would require enough samples 

in the dataset i.e. around 1000 videos per word by LRW scale. Thus the first problem in 

building a full English vocabulary word classifying ALR is creating the dataset. Such a dataset 

would have to have over 171,000,000 labelled lip-reading videos compared to around 

500,000 in the LRW dataset i.e. around 240 times larger than the LRW dataset. LRW is 

already quite a large dataset in the current scale. The second problem with a full vocabulary 

word based ALR is that, even if a complete dataset is laboriously created, the ALR trained on 

such a dataset would still only be able to identify individual words. This is not very useful for 

continuous speech tasks.  

One possible solution would be to break down a continuous speech video into word chunks 

before feeding into a word-based ALR and concatenate the outputs. But the system would 

have no way to learn the contextual relationship between words. That would have to be 

done as a part of post processing e.g. via the use of a language model. This would make the 

system overly complicated and also non E2E.  

Hence, the focus of lip-reading research should be towards building E2E sentence level ALR 

systems. This will be one of the main topics of our future research. 
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5. Reflection 

5.1. A review of the research aims and objectives. 

The level at which this study has been able to achieve the aims and objectives set out in the 

beginning of this study (section 1.1.), are as follows: 

i) The study has successfully explored the concept of E2E in general and defined its 

meaning in the context of deep learning and deep lip-reading.  

ii) Deep ALR has been successfully introduced with its meaning, applications, challenges 

and solutions. 

iii) Various methods, tools and techniques in the related domains have been thoroughly 

reviewed for their significance in ALR within the context of E2E approach.  

iv) Various E2E ALR systems have been reviewed and comparatively evaluated based on 

the set criteria for E2E.  

v) Pure E2E experiments have been carried out with some level of success in justifying 

the practicability of E2E ALR.  

5.2. Answering the research questions.  

This section re-visits the proposed research questions (section 1.2.) and discusses to what 

extent the study and the experiments were able to answer them.   

i) What is the ideal definition of E2E in deep lip-reading? 

The criteria for pure E2E lip-reading was defined (section 2.4) based on 

differentiability of the modules of an architecture, continuous flow of gradients, 

unified training process, level of pre-processing and postprocessing.  

ii) How are the breakthrough methods, tools and techniques in deep learning, 

especially in speech and image processing,  aiding the E2E approach? 

Through a review of such methods, tools and techniques (section 3.3), the impact of 

their advances in the more general fields of speech and image processing was found 

to be very significant for the progress in ALR.   

iii) Do the seemingly E2E state-of-the-art works in lip-reading meet the full extent of 

E2E as defined in this study? 



79 

It was discovered from a review of several different E2E systems (section 3.6) that 

most of the systems are not completely E2E when judged based on the newly set 

criteria for E2E.  

iv) Is the quest for pure E2E deep lip-reading pragmatic or idealistic? 

The full E2E experiment and its performance on the test set of a fairly wild dataset 

proves that at least for word-level ALR systems, pure E2E is a pragmatic approach. 

However, the generalisability of the E2E model is questionable as its performance 

seems to falter on an unseen dataset. The performance lag on new data could very 

well be a general issue in ML and has very little do with the E2E approach. This needs 

to be clarified with further controlled experiments. Also, since the experiments in this 

study are word-based, whether the pure E2E approach is pragmatic for sentence-

level ALR remains to be verified.  

   

Note: The confusion matrices of the word classes are provided in Appendix B. Due to the 

large number of classes (500, one for each word label), the matrices had to be broken down 

into chunks for better visibility. Appendix C provides the top-5 predictions of the system for 

all 500 word labels.  
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6. Conclusion 

The meaning and purpose of the E2E concept is outlined in the context of machine learning 

in general and in lip-reading specifically. A survey of the E2E approaches to lip-reading is 

provided along with an overview of pre/non E2E techniques that directly or indirectly led to 

the development of recent E2E trends in the field. Upon individual analysis of several E2E 

approaches, it is discovered that most works still incorporate non-E2E methods like 

pretraining and  multistage training in order to improve performance. However, the most 

recent among such approaches seem to be getting ever so close to the complete definition 

of E2E. Most of the objectives of this study have been achieved and its questions answered. 

The experiments conducted suggest that although E2E approaches have evolved enough to 

set new state-of-the-art, the models still need to be a lot more robust to newer data in order 

to be applicable in the real world. Future work will include the completion of all the planned 

experiments for a  more thorough analysis of a few chosen works. Another future work will 

include incorporating the information obtained through this survey into developing a purer 

novel E2E lip-reading architecture.  

 

Recommendations for future work:  

The project was able to achieve most of its outlined objectives and answer most of the 

research questions as reflected in section 5. However, to obtain a more complete 

understanding of the E2E in the full spectrum of lip-reading, following experiments are 

planned for the future as a follow up to the experiments conducted:  

i) TCN based word-level E2E 

a) Full training and test of a new model on the new LRS3-Word dataset.  

ii) BGRU based E2E sentence-level model (Assael et al., 2016): 

a) Train purely E2E on LRS2 vs the original, much easier GRID corpus  

b) Test on LRS2, LRS3 for generalisation capability 

iii) Transformer based sentence-level model (Afouras et al, 2018): 

a) Train on original LRS2 but E2E instead of original multistage pretraining 

approach.  

b) Investigate techniques/modifications that could facilitate E2E learning. 

 



81 

Besides these experiments with specific goals, the following studies with broader objectives 

in the topic are recommended for future work:  

iv) Measuring the impact of homophemes in E2E lip-reading: This can be done by 

comparing the performance of E2E ALR systems on homophemic and non-

homophemic videos. A dataset can be split into several versions, each with varying 

percentages of homophemes. Various ALR systems can then be trained and tested on 

each of these versions for performance comparison.   

v) Application of the latest advances in neural network research to create a novel, pure 

E2E lip-reading architecture. The tools, tips and techniques discussed throughout this 

study can be brought together where possible to combine their strengths into a 

single architecture.  

vi) Extending the investigation to other classification schemas. Design experiments to 

test the effectiveness of the E2E approach on ALR systems that are based on visemes, 

phonemes, characters etc. 

vii) Testing the effectiveness of the pure E2E approach in a more challenging sentence-

level ALR system. Given the limitations of word-level lip-reading (section 4.6.2.) a 

move towards the more useful sentence-level E2E lip-reading is required. 

 

It is our firm belief that these works will help clear some obstacles and answer some 

questions in the path towards the development of an end-to-end lip-reading system that is 

more accurate and can perform sentence-level predictions. Such a system will become a 

significant milestone towards the higher goal of the domain, i.e. a  reliable and practical ALR 

system capable of continuous decoding. An investigation into homopheme, which is one of 

the biggest obstacles in lip-reading,  can provide us with insights into improving the 

accuracy. A study of sentence-level lip-reading with various classification schemas and more 

efficient networks can pave the path for a more continuous lip-reading.  
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Appendix 

A. Datasets 

Details of the datasets used in the experiments.  

 

LRW file structure  

 

 

  

 

Figure 30. a): LRW file structure 

 

 
Figure 30. b): Sample .txt file metadata for each word .mp4 file clip 

 

 

 

 



92 

 

LRS3-TED file structure 

 
 

 
 

 

 

Figure 30. c): LRS3-TED dataset file structure 

 

 
Figure 30. d): LRS3-TED sample label text file  
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   Figure 30. e): LRS3-TED sample text file with label and face bounding box coordinates.  
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B. Confusion matrices 

 

Figure 31. a.) Confusion matrix first 50 words. Commonly confused word pairs: [(‘ALLOW’, 

‘ALLOWED’), (‘BENEFIT’, ‘BENEFITS’), (‘ANSWER’, ‘ASKED’)] 
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Figure 31. b.) Confusion matrix, words 50-75 
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Figure 31. c.) Confusion matrix, words 75-100 
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Figure 31. d.) Confusion matrix, words 100-125 
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Figure 31. e.) Confusion matrix, words 125-150 
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Figure 31. f.) Confusion matrix, words 150-175 
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Figure 31. g.) Confusion matrix, words 175-200 
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Figure 31. h.) Confusion matrix, words 200-225 
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Figure 31. i.) Confusion matrix, words 225-250 



103 

 

Figure 31. j.) Confusion matrix, words 250-275 
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Figure 31. k.) Confusion matrix, words 275-300 
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Figure 31. l.) Confusion matrix, words 300-325 
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Figure 31. m.) Confusion matrix, words 325-350 
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Figure 31. n.) Confusion matrix, words 350-375 
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Figure 31. o.) Confusion matrix, words 375-400 
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Figure 31. p.) Confusion matrix, words 400-425 
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Figure 31. q.) Confusion matrix, words 425-450 
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Figure 31. r.) Confusion matrix, words 450-475 
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Figure 31. s.) Confusion matrix, words 475-500 
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C. Top-5 predictions per label 

Since the diagrams (Figure 31.a. - 31.s.) only depict a narrow window of size 25 for visibility 

purposes (e.g. a full 500 x 500 matrix would be too large to include in this document), Table 

10 lists the top 5 predictions for each of the 500 words in the labels. Note: some words have 

less than 5 predictions e.g. word 2: ‘ABSOLUTELY’, while some have more than 5 predictions 

which are not included in the table. Each class/word contains 50 samples in the test set. 

e.g. for the word ‘ABSOLUTELY’,  

 

The total count of the 3 predictions =  48 + 1 + 1 = 50.  

 

Words that are confused more than 30 times i.e. 60% of the time are highlighted in red. 

Words with prediction accuracy (WAR) of 90% or more are highlighted in green. 

 

Table 10: Top-5 predictions per label  

 

Word 

(Prediction, Count) 

Prediction1 Prediction2 Prediction3 Prediction4 Prediction5 

ABOUT ('ABOUT', 31) ('AMONG', 3) ('AMOUNT', 3) ('AMERICAN', 2) ('DEBATE', 2) 

ABSOLUTELY ('ABSOLUTELY', 

48) 

('HAPPEN', 1) ('TEMPERATURE

S', 1) 

  

ABUSE ('ABUSE', 45) ('COMMUNITY', 

3) 

('BUILD', 1) ('REPORTS', 1)  

ACCESS ('ACCESS', 47) ('CASES', 3)    

ACCORDING ('ACCORDING', 

47) 

('COURT', 1) ('INCREASE', 1) ('WHOLE', 1)  

ACCUSED ('ACCUSED', 50)     

ACROSS ('ACROSS', 45) ('ANOTHER', 1) ('GROWTH', 1) ('IRELAND', 1) ('LOCAL', 1) 

ACTION ('ACTION', 37) ('COUNCIL', 2) ('NATIONAL', 2) ('ALLEGATIONS'

, 1) 

('AMONG', 1) 

ACTUALLY ('ACTUALLY', 35) ('GETTING', 3) ('ASKING', 2) ('ASKED', 1) ('CHANGES', 1) 
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AFFAIRS ('AFFAIRS', 44) ('FIGHT', 3) ('FACING', 1) ('FIGURES', 1) ('RIGHTS', 1) 

AFFECTED ('AFFECTED', 42) ('EVENTS', 3) ('FIGHTING', 2) ('FIGHT', 1) ('FOUND', 1) 

AFRICA ('AFRICA', 45) ('EVERYTHING', 

2) 

('CONFERENCE', 

1) 

('EVERY', 1) ('LIVING', 1) 

AFTER ('AFTER', 47) ('EVERY', 1) ('GIVEN', 1) ('POSSIBLE', 1)  

AFTERNOON ('AFTERNOON', 

50) 

    

AGAIN ('AGAIN', 42) ('AGAINST', 1) ('CLEAR', 1) ('EARLY', 1) ('EXACTLY', 1) 

AGAINST ('AGAINST', 35) ('CANCER', 3) ('LATER', 2) ('AGAIN', 1) ('CASES', 1) 

AGREE ('AGREE', 38) ('ANYTHING', 3) ('GREAT', 2) ('GREECE', 2) ('THREE', 2) 

AGREEMENT ('AGREEMENT', 

49) 

('WOMEN', 1)    

AHEAD ('AHEAD', 41) ('ATTACKS', 2) ('ENGLAND', 1) ('GETTING', 1) ('GOING', 1) 

ALLEGATIONS ('ALLEGATIONS', 

50) 

    

ALLOW ('ALLOW', 35) ('ALLOWED', 7) ('CONTINUE', 2) ('DETAILS', 1) ('SHOULD', 1) 

ALLOWED ('ALLOWED', 42) ('ANNOUNCED', 

2) 

('HOUSE', 2) ('ALLOW', 1) ('BELIEVE', 1) 

ALMOST ('ALMOST', 44) ('COMES', 2) ('ALWAYS', 1) ('FORWARD', 1) ('WANTS', 1) 

ALREADY ('ALREADY', 41) ('ALWAYS', 1) ('DEGREES', 1) ('GREAT', 1) ('LOOKING', 1) 

ALWAYS ('ALWAYS', 42) ('AUTHORITIES', 

1) 

('COMING', 1) ('COURSE', 1) ('FORWARD', 

1) 

AMERICA ('AMERICA', 38) ('AMERICAN', 

10) 

('ASKED', 1) ('RETURN', 1)  
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AMERICAN ('AMERICAN', 

43) 

('AMERICA', 2) ('AMONG', 1) ('BUILDING', 1) ('MAKING', 1) 

AMONG ('AMONG', 44) ('ALMOST', 1) ('AMERICA', 1) ('BEING', 1) ('CAMPAIGN', 

1) 

AMOUNT ('AMOUNT', 43) ('ABOUT', 2) ('MATTER', 2) ('AMONG', 1) ('MAKES', 1) 

ANNOUNCED ('ANNOUNCED', 

42) 

('ALLOWED', 3) ('COUNCIL', 3) ('AGAINST', 1) ('KNOWN', 1) 

ANOTHER ('ANOTHER', 38) ('SOUTHERN', 

3) 

('BUILDING', 1) ('ENGLAND', 1) ('ENOUGH', 1) 

ANSWER ('ANSWER', 29) ('ASKED', 4) ('ACTION', 2) ('ANYTHING', 2) ('ASKING', 2) 

ANYTHING ('ANYTHING', 47) ('CONTINUE', 1) ('LIVING', 1) ('OTHER', 1)  

AREAS ('AREAS', 45) ('HOURS', 2) ('LEVELS', 2) ('SERIES', 1)  

AROUND ('AROUND', 38) ('GROUND', 4) ('ABOUT', 1) ('GROWTH', 1) ('HIGHER', 1) 

ARRESTED ('ARRESTED', 45) ('ASKING', 1) ('CRISIS', 1) ('REASON', 1) ('RECENT', 1) 

ASKED ('ASKED', 27) ('CANCER', 5) ('ASKING', 3) ('HEART', 3) ('ACTION', 2) 

ASKING ('ASKING', 44) ('ACCESS', 2) ('ANSWER', 1) ('GETTING', 1) ('PATIENTS', 1) 

ATTACK ('ATTACK', 45) ('EXACTLY', 2) ('SAYING', 1) ('STAND', 1) ('TODAY', 1) 

ATTACKS ('ATTACKS', 46) ('ASKING', 1) ('DECIDED', 1) ('STATES', 1) ('VIOLENCE', 1) 

AUTHORITIES ('AUTHORITIES', 

49) 

('AGREE', 1)    

BANKS ('BANKS', 42) ('PLANS', 3) ('PLACE', 2) ('DEBATE', 1) ('MAKES', 1) 

BECAUSE ('BECAUSE', 33) ('ABUSE', 5) ('BEING', 2) ('MEANS', 2) ('ABSOLUTELY', 

1) 

BECOME ('BECOME', 47) ('BECAUSE', 2) ('PARLIAMENT', 

1) 
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BEFORE ('BEFORE', 50)     

BEHIND ('BEHIND', 45) ('PERSON', 2) ('NIGHT', 1) ('PARTY', 1) ('PAYING', 1) 

BEING ('BEING', 34) ('PAYING', 4) ('BIGGEST', 3) ('MIDDLE', 2) ('BETTER', 1) 

BELIEVE ('BELIEVE', 45) ('ENOUGH', 1) ('GIVEN', 1) ('PERIOD', 1) ('POLICE', 1) 

BENEFIT ('BENEFIT', 44) ('BENEFITS', 5) ('IMPACT', 1)   

BENEFITS ('BENEFITS', 43) ('BENEFIT', 7)    

BETTER ('BETTER', 35) ('ABOUT', 2) ('MESSAGE', 2) ('BANKS', 1) ('BECOME', 1) 

BETWEEN ('BETWEEN', 49) ('THREE', 1)    

BIGGEST ('BIGGEST', 41) ('BUILD', 2) ('BANKS', 1) ('BILLION', 1) ('BRITISH', 1) 

BILLION ('BILLION', 42) ('MILLION', 4) ('BUILDING', 2) ('BEING', 1) ('PAYING', 1) 

BLACK ('BLACK', 44) ('BANKS', 1) ('BEING', 1) ('IMPACT', 1) ('PLANS', 1) 

BORDER ('BORDER', 37) ('IMPORTANT', 

5) 

('BROUGHT', 3) ('POINT', 2) ('POLICY', 1) 

BRING ('BRING', 37) ('BEING', 3) ('BRITAIN', 2) ('EUROPEAN', 

2) 

('PRETTY', 2) 

BRITAIN ('BRITAIN', 30) ('BRING', 7) ('PRISON', 6) ('BRITISH', 1) ('MEETING', 1) 

BRITISH ('BRITISH', 41) ('BIGGEST', 1) ('BRING', 1) ('BRITAIN', 1) ('PRESIDENT', 

1) 

BROUGHT ('BROUGHT', 37) ('IMPORTANT', 

4) 

('BORDER', 3) ('POINT', 2) ('BETWEEN', 1) 

BUDGET ('BUDGET', 47) ('BUSINESS', 1) ('PARTY', 1) ('PROCESS', 1)  

BUILD ('BUILD', 44) ('BEING', 1) ('BRING', 1) ('BUILDING', 1) ('BUSINESS', 1) 

BUILDING ('BUILDING', 45) ('AMERICAN', 1) ('BECAUSE', 1) ('BILLION', 1) ('BUILD', 1) 
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BUSINESS ('BUSINESS', 40) ('BUSINESSES', 

2) 

('MESSAGE', 2) ('MINISTERS', 2) ('MIDDLE', 1) 

BUSINESSES ('BUSINESSES', 

45) 

('BUSINESS', 4) ('DIFFERENCE', 

1) 

  

CALLED ('CALLED', 36) ('COURT', 3) ('COURSE', 2) ('WHOLE', 2) ('ACCORDING', 

1) 

CAMERON ('CAMERON', 50)     

CAMPAIGN ('CAMPAIGN', 

48) 

('HAPPEN', 1) ('IMPACT', 1)   

CANCER ('CANCER', 38) ('ANSWER', 3) ('CASES', 3) ('ACTION', 2) ('COUNCIL', 2) 

CANNOT ('CANNOT', 44) ('YOUNG', 2) ('ECONOMIC', 1) ('HEALTH', 1) ('IRELAND', 1) 

CAPITAL ('CAPITAL', 41) ('COUPLE', 3) ('HAPPENING', 3) ('CAMERON', 1) ('HAPPEN', 1) 

CASES ('CASES', 45) ('CANCER', 1) ('CHANGES', 1) ('LATEST', 1) ('PRICES', 1) 

CENTRAL ('CENTRAL', 43) ('SECRETARY', 

2) 

('SINGLE', 2) ('CHANGES', 1) ('GENERAL', 1) 

CERTAINLY ('CERTAINLY', 

43) 

('SUNDAY', 2) ('LIKELY', 1) ('SINCE', 1) ('TAKING', 1) 

CHALLENGE ('CHALLENGE', 

41) 

('CHANGE', 8) ('SENSE', 1)   

CHANCE ('CHANCE', 34) ('CHARGE', 2) ('JUDGE', 2) ('SENSE', 2) ('ANSWER', 1) 

CHANGE ('CHANGE', 40) ('JUDGE', 3) ('CHANCE', 2) ('CHANGES', 1) ('EDUCATION', 

1) 

CHANGES ('CHANGES', 47) ('CHANCE', 2) ('CHANGE', 1)   

CHARGE ('CHARGE', 35) ('START', 6) ('CHANCE', 2) ('JUDGE', 2) ('STARTED', 2) 

CHARGES ('CHARGES', 41) ('CHANCE', 2) ('CHANGES', 2) ('CHILDREN', 2) ('CHARGE', 1) 

CHIEF ('CHIEF', 49) ('GIVEN', 1)    
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CHILD ('CHILD', 38) ('CHANCE', 2) ('TRADE', 2) ('CHALLENGE', 

1) 

('CHANGE', 1) 

CHILDREN ('CHILDREN', 46) ('CHALLENGE', 

1) 

('SECURITY', 1) ('SHORT', 1) ('SINGLE', 1) 

CHINA ('CHINA', 43) ('CHANGES', 2) ('CERTAINLY', 1) ('CHALLENGE', 

1) 

('DECIDED', 1) 

CLAIMS ('CLAIMS', 46) ('COMES', 1) ('GAMES', 1) ('JAMES', 1) ('PERHAPS', 1) 

CLEAR ('CLEAR', 41) ('HIGHER', 2) ('AGAIN', 1) ('ENGLAND', 1) ('FIGURES', 1) 

CLOSE ('CLOSE', 39) ('ALLOWED', 2) ('ACCUSED', 1) ('ASKED', 1) ('BECAUSE', 1) 

CLOUD ('CLOUD', 46) ('CLOSE', 2) ('ALLOWED', 1) ('LABOUR', 1)  

COMES ('COMES', 45) ('GAMES', 1) ('HOMES', 1) ('SEEMS', 1) ('TERMS', 1) 

COMING ('COMING', 47) ('COMES', 1) ('GLOBAL', 1) ('SOMEONE', 1)  

COMMUNITY ('COMMUNITY', 

47) 

('FORWARD', 1) ('SIMPLY', 1) ('WRONG', 1)  

COMPANIES ('COMPANIES', 

44) 

('COMPANY', 4) ('COMES', 1) ('NUMBER', 1)  

COMPANY ('COMPANY', 41) ('COMPANIES', 

5) 

('COMING', 2) ('COUPLE', 1) ('MEMBER', 1) 

CONCERNS ('CONCERNS', 

49) 

('INTEREST', 1)    

CONFERENCE ('CONFERENCE', 

46) 

('CONFLICT', 2) ('AUTHORITIES', 

1) 

('OFTEN', 1)  

CONFLICT ('CONFLICT', 49) ('EVERYTHING', 

1) 

   

CONSERVATIV

E 

('CONSERVATIVE

', 47) 

('CHIEF', 1) ('GERMANY', 1) ('TERMS', 1)  

CONTINUE ('CONTINUE', 42) ('EXACTLY', 1) ('ISSUE', 1) ('LARGE', 1) ('ORDER', 1) 
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CONTROL ('CONTROL', 49) ('ECONOMIC', 

1) 

   

COULD ('COULD', 24) ('ECONOMIC', 

3) 

('SHOULD', 3) ('CALLED', 2) ('SECURITY', 2) 

COUNCIL ('COUNCIL', 41) ('AFTER', 2) ('ANNOUNCED', 

2) 

('ALLOWED', 1) ('ANSWER', 1) 

COUNTRIES ('COUNTRIES', 

44) 

('AGREE', 1) ('CANNOT', 1) ('CHANGES', 1) ('COMPANIES', 

1) 

COUNTRY ('COUNTRY', 45) ('COUNTRIES', 

2) 

('CENTRAL', 1) ('INDUSTRY', 1) ('LARGE', 1) 

COUPLE ('COUPLE', 47) ('CAPITAL', 1) ('COMING', 1) ('ISLAMIC', 1)  

COURSE ('COURSE', 45) ('COURT', 1) ('FORCES', 1) ('QUITE', 1) ('TALKS', 1) 

COURT ('COURT', 36) ('CALLED', 3) ('COURSE', 3) ('ORDER', 2) ('SCHOOLS', 2) 

CRIME ('CRIME', 47) ('AGREEMENT', 

1) 

('GREAT', 1) ('RIGHT', 1)  

CRISIS ('CRISIS', 49) ('GREAT', 1)    

CURRENT ('CURRENT', 48) ('LEVELS', 1) ('SCOTLAND', 1)   

CUSTOMERS ('CUSTOMERS', 

47) 

('NEEDS', 2) ('SITUATION', 1)   

DAVID ('DAVID', 47) ('CONSERVATIV

E', 1) 

('GIVEN', 1) ('HAVING', 1)  

DEATH ('DEATH', 40) ('AGAINST', 1) ('ANOTHER', 1) ('ATTACK', 1) ('EXTRA', 1) 

DEBATE ('DEBATE', 39) ('SPENT', 4) ('SPEND', 2) ('EXPECTED', 1) ('INDEPENDEN

T', 1) 

DECIDED ('DECIDED', 41) ('STARTED', 5) ('BUSINESSES', 1) ('INSIDE', 1) ('SOCIETY', 1) 

DECISION ('DECISION', 48) ('CENTRAL', 1) ('CONTINUE', 1)   

DEFICIT ('DEFICIT', 48) ('EVIDENCE', 1) ('NEVER', 1)   
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DEGREES ('DEGREES', 48) ('AFTERNOON', 

1) 

('GREECE', 1)   

DESCRIBED ('DESCRIBED', 

49) 

('CRIME', 1)    

DESPITE ('DESPITE', 47) ('EXPECT', 2) ('SPEAKING', 1)   

DETAILS ('DETAILS', 47) ('CONCERNS', 1) ('SENIOR', 1) ('SENSE', 1)  

DIFFERENCE ('DIFFERENCE', 

43) 

('DIFFERENT', 5) ('DEFICIT', 1) ('FOCUS', 1)  

DIFFERENT ('DIFFERENT', 

35) 

('DIFFERENCE', 

6) 

('DEFICIT', 2) ('DIFFICULT', 2) ('SEVERAL', 2) 

DIFFICULT ('DIFFICULT', 48) ('DIFFERENCE', 

1) 

('EXPECT', 1)   

DOING ('DOING', 37) ('SYRIA', 2) ('BETWEEN', 1) ('CONTINUE', 1) ('DURING', 1) 

DURING ('DURING', 40) ('CONTROL', 1) ('DOING', 1) ('EASTERN', 1) ('GOING', 1) 

EARLY ('EARLY', 40) ('CLEAR', 2) ('CASES', 1) ('HEARD', 1) ('HIGHER', 1) 

EASTERN ('EASTERN', 43) ('YESTERDAY', 

2) 

('CENTRAL', 1) ('FIGURES', 1) ('LEADER', 1) 

ECONOMIC ('ECONOMIC', 

47) 

('HUMAN', 1) ('ISLAMIC', 1) ('LEADER', 1)  

ECONOMY ('ECONOMY', 48) ('CANNOT', 1) ('EUROPE', 1)   

EDITOR ('EDITOR', 41) ('CANCER', 2) ('ARRESTED', 1) ('BANKS', 1) ('LATEST', 1) 

EDUCATION ('EDUCATION', 

47) 

('ELECTION', 1) ('SECTOR', 1) ('UNITED', 1)  

ELECTION ('ELECTION', 43) ('ACTION', 4) ('ACTUALLY', 1) ('ALLEGATIONS'

, 1) 

('RUSSIAN', 1) 

EMERGENCY ('EMERGENCY', 

47) 

('ASKING', 1) ('COMMUNITY', 

1) 

('SPECIAL', 1)  

ENERGY ('ENERGY', 43) ('ANYTHING', 2) ('EDITOR', 2) ('ACTION', 1) ('JUSTICE', 1) 
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ENGLAND ('ENGLAND', 45) ('IRELAND', 1) ('LATEST', 1) ('LEADERS', 1) ('LONDON', 1) 

ENOUGH ('ENOUGH', 44) ('BEING', 1) ('LEAVE', 1) ('LIVES', 1) ('NOTHING', 1) 

EUROPE ('EUROPE', 49) ('PERIOD', 1)    

EUROPEAN ('EUROPEAN', 

48) 

('DEBATE', 1) ('REMEMBER', 1)   

EVENING ('EVENING', 46) ('EVENTS', 1) ('GIVING', 1) ('HEAVY', 1) ('LIVING', 1) 

EVENTS ('EVENTS', 45) ('AFFECTED', 2) ('VIOLENCE', 2) ('FRENCH', 1)  

EVERY ('EVERY', 41) ('HAVING', 3) ('DAVID', 2) ('EVERYTHING', 

1) 

('HEAVY', 1) 

EVERYBODY ('EVERYBODY', 

48) 

('EVERYONE', 1) ('FOOTBALL', 1)   

EVERYONE ('EVERYONE', 49) ('ALWAYS', 1)    

EVERYTHING ('EVERYTHING', 

46) 

('AFRICA', 1) ('EVERYONE', 1) ('LEVEL', 1) ('THINK', 1) 

EVIDENCE ('EVIDENCE', 48) ('AREAS', 1) ('EVERYTHING', 

1) 

  

EXACTLY ('EXACTLY', 42) ('ATTACK', 1) ('DEATH', 1) ('DECIDED', 1) ('GETTING', 1) 

EXAMPLE ('EXAMPLE', 49) ('COUPLE', 1)    

EXPECT ('EXPECT', 43) ('EXPECTED', 2) ('INDEPENDENT', 

2) 

('AGAIN', 1) ('SPEND', 1) 

EXPECTED ('EXPECTED', 47) ('INDEPENDENT

', 1) 

('SPEND', 1) ('SPENDING', 1)  

EXTRA ('EXTRA', 45) ('HISTORY', 2) ('COUNTRY', 1) ('NATIONAL', 1) ('SECTOR', 1) 

FACING ('FACING', 44) ('FIGHTING', 6)    



122 

FAMILIES ('FAMILIES', 48) ('FAMILY', 2)    

FAMILY ('FAMILY', 47) ('FAMILIES', 2) ('AMONG', 1)   

FIGHT ('FIGHT', 38) ('FIGHTING', 4) ('FRONT', 3) ('AFFECTED', 2) ('AFRICA', 1) 

FIGHTING ('FIGHTING', 43) ('FACING', 2) ('FIGHT', 2) ('FINAL', 2) ('RUNNING', 1) 

FIGURES ('FIGURES', 43) ('AFFAIRS', 3) ('FRANCE', 1) ('FRENCH', 1) ('INFLATION', 

1) 

FINAL ('FINAL', 46) ('FIGHTING', 1) ('FIGURES', 1) ('FRIDAY', 1) ('FRONT', 1) 

FINANCIAL ('FINANCIAL', 46) ('NATIONAL', 2) ('FINAL', 1) ('VIOLENCE', 1)  

FIRST ('FIRST', 39) ('FIGURES', 2) ('FRONT', 2) ('FURTHER', 2) ('FORCE', 1) 

FOCUS ('FOCUS', 43) ('FORCE', 2) ('VOTERS', 2) ('FORCES', 1) ('OFFICIALS', 1) 

FOLLOWING ('FOLLOWING', 

50) 

    

FOOTBALL ('FOOTBALL', 48) ('CAMPAIGN', 

1) 

('FORMER', 1)   

FORCE ('FORCE', 43) ('FORCES', 3) ('FORWARD', 3) ('RULES', 1)  

FORCES ('FORCES', 45) ('FORCE', 2) ('AUTHORITIES', 

1) 

('FIGHTING', 1) ('VOTERS', 1) 

FOREIGN ('FOREIGN', 47) ('BEFORE', 1) ('FRONT', 1) ('VOTERS', 1)  

FORMER ('FORMER', 47) ('HUMAN', 2) ('FOOTBALL', 1)   

FORWARD ('FORWARD', 43) ('FORCE', 3) ('ALWAYS', 1) ('FORMER', 1) ('PHONE', 1) 

FOUND ('FOUND', 46) ('FAMILY', 1) ('FIGHTING', 1) ('NOTHING', 1) ('PHONE', 1) 

FRANCE ('FRANCE', 43) ('FRONT', 2) ('FIRST', 1) ('INFLATION', 1) ('SCOTLAND', 

1) 

FRENCH ('FRENCH', 48) ('FRONT', 1) ('RUSSIAN', 1)   
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FRIDAY ('FRIDAY', 46) ('FINAL', 3) ('FIGHTING', 1)   

FRONT ('FRONT', 40) ('FORMER', 2) ('FRANCE', 2) ('DIFFERENT', 1) ('FIGHT', 1) 

FURTHER ('FURTHER', 45) ('FOREIGN', 1) ('OFFICERS', 1) ('RATHER', 1) ('TRUST', 1) 

FUTURE ('FUTURE', 48) ('TRIAL', 1) ('VOTERS', 1)   

GAMES ('GAMES', 43) ('TIMES', 3) ('CAPITAL', 1) ('COMES', 1) ('STATEMENT', 

1) 

GENERAL ('GENERAL', 44) ('CENTRAL', 2) ('SEVERAL', 2) ('CHILD', 1) ('SOMEONE', 

1) 

GEORGE ('GEORGE', 38) ('TALKS', 6) ('SHORT', 2) ('FORWARD', 1) ('SCHOOLS', 1) 

GERMANY ('GERMANY', 50)     

GETTING ('GETTING', 30) ('TAKING', 2) ('AGAIN', 1) ('ASKING', 1) ('CERTAINLY', 

1) 

GIVEN ('GIVEN', 33) ('GIVING', 7) ('DIFFERENT', 2) ('LEVEL', 2) ('DAVID', 1) 

GIVING ('GIVING', 33) ('GIVEN', 6) ('LIVING', 4) ('EVENING', 3) ('NEVER', 2) 

GLOBAL ('GLOBAL', 47) ('COULD', 1) ('COUPLE', 1) ('REPORT', 1)  

GOING ('GOING', 32) ('LONGER', 2) ('ACCUSED', 1) ('AUTHORITIES', 

1) 

('CERTAINLY', 

1) 

GOVERNMEN

T 

('GOVERNMENT'

, 48) 

('COMPANY', 1) ('NEVER', 1)   

GREAT ('GREAT', 32) ('AGREE', 3) ('QUITE', 3) ('THREAT', 2) ('AGAIN', 1) 

GREECE ('GREECE', 47) ('INCREASE', 3)    

GROUND ('GROUND', 39) ('AROUND', 8) ('FOUND', 1) ('ITSELF', 1) ('SOCIETY', 1) 

GROUP ('GROUP', 44) ('EUROPE', 2) ('ECONOMIC', 1) ('FOOTBALL', 1) ('GERMANY', 

1) 
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GROWING ('GROWING', 47) ('GOING', 1) ('GROWTH', 1) ('ORDER', 1)  

GROWTH ('GROWTH', 48) ('LATER', 1) ('NORTH', 1)   

GUILTY ('GUILTY', 46) ('ACCUSED', 1) ('CHILDREN', 1) ('HOUSING', 1) ('KILLED', 1) 

HAPPEN ('HAPPEN', 37) ('HAPPENED', 7) ('CAPITAL', 1) ('COMING', 1) ('COUPLE', 1) 

HAPPENED ('HAPPENED', 

39) 

('HAPPEN', 3) ('HAPPENING', 3) ('CAPITAL', 2) ('COMES', 1) 

HAPPENING ('HAPPENING', 

48) 

('COMING', 1) ('SOMETHING', 

1) 

  

HAVING ('HAVING', 42) ('AFTER', 1) ('AMERICAN', 1) ('COUNCIL', 1) ('CURRENT', 1) 

HEALTH ('HEALTH', 42) ('ENGLAND', 2) ('ANNOUNCED', 

1) 

('COUNCIL', 1) ('CURRENT', 1) 

HEARD ('HEARD', 27) ('EARLY', 2) ('FURTHER', 2) ('SENIOR', 2) ('ANOTHER', 1) 

HEART ('HEART', 44) ('BECAUSE', 1) ('BEHIND', 1) ('HIGHER', 1) ('INVOLVED', 

1) 

HEAVY ('HEAVY', 40) ('HAVING', 6) ('AFTER', 1) ('EVERYTHING', 

1) 

('LEAVE', 1) 

HIGHER ('HIGHER', 39) ('BEHIND', 2) ('AHEAD', 1) ('ATTACK', 1) ('CHINA', 1) 

HISTORY ('HISTORY', 44) ('COUNTRY', 1) ('EXTRA', 1) ('FINANCIAL', 1) ('ISSUES', 1) 

HOMES ('HOMES', 44) ('ALMOST', 2) ('TERMS', 2) ('COMES', 1) ('TIMES', 1) 

HOSPITAL ('HOSPITAL', 48) ('GOING', 1) ('POSSIBLE', 1)   

HOURS ('HOURS', 40) ('HOUSE', 3) ('AGAINST', 1) ('AREAS', 1) ('COUNCIL', 1) 

HOUSE ('HOUSE', 33) ('HOURS', 4) ('ANNOUNCED', 

3) 

('COUNCIL', 2) ('HOUSING', 2) 

HOUSING ('HOUSING', 44) ('HOUSE', 3) ('ACTUALLY', 2) ('ANNOUNCED', 

1) 
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HUMAN ('HUMAN', 47) ('GLOBAL', 2) ('COMING', 1)   

HUNDREDS ('HUNDREDS', 

48) 

('EXTRA', 1) ('THOUSANDS', 

1) 

  

IMMIGRATIO

N 

('IMMIGRATION'

, 50) 

    

IMPACT ('IMPACT', 44) ('AMOUNT', 1) ('BANKS', 1) ('CAMPAIGN', 

1) 

('PARTS', 1) 

IMPORTANT ('IMPORTANT', 

41) 

('POINT', 3) ('BRING', 1) ('MORNING', 1) ('PARTS', 1) 

INCREASE ('INCREASE', 49) ('SERIES', 1)    

INDEPENDENT ('INDEPENDENT', 

44) 

('SPENT', 2) ('BETTER', 1) ('DESPITE', 1) ('EXPECTED', 1) 

INDUSTRY ('INDUSTRY', 44) ('HISTORY', 3) ('DOING', 1) ('LEADERSHIP', 

1) 

('SHOULD', 1) 

INFLATION ('INFLATION', 48) ('EVENTS', 1) ('FRENCH', 1)   

INFORMATIO

N 

('INFORMATION'

, 50) 

    

INQUIRY ('INQUIRY', 49) ('WHERE', 1)    

INSIDE ('INSIDE', 45) ('CONCERNS', 2) ('DECIDED', 2) ('YESTERDAY', 

1) 

 

INTEREST ('INTEREST', 44) ('ACROSS', 1) ('COUNTRIES', 1) ('SITUATION', 1) ('STREET', 1) 

INVESTMENT ('INVESTMENT', 

49) 

('FACING', 1)    

INVOLVED ('INVOLVED', 48) ('DIFFICULT', 1) ('GROWTH', 1)   

IRELAND ('IRELAND', 48) ('EARLY', 1) ('VIOLENCE', 1)   

ISLAMIC ('ISLAMIC', 50)     
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ISSUE ('ISSUE', 43) ('ACTION', 2) ('ACTUALLY', 1) ('COUNCIL', 1) ('DESCRIBED', 

1) 

ISSUES ('ISSUES', 42) ('ISSUE', 3) ('ACTION', 1) ('ELECTION', 1) ('RESULT', 1) 

ITSELF ('ITSELF', 46) ('CONSERVATIV

E', 1) 

('ENOUGH', 1) ('SOUTH', 1) ('STAFF', 1) 

JAMES ('JAMES', 47) ('CHANCE', 1) ('CONSERVATIVE

', 1) 

('GAMES', 1)  

JUDGE ('JUDGE', 40) ('CHANCE', 2) ('CHANGE', 2) ('CHALLENGE', 

1) 

('GEORGE', 1) 

JUSTICE ('JUSTICE', 45) ('ANSWER', 1) ('CHANGES', 1) ('DECISION', 1) ('THINGS', 1) 

KILLED ('KILLED', 43) ('ENGLAND', 2) ('HEALTH', 1) ('SINCE', 1) ('SINGLE', 1) 

KNOWN ('KNOWN', 37) ('THOSE', 2) ('CONSERVATIVE

', 1) 

('CURRENT', 1) ('ENOUGH', 1) 

LABOUR ('LABOUR', 46) ('COMING', 1) ('COUPLE', 1) ('FAMILY', 1) ('MAYBE', 1) 

LARGE ('LARGE', 44) ('CHARGE', 1) ('CLOSE', 1) ('COUNCIL', 1) ('GIVING', 1) 

LATER ('LATER', 39) ('LATEST', 2) ('ARRESTED', 1) ('CANCER', 1) ('CENTRAL', 1) 

LATEST ('LATEST', 47) ('CASES', 1) ('LATER', 1) ('LEADERS', 1)  

LEADER ('LEADER', 41) ('CLEAR', 2) ('GETTING', 1) ('IRELAND', 1) ('LEADERS', 1) 

LEADERS ('LEADERS', 37) ('LEADER', 3) ('LEAST', 2) ('STATES', 2) ('AREAS', 1) 

LEADERSHIP ('LEADERSHIP', 

49) 

('ENERGY', 1)    

LEAST ('LEAST', 36) ('LEADER', 4) ('NEEDS', 3) ('LEADERS', 2) ('EASTERN', 1) 

LEAVE ('LEAVE', 46) ('CLEAR', 1) ('GIVEN', 1) ('NEVER', 1) ('SIGNIFICANT', 

1) 
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LEGAL ('LEGAL', 44) ('CLEAR', 1) ('FINANCIAL', 1) ('HEALTH', 1) ('KILLED', 1) 

LEVEL ('LEVEL', 41) ('NEVER', 3) ('DAVID', 1) ('EVERYTHING', 

1) 

('GIVING', 1) 

LEVELS ('LEVELS', 47) ('LEVEL', 2) ('HEAVY', 1)   

LIKELY ('LIKELY', 44) ('AGREE', 1) ('CERTAINLY', 1) ('HIGHER', 1) ('LITTLE', 1) 

LITTLE ('LITTLE', 30) ('LEGAL', 7) ('CLEAR', 3) ('ALLOW', 1) ('GUILTY', 1) 

LIVES ('LIVES', 47) ('ENOUGH', 1) ('HEALTH', 1) ('LIVING', 1)  

LIVING ('LIVING', 36) ('GIVING', 5) ('EVENING', 2) ('SIGNIFICANT', 

2) 

('ANYTHING', 

1) 

LOCAL ('LOCAL', 42) ('ACCUSED', 1) ('CERTAINLY', 1) ('CLOSE', 1) ('COURT', 1) 

LONDON ('LONDON', 36) ('GETTING', 2) ('AGAINST', 1) ('ANOTHER', 1) ('CHINA', 1) 

LONGER ('LONGER', 37) ('EUROPE', 2) ('CHILDREN', 1) ('COULD', 1) ('ECONOMY', 

1) 

LOOKING ('LOOKING', 49) ('BUILDING', 1)    

MAJOR ('MAJOR', 43) ('MAKES', 2) ('MATTER', 2) ('MILITARY', 2) ('MEASURES', 

1) 

MAJORITY ('MAJORITY', 46) ('CHANCE', 2) ('MILITARY', 1) ('STORY', 1)  

MAKES ('MAKES', 35) ('BETTER', 5) ('MAJOR', 2) ('AMOUNT', 1) ('BANKS', 1) 

MAKING ('MAKING', 45) ('MEDICAL', 1) ('MILLION', 1) ('SPEAKING', 1) ('SPENDING', 

1) 

MANCHESTER ('MANCHESTER', 

45) 

('MESSAGE', 2) ('CONTINUE', 1) ('MEASURES', 1) ('OPPOSITION', 

1) 

MARKET ('MARKET', 42) ('BUILDING', 2) ('AMERICA', 1) ('AMERICAN', 1) ('BEHIND', 1) 

MASSIVE ('MASSIVE', 48) ('MEETING', 1) ('PRESIDENT', 1)   
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MATTER ('MATTER', 33) ('BETTER', 3) ('MIGHT', 3) ('AMOUNT', 2) ('ABOUT', 1) 

MAYBE ('MAYBE', 46) ('MEMBER', 2) ('AMERICAN', 1) ('FAMILY', 1)  

MEANS ('MEANS', 39) ('MAKES', 3) ('MINUTES', 2) ('ALMOST', 1) ('BECAUSE', 1) 

MEASURES ('MEASURES', 

47) 

('MANCHESTER'

, 1) 

('PATIENTS', 1) ('SPECIAL', 1)  

MEDIA ('MEDIA', 37) ('MAKING', 2) ('MEETING', 2) ('BETTER', 1) ('MAJOR', 1) 

MEDICAL ('MEDICAL', 44) ('MAKING', 3) ('MIDDLE', 2) ('BETTER', 1)  

MEETING ('MEETING', 36) ('MEDIA', 5) ('MISSING', 3) ('BRITAIN', 1) ('BUDGET', 1) 

MEMBER ('MEMBER', 48) ('MEMBERS', 1) ('REMEMBER', 1)   

MEMBERS ('MEMBERS', 48) ('AMOUNT', 1) ('MEMBER', 1)   

MESSAGE ('MESSAGE', 42) ('BUSINESS', 3) ('MEASURES', 2) ('MAKING', 1) ('MANCHESTE

R', 1) 

MIDDLE ('MIDDLE', 37) ('MEDICAL', 3) ('BUILD', 2) ('AMERICAN', 1) ('BECAUSE', 1) 

MIGHT ('MIGHT', 34) ('AMONG', 3) ('MAYBE', 3) ('MAKES', 2) ('ALMOST', 1) 

MIGRANTS ('MIGRANTS', 

48) 

('AMERICAN', 1) ('MIGHT', 1)   

MILITARY ('MILITARY', 49) ('MEDIA', 1)    

MILLION ('MILLION', 42) ('BILLION', 4) ('AMERICA', 1) ('COMING', 1) ('MAJOR', 1) 

MILLIONS ('MILLIONS', 47) ('MIDDLE', 1) ('MINUTES', 1) ('PLACE', 1)  

MINISTER ('MINISTER', 43) ('SPEECH', 2) ('LEADER', 1) ('MEANS', 1) ('MILITARY', 1) 

MINISTERS ('MINISTERS', 

46) 

('MEANS', 1) ('MEASURES', 1) ('MEDICAL', 1) ('MINISTER', 1) 
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MINUTES ('MINUTES', 41) ('MAKES', 4) ('EVENTS', 1) ('MEANS', 1) ('MILLIONS', 1) 

MISSING ('MISSING', 43) ('MEETING', 3) ('MILLION', 2) ('BETTER', 1) ('MEDIA', 1) 

MOMENT ('MOMENT', 48) ('MAYBE', 2)    

MONEY ('MONEY', 42) ('MAKING', 2) ('AMERICA', 1) ('BRITISH', 1) ('BUILDING', 1) 

MONTH ('MONTH', 44) ('MONTHS', 3) ('FAMILIES', 1) ('MAKING', 1) ('MIGHT', 1) 

MONTHS ('MONTHS', 45) ('BETTER', 1) ('MAKES', 1) ('MEANS', 1) ('MONTH', 1) 

MORNING ('MORNING', 48) ('AMERICAN', 1) ('POINT', 1)   

MOVING ('MOVING', 49) ('MONTH', 1)    

MURDER ('MURDER', 41) ('RIGHT', 2) ('BUILD', 1) ('EMERGENCY', 

1) 

('MARKET', 1) 

NATIONAL ('NATIONAL', 44) ('ELECTION', 3) ('COUNTRY', 1) ('DEATH', 1) ('LITTLE', 1) 

NEEDS ('NEEDS', 35) ('CANCER', 2) ('THESE', 2) ('YEARS', 2) ('ALLEGATIONS

', 1) 

NEVER ('NEVER', 38) ('SEVEN', 3) ('AFTER', 1) ('ENOUGH', 1) ('FOUND', 1) 

NIGHT ('NIGHT', 35) ('TONIGHT', 3) ('UNITED', 2) ('CERTAINLY', 1) ('EARLY', 1) 

NORTH ('NORTH', 42) ('COURT', 2) ('THOUGHT', 2) ('ACROSS', 1) ('HEARD', 1) 

NORTHERN ('NORTHERN', 

46) 

('NORTH', 1) ('NOTHING', 1) ('ORDER', 1) ('STORY', 1) 

NOTHING ('NOTHING', 43) ('ANOTHER', 2) ('DIFFERENT', 1) ('EDUCATION', 

1) 

('LIKELY', 1) 

NUMBER ('NUMBER', 37) ('NUMBERS', 6) ('COMPANY', 3) ('COMES', 1) ('COUPLE', 1) 

NUMBERS ('NUMBERS', 48) ('PERSON', 1) ('TERMS', 1)   
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OBAMA ('OBAMA', 49) ('MOMENT', 1)    

OFFICE ('OFFICE', 45) ('CONFERENCE', 

1) 

('EVENTS', 1) ('OFFICERS', 1) ('SERVICE', 1) 

OFFICERS ('OFFICERS', 48) ('OFFICIALS', 1) ('SERVICES', 1)   

OFFICIALS ('OFFICIALS', 49) ('CONTROL', 1)    

OFTEN ('OFTEN', 41) ('AFTER', 2) ('CONFERENCE', 

2) 

('ANSWER', 1) ('AUTHORITIES

', 1) 

OPERATION ('OPERATION', 

49) 

('PRESSURE', 1)    

OPPOSITION ('OPPOSITION', 

48) 

('POSITION', 2)    

ORDER ('ORDER', 37) ('AUTHORITIES', 

2) 

('INCREASE', 2) ('ACCORDING', 

1) 

('ACROSS', 1) 

OTHER ('OTHER', 32) ('UNDER', 3) ('NOTHING', 2) ('OTHERS', 2) ('SOUTHERN', 

2) 

OTHERS ('OTHERS', 43) ('EVIDENCE', 2) ('AROUND', 1) ('HAVING', 1) ('NOTHING', 1) 

OUTSIDE ('OUTSIDE', 46) ('EVERYTHING', 

1) 

('INSIDE', 1) ('SAYING', 1) ('STAFF', 1) 

PARENTS ('PARENTS', 45) ('ABOUT', 1) ('AMOUNT', 1) ('BANKS', 1) ('HAVING', 1) 

PARLIAMENT ('PARLIAMENT', 

48) 

('BEHIND', 1) ('POWERS', 1)   

PARTIES ('PARTIES', 46) ('BEHIND', 1) ('MARKET', 1) ('PARTY', 1) ('PERSON', 1) 

PARTS ('PARTS', 48) ('BRITISH', 1) ('IMPACT', 1)   

PARTY ('PARTY', 45) ('COMMUNITY', 

1) 

('MARKET', 1) ('PARTS', 1) ('POINT', 1) 
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PATIENTS ('PATIENTS', 47) ('MEASURES', 2) ('MANCHESTER', 

1) 

  

PAYING ('PAYING', 44) ('BEING', 3) ('IMPACT', 1) ('PLANS', 1) ('POWER', 1) 

PEOPLE ('PEOPLE', 48) ('BUILDING', 1) ('REMEMBER', 1)   

PERHAPS ('PERHAPS', 48) ('MEMBERS', 1) ('PROBABLY', 1)   

PERIOD ('PERIOD', 44) ('ABUSE', 2) ('BUILDING', 1) ('COMMUNITY', 

1) 

('POINT', 1) 

PERSON ('PERSON', 34) ('PERSONAL', 4) ('PARTS', 3) ('MINISTERS', 2) ('PARTY', 2) 

PERSONAL ('PERSONAL', 40) ('PERSON', 4) ('PRESIDENT', 2) ('MEDICAL', 1) ('POLICY', 1) 

PHONE ('PHONE', 39) ('FURTHER', 3) ('INVOLVED', 3) ('BUSINESS', 1) ('FOREIGN', 1) 

PLACE ('PLACE', 37) ('PLANS', 4) ('PLACES', 3) ('BEHIND', 2) ('BETTER', 1) 

PLACES ('PLACES', 44) ('MINISTERS', 2) ('BANKS', 1) ('BECAUSE', 1) ('PERSON', 1) 

PLANS ('PLANS', 44) ('BANKS', 1) ('BEHIND', 1) ('BLACK', 1) ('PARTIES', 1) 

POINT ('POINT', 44) ('AMONG', 1) ('BORDER', 1) ('MORNING', 1) ('PARLIAMENT'

, 1) 

POLICE ('POLICE', 44) ('BRITISH', 1) ('BUILDING', 1) ('PLACE', 1) ('POINT', 1) 

POLICY ('POLICY', 44) ('POLITICS', 4) ('MONTHS', 1) ('PERSON', 1)  

POLITICAL ('POLITICAL', 46) ('BILLION', 2) ('BLACK', 1) ('POLITICIANS', 

1) 

 

POLITICIANS ('POLITICIANS', 

49) 

('MESSAGE', 1)    

POLITICS ('POLITICS', 48) ('PARTIES', 1) ('PROCESS', 1)   

POSITION ('POSITION', 45) ('OPPOSITION', ('BUSINESS', 1) ('POTENTIAL', 1)  
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3) 

POSSIBLE ('POSSIBLE', 47) ('PLACE', 1) ('SMALL', 1) ('WELCOME', 1)  

POTENTIAL ('POTENTIAL', 

50) 

    

POWER ('POWER', 41) ('POWERS', 4) ('ABOUT', 3) ('AMOUNT', 1) ('MARKET', 1) 

POWERS ('POWERS', 42) ('PARENTS', 4) ('AMOUNT', 1) ('PARTS', 1) ('PERHAPS', 1) 

PRESIDENT ('PRESIDENT', 

43) 

('PRESSURE', 4) ('BUSINESS', 1) ('PRESS', 1) ('WATCHING', 

1) 

PRESS ('PRESS', 38) ('PRICE', 7) ('BRING', 1) ('PRESSURE', 1) ('PRICES', 1) 

PRESSURE ('PRESSURE', 45) ('BRITISH', 1) ('PRESIDENT', 1) ('PRESS', 1) ('PRICE', 1) 

PRETTY ('PRETTY', 42) ('BRING', 4) ('BRITISH', 1) ('MORNING', 1) ('PRIME', 1) 

PRICE ('PRICE', 40) ('PLACE', 3) ('PRESS', 2) ('BECAUSE', 1) ('PERSON', 1) 

PRICES ('PRICES', 43) ('PRESIDENT', 2) ('BANKS', 1) ('PARTIES', 1) ('PARTY', 1) 

PRIME ('PRIME', 48) ('BEING', 1) ('OBAMA', 1)   

PRISON ('PRISON', 38) ('BRITAIN', 4) ('PRESS', 2) ('PRETTY', 2) ('BRITISH', 1) 

PRIVATE ('PRIVATE', 50)     

PROBABLY ('PROBABLY', 42) ('PROBLEM', 4) ('FINAL', 1) ('MAYBE', 1) ('PRIME', 1) 

PROBLEM ('PROBLEM', 39) ('PROBLEMS', 8) ('OBAMA', 1) ('PROBABLY', 1) ('SOMEONE', 

1) 

PROBLEMS ('PROBLEMS', 

47) 

('PROBLEM', 2) ('PROBABLY', 1)   

PROCESS ('PROCESS', 47) ('BROUGHT', 1) ('POLITICS', 1) ('PRICES', 1)  

PROTECT ('PROTECT', 48) ('POLICE', 1) ('POSITION', 1)   
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PROVIDE ('PROVIDE', 50)     

PUBLIC ('PUBLIC', 49) ('MAYBE', 1)    

QUESTION ('QUESTION', 44) ('QUESTIONS', 

4) 

('RUSSIAN', 1) ('WHICH', 1)  

QUESTIONS ('QUESTIONS', 

49) 

('ARRESTED', 1)    

QUITE ('QUITE', 42) ('BRING', 1) ('GROUND', 1) ('PERIOD', 1) ('POINT', 1) 

RATES ('RATES', 37) ('GREECE', 2) ('CRISIS', 1) ('EVENTS', 1) ('FRANCE', 1) 

RATHER ('RATHER', 44) ('ANOTHER', 1) ('AROUND', 1) ('GROWTH', 1) ('RIGHT', 1) 

REALLY ('REALLY', 37) ('EVERYTHING', 

2) 

('WITHIN', 2) ('ACTUALLY', 1) ('BRING', 1) 

REASON ('REASON', 43) ('RECENT', 3) ('AREAS', 1) ('GREECE', 1) ('POLICY', 1) 

RECENT ('RECENT', 41) ('WESTERN', 2) ('COMMUNITY', 

1) 

('CRISIS', 1) ('GREECE', 1) 

RECORD ('RECORD', 46) ('GROUND', 1) ('GROWTH', 1) ('INCREASE', 1) ('WALES', 1) 

REFERENDUM ('REFERENDUM', 

50) 

    

REMEMBER ('REMEMBER', 

47) 

('MAYBE', 1) ('MEMBER', 1) ('PUBLIC', 1)  

REPORT ('REPORT', 38) ('REPORTS', 7) ('SUPPORT', 2) ('BORDER', 1) ('BROUGHT', 1) 

REPORTS ('REPORTS', 46) ('REPORT', 4)    

RESPONSE ('RESPONSE', 50)     

RESULT ('RESULT', 44) ('UNTIL', 2) ('CERTAINLY', 1) ('SCHOOLS', 1) ('STRONG', 1) 

RETURN ('RETURN', 45) ('RESULT', 2) ('BETTER', 1) ('RECENT', 1) ('TRIAL', 1) 
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RIGHT ('RIGHT', 30) ('RIGHTS', 3) ('QUITE', 2) ('RATES', 2) ('RUNNING', 2) 

RIGHTS ('RIGHTS', 34) ('RATES', 4) ('RIGHT', 2) ('ALREADY', 1) ('CRISIS', 1) 

RULES ('RULES', 40) ('FORWARD', 2) ('COURT', 1) ('FUTURE', 1) ('GEORGE', 1) 

RUNNING ('RUNNING', 37) ('REALLY', 2) ('RIGHT', 2) ('ALREADY', 1) ('MONEY', 1) 

RUSSIA ('RUSSIA', 44) ('RUSSIAN', 4) ('RIGHTS', 1) ('WRONG', 1)  

RUSSIAN ('RUSSIAN', 42) ('RUSSIA', 5) ('RECENT', 1) ('TRUST', 1) ('WATCHING', 

1) 

SAYING ('SAYING', 27) ('ATTACK', 2) ('DEATH', 2) ('STAND', 2) ('STATE', 2) 

SCHOOL ('SCHOOL', 41) ('SCHOOLS', 2) ('TALKING', 2) ('TALKS', 2) ('KNOWN', 1) 

SCHOOLS ('SCHOOLS', 43) ('SCHOOL', 3) ('CALLED', 1) ('SHORT', 1) ('TALKS', 1) 

SCOTLAND ('SCOTLAND', 48) ('CERTAINLY', 1) ('GOING', 1)   

SCOTTISH ('SCOTTISH', 46) ('CERTAINLY', 1) ('DECISION', 1) ('STARTED', 1) ('THIRD', 1) 

SECOND ('SECOND', 34) ('TAKEN', 3) ('EXACTLY', 2) ('SENSE', 2) ('TAKING', 2) 

SECRETARY ('SECRETARY', 

49) 

('NOTHING', 1)    

SECTOR ('SECTOR', 36) ('STATES', 5) ('STAND', 2) ('ATTACKS', 1) ('CERTAINLY', 

1) 

SECURITY ('SECURITY', 46) ('ALWAYS', 1) ('SIDES', 1) ('STORY', 1) ('YEARS', 1) 

SEEMS ('SEEMS', 42) ('STATEMENT', 

3) 

('COMES', 1) ('COMING', 1) ('SECTOR', 1) 

SENIOR ('SENIOR', 45) ('CERTAINLY', 1) ('DETAILS', 1) ('POSITION', 1) ('STATE', 1) 

SENSE ('SENSE', 40) ('STATES', 3) ('EXACTLY', 2) ('BUSINESSES', 

1) 

('GETTING', 1) 
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SERIES ('SERIES', 41) ('SERIOUS', 6) ('SERVICE', 2) ('CONSERVATIV

E', 1) 

 

SERIOUS ('SERIOUS', 42) ('SERIES', 3) ('KNOWN', 1) ('SIDES', 1) ('SYRIA', 1) 

SERVICE ('SERVICE', 47) ('EVIDENCE', 1) ('SERVICES', 1) ('STAFF', 1)  

SERVICES ('SERVICES', 45) ('SERVICE', 3) ('AUTHORITIES', 

1) 

('OFFICERS', 1)  

SEVEN ('SEVEN', 45) ('SEVERAL', 2) ('DIFFERENT', 1) ('NEVER', 1) ('SERVICE', 1) 

SEVERAL ('SEVERAL', 42) ('LEVEL', 2) ('CENTRAL', 1) ('DAVID', 1) ('DIFFERENT', 

1) 

SHORT ('SHORT', 45) ('STRONG', 2) ('CONTROL', 1) ('EUROPE', 1) ('ISSUES', 1) 

SHOULD ('SHOULD', 35) ('ACTUALLY', 2) ('COULD', 2) ('GEORGE', 2) ('ISSUE', 2) 

SIDES ('SIDES', 44) ('ATTACK', 1) ('CHARGE', 1) ('FRANCE', 1) ('GROWTH', 1) 

SIGNIFICANT ('SIGNIFICANT', 

49) 

('SENIOR', 1)    

SIMPLY ('SIMPLY', 48) ('SEEMS', 1) ('SOMEONE', 1)   

SINCE ('SINCE', 41) ('THESE', 2) ('GREECE', 1) ('INSIDE', 1) ('JUDGE', 1) 

SINGLE ('SINGLE', 43) ('CENTRAL', 1) ('CERTAINLY', 1) ('ITSELF', 1) ('KILLED', 1) 

SITUATION ('SITUATION', 

50) 

    

SMALL ('SMALL', 47) ('REPORT', 1) ('SUPPORT', 1) ('TOWARDS', 1)  

SOCIAL ('SOCIAL', 44) ('CENTRAL', 1) ('GEORGE', 1) ('SCHOOLS', 1) ('SCOTTISH', 1) 

SOCIETY ('SOCIETY', 39) ('DECIDED', 2) ('ATTACK', 1) ('ATTACKS', 1) ('CONCERNS', 

1) 

SOMEONE ('SOMEONE', 42) ('COMING', 2) ('SOMETHING', 

2) 

('DIFFERENT', 1) ('MISSING', 1) 
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SOMETHING ('SOMETHING', 

44) 

('SOMEONE', 2) ('COMING', 1) ('DIFFERENCE', 

1) 

('SIMPLY', 1) 

SOUTH ('SOUTH', 46) ('DEATH', 2) ('SEVERAL', 1) ('THEMSELVES', 

1) 

 

SOUTHERN ('SOUTHERN', 

44) 

('CERTAINLY', 2) ('SENSE', 2) ('DAVID', 1) ('SINCE', 1) 

SPEAKING ('SPEAKING', 44) ('SPENDING', 2) ('BEING', 1) ('BUILDING', 1) ('COULD', 1) 

SPECIAL ('SPECIAL', 47) ('BUILD', 1) ('MONTHS', 1) ('SPEECH', 1)  

SPEECH ('SPEECH', 46) ('BIGGEST', 1) ('CUSTOMERS', 

1) 

('INFORMATION

', 1) 

('MEANS', 1) 

SPEND ('SPEND', 27) ('SPENT', 9) ('SPENDING', 6) ('DESPITE', 2) ('EXPECTED', 2) 

SPENDING ('SPENDING', 40) ('SPENT', 4) ('SPEND', 2) ('INDEPENDENT

', 1) 

('MAKING', 1) 

SPENT ('SPENT', 35) ('SPEND', 4) ('INDEPENDENT', 

3) 

('SPENDING', 3) ('EXPECTED', 2) 

STAFF ('STAFF', 44) ('CHARGE', 1) ('ENOUGH', 1) ('ITSELF', 1) ('SERVICE', 1) 

STAGE ('STAGE', 35) ('NEEDS', 2) ('SIDES', 2) ('STATES', 2) ('ALLOW', 1) 

STAND ('STAND', 31) ('EXACTLY', 3) ('STATES', 3) ('ATTACKS', 2) ('SAYING', 2) 

START ('START', 39) ('CONCERNS', 2) ('DECIDED', 2) ('STAFF', 2) ('CANNOT', 1) 

STARTED ('STARTED', 39) ('CERTAINLY', 2) ('DECIDED', 2) ('ASKING', 1) ('NIGHT', 1) 

STATE ('STATE', 35) ('UNDERSTAND'

, 3) 

('STAGE', 2) ('DECIDED', 1) ('ITSELF', 1) 

STATEMENT ('STATEMENT', 

46) 

('SEEMS', 4)    

STATES ('STATES', 35) ('SECTOR', 2) ('STAGE', 2) ('CASES', 1) ('EDUCATION', 

1) 
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STILL ('STILL', 30) ('ITSELF', 5) ('UNTIL', 4) ('SINGLE', 2) ('ASKING', 1) 

STORY ('STORY', 44) ('DURING', 1) ('FORWARD', 1) ('SCOTLAND', 1) ('STILL', 1) 

STREET ('STREET', 43) ('INDUSTRY', 2) ('DURING', 1) ('STRONG', 1) ('THIRD', 1) 

STRONG ('STRONG', 48) ('CONTROL', 1) ('WRONG', 1)   

SUNDAY ('SUNDAY', 43) ('CERTAINLY', 3) ('SENSE', 3) ('USING', 1)  

SUNSHINE ('SUNSHINE', 48) ('COUNTRY', 1) ('VOTERS', 1)   

SUPPORT ('SUPPORT', 45) ('SMALL', 2) ('BECAUSE', 1) ('IMPORTANT', 

1) 

('REPORT', 1) 

SYRIA ('SYRIA', 45) ('SYRIAN', 4) ('SERIOUS', 1)   

SYRIAN ('SYRIAN', 39) ('SYRIA', 5) ('CONCERNS', 1) ('DURING', 1) ('INSIDE', 1) 

SYSTEM ('SYSTEM', 47) ('CONTINUE', 1) ('LITTLE', 1) ('SHOULD', 1)  

TAKEN ('TAKEN', 35) ('TAKING', 5) ('SECOND', 3) ('EXACTLY', 2) ('GETTING', 1) 

TAKING ('TAKING', 32) ('TAKEN', 7) ('CLEAR', 2) ('SAYING', 2) ('CERTAINLY', 

1) 

TALKING ('TALKING', 41) ('DOING', 2) ('BETWEEN', 1) ('DECIDED', 1) ('LOOKING', 1) 

TALKS ('TALKS', 44) ('COURSE', 1) ('COURT', 1) ('EUROPE', 1) ('GEORGE', 1) 

TEMPERATUR

ES 

('TEMPERATURE

S', 50) 

    

TERMS ('TERMS', 44) ('TIMES', 2) ('EXAMPLE', 1) ('GROUP', 1) ('NUMBER', 1) 

THEIR ('THEIR', 27) ('THERE', 5) ('AGAIN', 2) ('ASKING', 2) ('STAND', 2) 

THEMSELVES ('THEMSELVES', 

50) 
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THERE ('THERE', 20) ('THEIR', 7) ('SERIOUS', 2) ('AFRICA', 1) ('AGREE', 1) 

THESE ('THESE', 26) ('NEEDS', 4) ('THINGS', 4) ('AGAINST', 1) ('BUSINESS', 1) 

THING ('THING', 21) ('THINGS', 3) ('THINK', 3) ('NOTHING', 2) ('THIRD', 2) 

THINGS ('THINGS', 23) ('THESE', 8) ('SENSE', 3) ('STATES', 3) ('SINCE', 2) 

THINK ('THINK', 18) ('THING', 11) ('THINGS', 3) ('TAKING', 2) ('ACTUALLY', 1) 

THIRD ('THIRD', 42) ('ANOTHER', 1) ('CANNOT', 1) ('FIGURES', 1) ('FOCUS', 1) 

THOSE ('THOSE', 37) ('CLOSE', 2) ('COURSE', 2) ('COULD', 1) ('FRANCE', 1) 

THOUGHT ('THOUGHT', 31) ('COURT', 2) ('GOING', 2) ('CALLED', 1) ('CONCERNS', 

1) 

THOUSANDS ('THOUSANDS', 

48) 

('AGAINST', 1) ('FIRST', 1)   

THREAT ('THREAT', 48) ('RATES', 1) ('THOUGHT', 1)   

THREE ('THREE', 37) ('AGREE', 3) ('TALKING', 2) ('CONFLICT', 1) ('DIFFERENT', 

1) 

THROUGH ('THROUGH', 37) ('HISTORY', 2) ('SCHOOL', 2) ('ACROSS', 1) ('AFTERNOON', 

1) 

TIMES ('TIMES', 45) ('GAMES', 2) ('TERMS', 2) ('COMES', 1)  

TODAY ('TODAY', 41) ('UNDERSTAND'

, 2) 

('ATTACKS', 1) ('INSIDE', 1) ('PROTECT', 1) 

TOGETHER ('TOGETHER', 40) ('ANOTHER', 2) ('NEVER', 2) ('DEATH', 1) ('GETTING', 1) 

TOMORROW ('TOMORROW', 

50) 

    

TONIGHT ('TONIGHT', 40) ('NIGHT', 4) ('ATTACKS', 1) ('INSIDE', 1) ('LEADERSHIP', 

1) 

TOWARDS ('TOWARDS', 44) ('COURSE', 1) ('ORDER', 1) ('SCHOOLS', 1) ('TALKS', 1) 
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TRADE ('TRADE', 38) ('TRYING', 7) ('GREAT', 2) ('CONTINUE', 1) ('RECORD', 1) 

TRIAL ('TRIAL', 46) ('CHILD', 1) ('STAFF', 1) ('THREE', 1) ('WHERE', 1) 

TRUST ('TRUST', 42) ('AGAINST', 1) ('CHANCE', 1) ('CHARGES', 1) ('COURSE', 1) 

TRYING ('TRYING', 43) ('TRADE', 2) ('TRUST', 2) ('CHILD', 1) ('GREAT', 1) 

UNDER ('UNDER', 26) ('LONDON', 2) ('STARTED', 2) ('UNION', 2) ('ACTION', 1) 

UNDERSTAND ('UNDERSTAND', 

39) 

('STAND', 3) ('ACTION', 1) ('AFFAIRS', 1) ('INSIDE', 1) 

UNION ('UNION', 45) ('DOING', 2) ('LONGER', 1) ('LOOKING', 1) ('SOCIETY', 1) 

UNITED ('UNITED', 41) ('ASKING', 1) ('CANNOT', 1) ('DOING', 1) ('HEART', 1) 

UNTIL ('UNTIL', 30) ('STILL', 3) ('ANYTHING', 1) ('ASKING', 1) ('COMES', 1) 

USING ('USING', 40) ('LOOKING', 2) ('COUNCIL', 1) ('ENOUGH', 1) ('INCREASE', 1) 

VICTIMS ('VICTIMS', 50)     

VIOLENCE ('VIOLENCE', 47) ('FINAL', 2) ('YEARS', 1)   

VOTERS ('VOTERS', 47) ('FOCUS', 2) ('FORCES', 1)   

WAITING ('WAITING', 48) ('QUESTION', 1) ('WESTERN', 1)   

WALES ('WALES', 47) ('RATES', 1) ('WEATHER', 1) ('WORLD', 1)  

WANTED ('WANTED', 35) ('WANTS', 4) ('WATCHING', 4) ('PERSON', 1) ('POLITICS', 1) 

WANTS ('WANTS', 36) ('WANTED', 8) ('MONTHS', 1) ('TOWARDS', 1) ('WESTERN', 1) 

WARNING ('WARNING', 46) ('MORNING', 4)    

WATCHING ('WATCHING', 

44) 

('WANTED', 4) ('PROCESS', 1) ('WATER', 1)  
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WATER ('WATER', 44) ('BORDER', 1) ('ORDER', 1) ('WANTED', 1) ('WARNING', 

1) 

WEAPONS ('WEAPONS', 50)     

WEATHER ('WEATHER', 40) ('WHETHER', 5) ('ABOUT', 1) ('ANYTHING', 1) ('RATHER', 1) 

WEEKEND ('WEEKEND', 49) ('AHEAD', 1)    

WEEKS ('WEEKS', 42) ('REASON', 2) ('FRONT', 1) ('MINUTES', 1) ('NEEDS', 1) 

WELCOME ('WELCOME', 46) ('QUESTION', 2) ('PARLIAMENT', 

1) 

('WHILE', 1)  

WELFARE ('WELFARE', 50)     

WESTERN ('WESTERN', 49) ('QUESTION', 1)    

WESTMINSTE

R 

('WESTMINSTER'

, 50) 

    

WHERE ('WHERE', 42) ('INQUIRY', 1) ('POWERS', 1) ('PRESS', 1) ('QUITE', 1) 

WHETHER ('WHETHER', 45) ('RATHER', 1) ('WANTS', 1) ('WEATHER', 1) ('WELCOME', 

1) 

WHICH ('WHICH', 45) ('WOULD', 2) ('BENEFITS', 1) ('QUESTION', 1) ('QUESTIONS', 

1) 

WHILE ('WHILE', 38) ('WHERE', 6) ('WORLD', 2) ('MEANS', 1) ('RATHER', 1) 

WHOLE ('WHOLE', 42) ('KNOWN', 2) ('FORWARD', 1) ('HOURS', 1) ('INCREASE', 1) 

WINDS ('WINDS', 49) ('WESTERN', 1)    

WITHIN ('WITHIN', 44) ('REALLY', 2) ('EVERYTHING', 

1) 

('THESE', 1) ('WORKERS', 1) 

WITHOUT ('WITHOUT', 49) ('ANNOUNCED', 

1) 

   

WOMEN ('WOMEN', 50)     
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WORDS ('WORDS', 33) ('WORST', 5) ('WANTS', 2) ('WEEKS', 2) ('WORKERS', 2) 

WORKERS ('WORKERS', 46) ('WARNING', 2) ('WORDS', 2)   

WORKING ('WORKING', 46) ('MAKING', 1) ('MORNING', 1) ('WORKERS', 1) ('WORST', 1) 

WORLD ('WORLD', 32) ('WORKERS', 3) ('WALES', 2) ('WHETHER', 2) ('WHILE', 2) 

WORST ('WORST', 38) ('WORDS', 9) ('POINT', 1) ('WANTED', 1) ('WORLD', 1) 

WOULD ('WOULD', 40) ('STATEMENT', 

2) 

('WHICH', 2) ('GLOBAL', 1) ('PARLIAMENT'

, 1) 

WRONG ('WRONG', 48) ('FOREIGN', 1) ('RIGHT', 1)   

YEARS ('YEARS', 34) ('NEEDS', 3) ('THESE', 3) ('HEARD', 2) ('AGAINST', 1) 

YESTERDAY ('YESTERDAY', 

48) 

('GETTING', 1) ('SINCE', 1)   

YOUNG ('YOUNG', 38) ('CHILD', 2) ('BECOME', 1) ('CERTAINLY', 1) ('CHINA', 1) 

 

 

 

 

 

 

 

 

D. Code 

HOMOPHEME GENERATOR 

The configuration files, pickle files, pickling process, csv files and GUI related code is not 

included. Only the code related to the logic of homopheme generation is shown in the 

following blocks. The generator has been made available for public use at: https://lsbu-

analytics.org/deeplip/playground/similarLookingSentences/fromSaved  

 

def save_csv(data, file): 

  file = os.path.abspath(os.path.join(tmp_folder, file +'.csv')) 

  with open(file, 'w', encoding='utf-8') as f: 

    w = csv.DictWriter(f, data.keys()) 

https://lsbu-analytics.org/deeplip/playground/similarLookingSentences/fromSaved
https://lsbu-analytics.org/deeplip/playground/similarLookingSentences/fromSaved
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    w.writeheader() 

    w.writerow(data) 

 

def word_to_visemes(word, show_phonemes=False, save_csv_file=True): 

  # get the cmu phones for the word 

  ph = [] 

  word_vis = [] 

  with open(lrs_cmu_phones_pickle_file+'_all.pickle', 'rb') as f: 

    all_phones = pickle.load(f) 

  try: 

    ph = all_phones[word] 

    # remove the syllable stress markers '0, 1, 2, 3' from ph 

    for i, p in enumerate(ph): 

      for n in '0123': 

        if n in p: 

          ph[i] = p.strip(n) 

    # map ph to visemes 

    for p in ph: 

      for vi, phon in viseme_phoneme.items(): 

        if p in phon: 

          word_vis.append(vi) 

    if show_phonemes == True: 

      print('Phonemes for', word, ':',ph) 

  except KeyError: 

    word_vis = ['N/A'] 

  word_visemes = dict(enumerate(word_vis)) 

  if save_csv_file: 

    save_csv(word_visemes, 'word_visemes') 

  return word_vis 

 

 

def find_homophemes(word, save_csv_file=True, include_message=False): 

 visemes = word_to_visemes(word, show_phonemes=False, save_csv_file=False) 

 possible_sounds = [] 

 for v in visemes: 

   for v1, s in viseme_sound.items(): 

     if v == v1: 

       possible_sounds.append(s) 

 possible_word_sounds = list(itertools.product(*possible_sounds)) 

 possible_words = [] 

 for k, v in cmudict.dict().items(): 

   for w in possible_word_sounds: 

     if list(w) in v: 

       possible_words.append(k) 

str(len(possible_words)) + '/' + str(len(possible_word_sounds)) 

 homophemes = dict(enumerate(possible_words)) 

 if save_csv_file: 

   save_csv(homophemes, 'homophemes') 

 else: 
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   return possible_words 

 

def similar_looking_sentences(sentence, show_sentences=0 ): 

  words = sentence.lower().split() 

  homopheme_map = {} 

  # find similar looking words for each word 

  for word in words: 

    homophemes = find_homophemes(word, save_csv_file=False,include_message=True) 

    homopheme_map[word] = homophemes 

  homopheme_list = [] 

  messages = [] 

  for k,v in homopheme_map.items(): 

    homopheme_list.append(v['possible_words']) 

    messages.append(v['message']) 

  # create all possible sentences 

  sentences = list(itertools.product(*homopheme_list)) 

  print('Possible sentences: ', len(sentences)) 

  if show_sentences <= 100: 

    out = {} 

    # show a shuffled sample of the given % of sentences 

    num_sentences = int((show_sentences/100) * len(sentences)) 

    random_sentences = random.sample(sentences, num_sentences) 

    out['sentence'] = sentence 

    out['messages'] = messages 

    out['num_sentences'] = len(sentences) 

    out['sentences'] = random_sentences 

    save_csv(out, 'similar_looking_sentences') 

    return out 

  else: 

    save_csv(homopheme_map, 'similar_looking_sentences') 

    return homopheme_map 

 

FACE ROTATOR 

detector = dlib.get_frontal_face_detector() 

predictor = dlib.shape_predictor(shape_predictor_file_68) 

 

def rotate_face(show_drawing, show_window, gray): 

    # angle calculated below based on mouth corners 

    def rotate_image(image, angle): 

        image_center = tuple(np.array(image.shape[1::-1]) / 2) 

        rot_mat = cv.getRotationMatrix2D(image_center, angle, 1.0) 

        result = cv.warpAffine(image, rot_mat, image.shape[1::-1],    

flags=cv.INTER_LINEAR) 

        return result 

    # currently only works for single face per video 

    crop_files = glob.glob(os.path.join(rotated_face_crops_dir, "*.png")) 

    # remove existing faces if any 

    for f in crop_files: 

        os.remove(f) 
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    img_files = os.listdir(face_crops_dir) 

    img_files = [os.path.abspath(os.path.join(face_crops_dir, x)) for x in 

img_files] 

    for index, f in enumerate(tqdm(img_files)): 

        img = cv.imread(f) 

        if gray: 

            img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) 

            dets = detector(img, 1) 

        angle = 0 

        try: 

            d = dets[0]  # the only face in the video 

        except IndexError:  # no face detected 

            continue 

        # Get the landmarks/parts for the face in box d. 

        shape = predictor(img, d) 

        left_mouth_corner = shape.part(48) 

        right_mouth_corner = shape.part(54) 

        left_axes = left_mouth_corner.x, left_mouth_corner.y 

        right_axes = right_mouth_corner.x, right_mouth_corner.y 

        # calculate angle 

        base, perpendicular = tuple(np.subtract(right_axes, left_axes)) 

        angle = atan(perpendicular/base) * 180 / pi 

        # print('angle of rotation: ', angle, 'degrees') 

 

        if show_drawing: 

            # draw on image 

            cv.line(img, left_axes, right_axes, (255,0,0), 2) 

            corrected_right = right_axes[0], left_axes[1] 

            cv.line(img, left_axes, corrected_right, (255,0,0), 2) 

            cv.circle(img, left_axes, 15, (255,0,0), 1) 

            cv.circle(img, right_axes, 5, (255,0,0), 1) 

            cv.circle(img, corrected_right, 5, (255,0,0), 1) 

            cv.putText(img, str(int(angle))+' degrees', (left_axes[0], 

left_axes[1]-3), cv.FONT_HERSHEY_SIMPLEX, 0.7, (0,255,0), 1, cv.LINE_AA) 

            # rotate image 

            rotated = rotate_image(img, angle) 

            # rotated_crops.append(rotated) 

            cv.imwrite(rotated_face_crops_dir + '/cropped_' + 

str(index).zfill(5)+ '.png', rotated) 

        else: 

            # rotate image 

            rotated = rotate_image(img, angle) 

            cv.imwrite(rotated_face_crops_dir + '/cropped_' + 

str(index).zfill(5) + '.png', rotated) 

 

    if show_window: 

        while True: 

            cv.imshow('Original '+str(index)+' : ', img) 

            cv.imshow('Rotated '+str(index)+' : ', rotated) 

            if cv.waitKey(1) & 0xFF == ord('q'): 

                break 
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    cv.destroyAllWindows() 

 

rotate_face(show_drawing=False, show_window=False, gray=False) 

 

 


