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Abstract Let (E,A) be a set system consisting of a finite collectionA of subsets of a ground set E,

and suppose that we have a function φ which maps A into some set S . Now removing a subset K

from E gives a restriction A(K̄) to those sets of A disjoint from K, and we have a corresponding

restriction φ|A(K̄) of our function φ. If the removal of K does not affect the image set of φ, that is

Im(φ|A(X̄)) = Im(φ), then we will say that K is a kernel set of A with respect to φ. Such sets are

potentially useful in optimisation problems defined in terms of φ. We will call the set of all subsets

of E that are kernel sets with respect to φ a kernel system and denote it by Kerφ(A). Motivated by the

optimisation theme, we ask which kernel systems are matroids. For instance, if A is the collection

of forests in a graph G with coloured edges and φ counts how many edges of each colour occurs in

a forest then Kerφ(A) is isomorphic to the disjoint sum of the cocycle matroids of the differently

coloured subgraphs; on the other hand, if A is the power set of a set of positive integers, and φ is

the function which takes the values 1 and 0 on subsets according to whether they are sum-free or

not, then we show that Kerφ(A) is essentially never a matroid.

Keywords: matroid, optimization, objective function, duality, Turán-type problems.

1 Introduction

We are motivated by a very general decision problem in combinatorial optimisation:

Let (E,A) be a set system consisting of a finite collection A of subsets of a ground

set E. Let φ be a mapping from A to some set S and let S ′ be a subset of S . Is there

some set X inA for which φ(X) ∈ S ′?

The greedy algorithm answers this question when: (1) E is a weighted set over, say, R; (2) φ maps

each set in A to the sum of the weights of its elements; (3) S ′ = [0, k], for some k ∈ R; and,

crucially, (4)A is the collection of independent sets of a matroid on ground set E.

∗University of Sciences and Technology Houari Boumediene, Algiers
†London South Bank University
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Example 1 Suppose G = (V, E) is a graph with vertex set V and edge set E, andA is the collection

of forests in G. Suppose the edges are weighted with weight function w : E → R≥0 and, for X ⊆ E,

let w(X) denote the sum of the edge weights in X, i.e. w(X) =
∑

e∈X w(e). Define two functions

fromA to R≥0:

φ1 : F 7→

{

w(F) F is a spanning tree

0 otherwise;

φ2 : F 7→

{

w(F) F is a path

0 otherwise.

for F ∈ A. Now the question “Does A contain a set X with φ1(X) ∈ [0, k]?” can be solved by the

greedy algorithm; but the question “Does A contain a set X with φ2(X) ∈ [k,∞)?” is the problem

of finding a maximum-weight path in G which is NP-hard.

A strategy for the general decision problem might be to look for a subset K ⊆ E such that the

image of φ is unchanged when the ground set is restricted to E − K, that is

Im(φ |J) = Im(φ), where J = {X ∈ A | X ∩ K = ∅}. (1)

This does not solve the decision problem directly but instead tries to reduce it to a ‘smaller’ prob-

lem.

We shall say that a subset K of E which satisfies condition (1) is a kernel set, in analogy with

the usual notion of the kernel of a function: K is a part of the domain which can be regarded as

contributing trivially to the image of φ.

We are now faced with the alternative problem of reducing the domain over which we must opti-

mise: given φ, maximise the cardinality of K ⊆ E over the collection of all subsets K which are

kernel sets for φ. If this collection happens to be the collection of independent sets of a matroid

then this reduction problem, at least, can be solved greedily.

The greedy algorithm supposes the existence of an oracle to answer the question “Is set X inde-

pendent?” This question may itself be hard to answer; however, our concern here is simply with

the question:

Does the set system
(

E, {K ⊆ E | K satisfies equation (1)}
)

form a matroid (2)

(defined in terms of its independent sets) on E?

We shall refer to the set system in question (2) as the kernel system for (E,A) with respect to φ

and denote it by Kerφ((E,A)), or by Kerφ(A) or simply Kerφ where this causes no ambiguity1.

Notice that the set system constituting Kerφ((E,A)) is certainly closed under taking subsets. If it

satisfies the independence axioms of a matroid over E we call it the kernel matroid of (E,A) with

1This definition bears no relation, as far as we know, to kernel systems as defined for directed graphs by Frank [4].

Our adoption of the term should, we hope, cause no confusion.
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respect to φ. We can rephrase question (2) as: for which set systems (E,A) and which functions φ

is the corresponding kernel system a kernel matroid? Note that, generally, we shall take matroids

to be defined in terms of their independent sets.

Example 2 The following array shows a small instance of the weighted bipartite matching prob-

lem, perhaps representing five conference delegates V,W, X,Y and Z, expressing preferences for

five study bedrooms a, b, c, d and e (blank entries indicate an unacceptable allocation):


























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









a b c d e

V 3 6 5

W 4 2 6 3

X 4 3 2

Y 6 5

Z 5 4 3









































The set system in this case is (E,A) where E is the set of positive matrix entries and A is the set

of perfect matchings of delegates to rooms. Let φ : A → R≥0 map perfect matchings inA to their

edge-weight sums. It can be calculated that A consists of ten perfect matchings, whose values

form the set {18, 20, 22, 24}. A maximum-weight matching is easily found by standard techniques

but for the sake of example suppose we seek a kernel set for the system. We can find one of size

3: the entries {Vc,Wa,We} can be deleted from E without changing the set of possible matching

values. Although this is a reduction in the size of E of only 15% the number of complete matchings

is reduced by 60% to only four (one of each value, so the maximum possible reduction for a kernel

set). This is the good news; the bad news is that the collection of all kernel sets does not, in this

instance, form a matroid: K1 = {Vc,Wa} and K2 = {Vc, Xc,Ze} are both kernels but if any element

of K2 − K1 is added to K1 the result is no longer a kernel, so the set system fails the augmentation

axiom.

In section 5 we will see an optimisation problem where the kernel sets do form a matroid. Finding

ourselves in the circumstances of Example 2 we could look for other ways to identify the maximum

cardinality kernel sets; however, our interest in the rest of this paper lies in cataloguing cases where

the kernel system is guaranteed to be a matroid, or is guaranteed not to be one. In fact, for the most

part we shall begin with set systems which are already matroids—this is somewhat limiting from

the optimisation point of view but seems theoretically to be a suitable starting point.

2 Some basic examples

We shall assume familiarity with the basic idea of a matroid. Our terminology will follow [7], with

M = (E,I) representing the matroid on ground set E having independent set collection I. Some

constructions which we shall apply to M = (E,I) are restriction, with M | X, X ⊆ E, being the

matroid whose independent sets are precisely those of M which are also subsets of X; and direct
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sum, with M ⊕ M′,M′ = (E′,I′), E ∩ E′ = ∅ being the matroid on E ∪ E′ whose independent

sets are precisely all unions of members of I and I′. The notation Uk,n, for nonnegative integers

k ≤ n, denotes the k-uniform matroid in which the maximal independent sets are all k-subsets of

{1, . . . , n}.

Example 3 Let E = {a, b, c, d} and let A = {∅, a, b, c, d, ab, ac, ad}, where for simplicity we are

writing ab for the set {a, b}, etc. Then (E,A) is a matroid. Define the function φ by

φ(a) = φ(b) = φ(c) = 1, φ(d) = φ(ac) = 2, and φ(∅) = φ(ab) = φ(ad) = 3.

Now Kerφ = {∅, a, b, c, d, ab, ac, bc, bd} which is not a matroid since the exchange property fails

for bd and ac. Thus we see that a set system (E,A) certainly does not give a matroid for every

choice of function φ, even when the set system is itself a matroid. A small change can change

things dramatically—if φ(ac) is instead defined to have value 3, then the kernel system is now a

matroid, being isomorphic to U2,3 ⊕ U0,1.

Example 4 Let E = {a, b, c, d} and let A = {∅, a, b, c, d, ab, bc, cd, ad}. Again the system M =

(E,A) is a matroid. Let w1 and w2 be weight functions defined on E by

w1(a) = w1(b) = w1(c) = 1, w1(d) = 2, and,

w2(a) = w2(b) = 1, w2(c) = w2(d) = 2.

Define two functions onA by

φi(∅) = 0 and φi(X) = max
x∈X

wi(x), i = 1, 2.

We have

Kerφ1
= {∅, a, b, c, ab, ac, bc}

Kerφ2
= {∅, a, b, c, d, ac, ad, bc, bd}

Now Kerφ1
and Kerφ2

are again both matroids; Kerφ1
= U2,3, the uniform matroid of rank 2 on three

elements; Kerφ2
, meanwhile, is isomorphic to the original matroid M.

In fact, the choice of functions φi in Example 4 makes the structure of A irrelevant: K is a kernel

set if and only if

{φi(x) | x ∈ E − K} ∪ {φi(∅)} = Im(φi).

Defining φ to be the max or min functions is a special case of where supersets of the ground set

inherit subsets of ground set φ values, so that they do nothing to help preserve the image of φ.

A final example will touch on the idea of representability.
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Example 5 Let A be the collection of independent sets of the uniform matroid Uk,n, for some

k ≤ n. For s ≤ k ∈ Z≥0, define φs, for subsets X inA, by

φs(X) =

{

1 if |X| ≥ s

0 otherwise.

Then Kerφs
(A) is the uniform matroid Un−s,n.

We may examine different values of k and s in Example 5. If s = k then Kerφs
(A) is the dual of Uk,n.

If k ≥ n/2 and s = n − k then Kerφs
(A) is again Uk,n. Now consider the case k = n − 1, s = n − 2.

Then Uk,n = Un−1,n is graphic (G = Cn, the n-cycle), cographic (G consists of n parallel edges)

and binary (representable over GF(2) — consider the incidence matrix of Cn). On the other hand,

when n > 3, Kerφs
(A) = U2,n is none of these things. Thus Example 5 supplies matroids which are

not graphic/cographic/F-representable over a field F but are given as kernel matroids of matroids

which are graphic/cographic/F-representable. This generalises easily as we will see in the next

section.

3 Some basic results

Proposition 6 Let M be a matroid of rank r on ground set E. On the same ground set, let A be

the collection of independent sets of the uniform matroid Uk,n, for some k, n − r ≤ k ≤ n. Define φ,

for subsets X inA, by

φ(X) =

{

1 if E − X is independent in M

0 otherwise.

Then Kerφ(A) = M.

Proof Let X be a subset of E and consider the effect on Im(φ) of deleting X. We always retain zero

in Im(φ) since E − ∅ = E is never independent in M unless M = Un,n, in which case zero is not in

Im(φ). So it is enough to show that 1 is retained if and only if X is independent in M.

Suppose X is a base of M. Then φ(E − X) = 1 since E − (E − X) = X which is independent.

Moreover, E − X is in the domain of φ because |E − X| = n − r and φ is defined on all subsets of E

of size not exceeding k ≥ n − r. So Im(φ) retains 1 on deletion of X. By heredity, this extends to

all independent sets of M.

If X is not independent in M then no set Y ⊆ E − X can have φ(Y) = 1 because this would mean

that E − Y was independent in M. But this would make X ⊆ (E − Y) independent by the hereditary

property, which is a contradiction. �

We can determine Kerφ(A) for some generic functions φ even when the collectionA has very few

restrictions placed on it:
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Proposition 7 Let (E,A), be a set system and for some set S let φ : A → S be a function. Let n

denote |E|. Then

1. if φ is injective, and every element of E belongs to at least one set inA, then Kerφ is isomor-

phic to the rank zero matroid U0,n;

2. if φ is the constant function, φ(X) = s for all X ∈ A, andA contains the empty set then Kerφ
is isomorphic to the free matroid Un,n;

3. if (E,A) is a matroid, M, say (defined as usual in terms of its independent sets) and φ maps

independent sets X to their rank, which is to say their cardinality |X|, then Kerφ = M∗, the

dual of M.

Proof

1. Suppose x ∈ E. Then x ∈ X for some X ∈ A and φ(X) is unique in the image of φ. Therefore

x belongs to no set of Kerφ(A).

2. We may remove the whole set E and, since φ(∅) = s, the image of φ is still preserved. Since

Kerφ is subset-closed it must have all subsets of E. So Kerφ = Un,n.

3. Let M have rank r, for some r ≤ n. Then Im(φ) = {0, 1, . . . , r}. Let B be a basis of M. We

must show that B′ = E − B is a maximal subset of Kerφ. Now B′ ∈ Kerφ because M|B = Ur,r,

whose image under φ is again {0, 1, . . . , r}. And B′ is maximal because if B′′ = B′ ∪ {x} for

x < B′ then |E − B′′| < r, so φ restricted to E − B′ cannot have r in its image.

Conversely, suppose that X is a maximal set in Kerφ. We must show that X is a cobasis of M.

Now φ restricted to E − X has image {0, 1, . . . , r}, so E − X contains a basis of M. Suppose

that it is not itself a basis. Then there is some y ∈ E with E − X − y also containing a basis

of M. But then X ∪ {y} is also in Kerφ() contradicting the maximality of X. �

Remark 8 1. In Proposition 7(1) we need the condition on the elements of E. For example,

suppose that E = {a, b} andA =
{

∅, {a}
}

, with φ(∅) = 0 and φ
(

{a}
)

= 1. Then φ is an injective

function onto {0, 1}. But Kerφ(A) =
(

E,
{

∅, {b}
}

)

, which is isomorphic to U0,0 ⊕ U1,1.

2. Proposition 7(2) is false if ∅ < A. For example, take E = {a, b, c, d}, and the system

(E, {a, bc, cd}). Then with φ the constant function the set {b, c, d} is maximal in Kerφ and

is larger than {a, b} which is also maximal. So Kerφ is not a matroid in this case.

3. Proposition 7(3) shows that, in the case of a self-dual matroid, we have Kerφ(Kerφ(A)) = A,

for some choices of A and φ. This is not always the case since, for instance, the constant

map φ can act idempotently, as in Proposition 7(2).

4. It does not seem obvious that Proposition 7(3) should have a ‘multidimensional’ analog;

however, such is the case as we prove in section 5.
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If φ is some particular function then we can still determine Kerφ(A) in some specific cases. The

next result replaces the φ function from Example 5 with a matroid function (referred to as corank

by some authors):

Proposition 9 Let M be Uk,n, the k-uniform matroid on ground set E with |E| = n. Let the function

φ be defined on the independent sets of M by φ(X) = rank(E − X). Then

Kerφ(M) =

{

Un,n if k ≤ n/2

Un−k,n = M∗ if k > n/2

Proof. For any independent set X ⊆ E, φ(X) = min(n−|X|, k), giving Im(φ) = {min(k, n−k), . . . , k}.

If k ≤ n/2 then min(k, n − k) = k, so that the image is the singleton {k}; since φ(∅) = rank(E) = k

we see that we can remove all elements of E without disturbing this image and Kerφ(M) = Un,n. If,

on the other hand, k > n/2, then min(k, n − k) < k and we will lose elements of the image as soon

as |X| exceeds n/2. �

Recall that if set E is partitioned into t sets E1, . . . , Et then the partition matroid is defined to

have independent sets equal to the partial transversals of the partition sets. Such a matroid is

graphic, being isomorphic to the cycle matroid M(G) of the graph G consisting of a central vertex

u connected to an independent set of vertices u1, . . . , ut by |E1|, . . . , |Et|multiple edges, respectively.

Using the more generally accepted terminology, the corank of a subset X of E can then be specified

as the size of a maximum non-cutset of G chosen from X. Suppose we takeA to be the collection

of independent sets of M(G), i.e. the forests in G; and consider the function φ : A → Z≥0 defined

to be the corank function; then we can ask what is Kerφ(M(G)).

An example is shown in figure 1. The function φ, defined to be the corank function, has image

{0, 1, 2} for the graph in (a). The subset of edges {b, e, g} shown in (b) belongs to A and the

restriction of φ to this set retains the whole image, because the coranks of {b, e, g}, {e, g} and {g}

are 2,1 and 0, respectively. The edge subset {a, c, d, f } is therefore a kernel set because those

independent sets which involve none of these edges, i.e. forests in figure 1(b), still produce all the

original corank values, with respect to the graph in figure 1(a).

It is easy to generalise from this example to the case of the corank function for a general partition

matroid: the non-cutsets of G consist of up to |Ei| − 1 edges from each set of multiple edges in G

having multiplicity greater than 1; we may also remove all the edges of multiplicity 1, since these

edges contribute zero to the corank, as does the empty set. Thus we have:

Proposition 10 Suppose E is a set and M is the partition matroid on a partition E1, . . . , Et of E

into non-empty parts. Let φ be the corank function on M, let ni = |Ei|, for i = 1, . . . , t and suppose

that there are s parts of size 1 in the partition. Then

Kerφ(M) = Us,s ⊕

















⊕

ni,1

Uni−1,ni

















.

�

7



Figure 1: (a) graph whose cycle matroid is isomorphic to the partition matroid of
{

{a, b}, {c, d, e}, { f }, {g}
}

(b) a subset of edges with rank 3 and corank 2.

4 Sum-free sets—a negative result

So far we have concentrated on looking for examples of functions on set systems which yield

kernel matroids. Now we look at the other side of the coin and exhibit a case in which the kernel

system is essentially never a matroid. Let E be a set of positive integers and let A be the power

set of E (so that (E,A) is the free matroid in which every subset is independent). Define φ to be

the function on A which takes subsets to 1 if they are sum-free and 0 otherwise, where a set X

is sum-free if no sum of two elements in X is again in X. For example, if E = {1, 2, 4, 5} then

φ({1, 2}) = φ({1, 3, 4}) = 0 (since 1 + 1 = 2 and 1 + 3 = 4) while φ({2, 3}) = φ({1, 3, 5}) = 1. Sum-

free sets have a rich literature centering around the recently-proved Cameron-Erdős Conjecture

[6, 8]; some of their properties could surely be formulated in terms of Kerφ but our aim is merely

to show that this kernel system cannot obey the augmentation axiom for matroids, except in a few

trivial cases.

Recall that a bridge in a matroid is an element which belongs to no dependent set and will therefore

appear in every basis. We will exclude such elements from our analysis since they are uninteresting.

For example, the set E = {1, 2, 5, 8, 11, 14, 17} contains just one summation: 1 + 1 = 2. With the

above definition of φ, any subset X of E including {1, 2} will have φ(X) = 0 and this is the only

way that 0 can appear in the image of φ. So no kernel set with respect to φ can contain either of 1

or 2 but any maximal kernel set will contain all of 5, 8, 11, 14 and 17: this arithmetic progression

consists of bridges. We could extend this arithmetic progression to any arbitrary length; all such

extensions will give a kernel matroid which, up to addition of bridges, is still just U0,2

Theorem 11 Let E,A and φ be as above and suppose that Kerφ(A) is a bridgeless matroid. Then

it is one of

(I) U0,2, (II) U0,1 ⊕ U1,2,

(III) U0,3, (IV) U0,2 ⊕ U1,2.

Proof. Suppose that Kerφ(A) is a bridgeless matroid: we will denote it by M∗ for notational
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convenience since we going to work with its dual; this dual matroid is now M.

Let B be a base of M∗. Then B is a maximal kernel set, so in particular it is a maximal set whose

deletion leaves a subset X of E for which φ(X) = 0, i.e. X must be precisely the components of

a single summation, X = {x, 2x} or X = {x, y, x + y}. Now in the dual matroid M these X are the

possible bases. Thus M has rank 2 or 3.

Suppose rank(M) = 2 and that {x, 2x} is a base of M, call it B1. If the ground set E has no other

elements than B1 then we have case (I). Now suppose that y is an element of E not in B1. Since y

is not a bridge in M∗ it cannot be a loop in M so it is independent. So by the augmentation axiom,

we have a second base, B2 say, which is either (a) {x, y} implying y is x/2 (it cannot be 2x since

y < B1); or (b) {2x, y}, implying y is x (it cannot be 4x since y < B1). In each case, we see that the

pair (B1, B2), up to ordering, is of the form
(

{a, 2a}, {2a, 4a}
)

for some positive integer a. The same

argument now shows that adding a third base will violate the exchange axiom. So E = {a, 2a, 4a}

and we have case (II).

Now suppose that rank(M) = 3, and that M has a base B = {x, y, x + y}. If this is the only base

then since M∗ is bridgeless and therefore M contains no loops, we have E = B and M = U3,3. So

M∗ = U0,3 which is case (III) (note that this excludes the case where E has the form (a, 2a, 3a)

since the kernel matroid then has 3a as a bridge).

Recall the exchange axiom: if we have two bases B1 and B2 then for each e ∈ B1 − B2 there is an

element f ∈ B2 − B1 such that we have a third (not necessarily distinct) base B1 − e + f , call it B3.

Note that each element in a sumset is either the sum or (the absolute value of) the difference of the

other two elements. So if there is more than one base in M and the exchange axiom is to be applied

to e ∈ B1 then, if e is the sum (difference) of the other two elements in B1, the difference (sum) of

the other two elements in B1 will certainly be in B2. Thus B3 can take one of two forms and in fact

is equal to B2.

Applying this to our base B = {x, y, x + y}, we see that a second base must be of the form B′ =

{y, x + y, x + 2y} or B′′ = {|x − y|, x, y}. There cannot be a third base as B′ and B′′ are incompatible

with respect to the exchange axiom and applying the above argument to either of them gives a

triple that is incompatible with B.

We conclude that E has the form {a, b, a + b, a + 2b}; {a} and {a+ 2b} are kernels but neither of the

other elements can be deleted without removing both bases and therefore all elements for which φ

has value 0. So M = U0,2 ⊕ U1,2, which is case (IV). �

5 Kernels of matroids with coloured ground sets

Our final result is another illustration of how kernel systems might play a role in optimisation, in

that we derive a kernel matroid for a problem which cannot itself be solved greedily.
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Figure 2: (a) graph with edges coloured from the colour set {1, 2, 3} and (b) with a union of maximal

non-cutsets removed

Theorem 12 Let M = (E,A) be a matroid defined on E and suppose that E is partitioned into sets

E1, . . . , Et. Define a function φ : A → Zt by φ : X 7→ (x1, . . . , xt) with xi = |X ∩ Ei|, i = 1, . . . , t.

Then Kerφ(M) = M∗
1
⊕ . . . ⊕ M∗t where Mi = M|Ei, the restriction of M to Ei.

We remark that Proposition 7(3) is precisely the case t = 1. Before we give the proof of this result

it is worth illustrating it in a concrete case. Suppose G is a graph whose edges are coloured with

the integers 1, . . . , t. For each forest F in G record the number of edges of each colour class — this

vector is the value of the function φ on F. The theorem says that the kernel sets are obtained by

taking the subgraphs induced by each colour and taking a non-cutset in each subgraph: the union

of such non-cutsets is a kernel set. For the graph in figure 2(a), the image of φ is the set of three

vectors {(1, 3, 2), (2, 2, 2), (2, 3, 1)}, together with all vectors which are componentwise less than

these; for example the spanning tree {12, 24, 27, 36, 35, 37} gives the vector (1, 3, 2) while the

forest {12, 24, 27, 35} gives the vector (1, 2, 1).

In contrast to finding a minimum-weight spanning tree (Example 1 in section 1) our vector φ

suggests optimisation problems which cannot be solved greedily. For example, suppose we wish

to find a spanning tree whose φ vector has minimum first coordinate: we must find a tree with

vector (1, 3, 2). Now the edges {23, 35, 37} are a forest with φ vector (1, 0, 2) but this forest cannot

be extended to a spanning tree with vector (1, 3, 2). However, theorem 12 says that any choice of

maximal non-cutsets from each of the colour subgraphs will combine to give a kernel set. Such

a kernel set has been removed in figure 2(b): it may be confirmed that all vectors in the image

of φ may still be achieved in the resulting graph. The graph of figure 2(b) has 12 spanning trees

compared to 128 in the original graph: as with the matching example in section 1 (Example 2) we

have considerably simplified the search space; but this time kernel sets form a matroid and can be
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found greedily, so for this optimisation problem our approach will scale up.

The proof of theorem 12 follows easily using the definition of a matroid in terms of dependence

axioms (see [9, section 1.7, exercises 7], for example2):

Definition 13 For a finite set E, let ∼ be a relation on E × 2E satisfying, for any nonempty subsets

S and T of E, and e any element of E:

D1: s ∼ S for all s ∈ S ;

D2: if e ∼ S and, for some s ∈ S , e / S − s then s ∼ S − s + e;

D3: if e ∼ S and, for all f ∈ S , f ∼ T then e ∼ T

Then the collection of subsets of E which contain a subset X and an element x satisfying x ∼ X

form the dependent sets of a matroid.

Proof of theorem 12. We first observe that Kerφ(M) ⊆ M∗
1
⊕ . . . ⊕ M∗t . For suppose that we

choose some set K which contains a circuit of some component of the direct sum; without loss of

generality we may say that K ∩ E1 contains a circuit of M∗
1
. Then E1 − K ∩ E1 = E1 − K cannot

contain a base of M1. So the restriction of φ to E1 − K has no vector of the form (rank(M1), . . .)

in its image. But such vectors appear in the image of φ. So every set K in Kerφ must contain only

independent sets of M∗i for every i, 1 ≤ i ≤ t.

Now suppose that K is an independent set of M∗
1
⊕ . . . ⊕ M∗t and let the restriction of φ to E − K

be denoted by φK; we must show that φK preserves all image points of φ. Let X be an independent

set of M with φ(X) = (x1, . . . , xt). Suppose, without loss of generality, that e ∈ X is contained in

K ∩ E1, so that φK(X) = (x′
1
, . . .) where x′

1
< x1. We must show that there exists some f in E1 − K

with X − e + f an independent set. Suppose for a contradiction that no such f exists. Now let

S = E1 − K and let T = X − e. Then for all f ∈ S we have f ∼ T . But then by D3 of definition 13

we have e ∼ T contradicting the independence of X. So φK has larger first coordinate on T + f

than on X and thus we can recover all vectors in the image of φ inductively. �

Given a graph G with edges coloured with positive integers an arithmetical alternative would be

to define φ on forests of G as the sum of their edge colours. Thus the spanning trees in the graph

of figure 2(a) would now take values in {11, 12, 13}. We might hope to still get a kernel matroid

for this version of φ but this is not the case: for example, either of the edge subsets {23, 27, 37} or

{13, 34, 37, 67} can be removed without changing the set of possible spanning tree values but this

pair of sets does not satisfy the augmentation axiom, so there is no possibility of getting a matroid.

2Welsh mentions that these dependence axioms constitute the formulation of matroid theory by van der Waerden

in 1937.
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6 Concluding remarks

The idea of a kernel system viewed, say, as a question about functions on hypergraphs, is extremely

general. Nevertheless it seems that in specific instances it can provide a different way of looking at

subset families and can yield some simple and intuitive results. It seems worthwhile, at any rate,

continuing to catalogue the kinds of matroids that can arise and the kinds of optimisation problems

that might be tackled by this route as a result.

An obvious question in connection with our approach is: why remove maximum cardinality subsets

of the domain under preservation of the image—why not look for minimum cardinality subsets

which will achieve the image? In the case where Kerφ(A) is a matroid this dual problem will

clearly give the dual matroid and it may be that this dual matroid is a more natural setting for the

problem. In this case the utility of the kernel system approach might be just that: an optimisation

problem such as one of those given in section 1 may be reformulated in a different guise (this is,

of course, a standard approach to problem solving).

As well as a dual problem, we have an inverse problem: given a set system (E,A), when is

it a kernel system? More precisely, when is there a second set system (E,A′) and a function

φ : A′ → S for which Kerφ((E,A
′)) = (E,A)? If such aA′ and φ can be found, what can we say

about them? An example of this problem was given at the end of section 2.

We will end with some questions which seem to us to point to areas which might fruitfully be

explored.

Turán-type problems The classical Turán problem asks, given a fixed graph G, how many edges

can an n-vertex graph have without containing G as a subgraph. If we invert this, we can

ask how many edges may be deleted from Kn without removing the possibility of G being

a subgraph. Let A be the set of edge subsets of Kn and define φ :→ {0, 1} by φ(X) = 1

if X contains a copy of G and φ(X) = 0 otherwise. Now we can ask about the structure

of Kerφ(A). For example, if n = 4 and G is a path consisting of two edges then it is not

hard to see that Kerφ is the rank 4 matroid isomorphic to the cycle matroid of K2,3. This is

an illustration of the point we made in the introduction: there is no difference here between

asking what subsets of edges we can remove while still retaining all φ values and asking what

subsets of edges we should retain in order to achieve all φ values; in the above example the

two questions are dual in the sense that they give rise to dual matroids. The idea of inverting

Turán-type extremal problems goes back at least to the 70s (see [1], for example) but we are

not aware of work on what structure the extremal or sub-extremal sets may have.

Universal graphs Suppose we extend the Turán problem to ask, given a set Γ of graphs, how many

edges may we delete from Kn and still have every member of Γ as a subgraph. Let G be the

set of all unlabelled graphs and define φ : A → G by φ(X) = the graph in G isomorphic to

the subgraph defined by X. Again we can ask about Kerφ(A). In particular, if Γ is the set of

all n-vertex unlabelled trees, then we can ask what subsets of edges from Kn can be removed

and still allow every unlabelled n-vertex tree to be embedded. The maximum size of such
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an edge set was settled asymptotically by Chung and Graham in 1979 [1] (the proof is given

in [2]) but again we can find no mention of the structural issue. Some related problems are

given in [3] (section 3.5.1). We observe that the subsets of the edges of K5 whose removal

preserves all trees do not constitute the independent sets of a matroid but that all such subsets

that are maximal have the same cardinality of four.

Duality If we have A and φ giving a kernel matroid Kerφ(A) = M then we can clearly take M∗,

the dual of M. Now M∗ will again be a kernel matroid for certain subset families A′ and

mappings φ′ (this is guaranteed by proposition 7(3)). We would like a concept of formal

duality in which A′ can be chosen as a formal dual of A and similarly φ′ of φ. In the case

where A is itself a matroid then proposition 7(3) gives a solution when φ is the cardinality

(or rank) function, so it would be desirable that our concept of formal duality is consistent

with this.

Representability Given a matroid which is not representable over a given field, or is not alge-

braic, when can we construct it as a kernel matroid of a representable/algebraic matroid?

Example 5 in section 2 gave examples for GF(2) and Proposition 6 extended this to any

non-representable matroid. However the construction was limited to 0 − 1 functions φ; it

would be of interest to find constructions using functions, which reflect more of the matroid

structure.

Construction of classes of matroid We saw, in particular, in Example 5, that U2,4, the excluded

minor for GF(2)-representability, could be given as a kernel matroid of a binary matroid.

This suggests a question along the lines of: if a class M of matroids is characterised by

excluded minors and these minors can be given as kernel matroids of matroids inM, then

can any non-M matroid be given as a kernel matroid of a matroid inM? U2,4 is an excluded

minor for graphic and cographic matroids; so a concrete problem in the right direction would

be: construct the other 4 excluded minors for these classes (see [7, Theorem 6.6.5]). A

natural requirement would be that we use the same φ function in each case. There is, of

course, a large body of theory to which this question is closely related (see [5], for example).

Identity Given a set family A, does there exist a function φ for which Kerφ(A) is isomorphic to

A? Again proposition 7(3) gives a positive answer in the case whereA is a self-dual matroid.

Another instance was seen in Example 4 where the system Kerφ2
(A) was isomorphic to A.

IfA is not a matroid then notice that it must still be subset-closed, since Kerφ will be.

Inverse problem This is another problem mentioned above: given two families on ground set E,

say, (E,A1) and (E,A2) find a function φ such thatA2 = Kerφ(A1).
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