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Abstract: We address the theoretical question which forces and moments measured at
the base of a whisker (tactile sensor) allow for the prediction of the location in space of the
point at which a whisker makes contact with an object. We deal with the general case of
three-dimensional deformations as well as with the special case of planar configurations.
All deformations are treated as quasi-static and contact is assumed to be frictionless. We
show that the minimum number of independent forces or moments required is three but
that conserved quantities of the governing elastic equilibrium equations prevent certain
triples from giving a unique solution in the case of contact at any point along the whisker
except the tip. The existence of these conserved quantities depends on the material and
geometrical properties of the whisker. For whiskers that are tapered and intrinsically
curved there is no obstruction to the prediction of the contact point. We show that
the choice of coordinate system (Cartesian or cylindrical) affects the number of suitable
triples. Tip and multiple point contact are also briefly discussed. Our results explain
recent numerical observations in the literature and offer guidance for the design of robotic
tactile sensory devices.
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1 Introduction

Whiskers (vibrissae) provide many animals with a sense
of touch. These animals can use their whiskers to
obtain information about geometrical and mechanical
properties of their environment (see [1] and references
therein). Animal whiskers are thin flexible rods grown
out of follicles; there are no sensory nerve endings along
the length of a whisker. Sensing therefore relies on the
detection by mechanoreceptors at the whisker base of
forces and moments induced by contact with an external
object and transmitted through the elastic medium [2, 3].

Knowledge of how whiskers perform their sensory
functions is of interest to engineers designing biomimetic
tactile sensors [4, 5, 6, 7, 8, 9]. To use such artificial

whiskers in robotics, it is often essential to be able to
determine the location of the point along the whisker
shaft at which contact with an object occurs.

We consider the quasi-static case, valid for sufficiently
slow approach of the whisker to the object. Then, if
three forces and three moments (in three independent
spatial directions) are measured at the (fixed) whisker
base, a suitable mechanical model of the whisker (e.g.,
a one-dimensional (1D) continuum elastic rod or beam
model [10]) allows the entire configuration of the whisker
to be determined. If it is furthermore assumed that the
contact is frictionless then the location of the contact
point can be obtained [7, 8, 9]. These six measurements,
however, require an expensive six-axis load cell. It is
natural, therefore, to ask whether fewer measurements
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would suffice to uniquely predict the location of the
contact point.

Past studies of this contact problem have mainly
focussed on the planar case, where the contact point is
specified by two coordinates [11, 7, 12, 13, 14]. Whisker
configurations, especially those with intrinsic curvature,
may generally be non-planar. In [15] the authors examine
the 3D case, including whiskers with intrinsic curvature
and taper. Using numerical simulation, they consider
all 20 possible combinations of triples of base forces
and moments. They report that certain triples uniquely
predict the location of the contact point, but that other
triples do not. They offer no theoretical explanation
of this observation. Based on these results, in [16]
an artificial whisker is constructed that operates by
measuring the two bending moments and the axial force
at the whisker base.

Here we show that the difference in the predictive
ability of triples of forces and moments is mainly
caused by the existence of conserved quantities of
the differential equations governing the deformation of
slender elastic bodies. These conserved quantities arise
for whiskers with certain geometrical profiles (curvature,
taper, etc.). We model whisker-object contact by
formulating a two-point boundary-value problem using
Kirchhoff rod theory [10]. Unlike (Euler-Bernoulli or
Timoshenko) beam theory, this theory allows for
arbitrarily large deformations of the whisker from its
unstressed configuration. We will argue, however, that
these model details are not essential for the predictability
question, which is qualitative in nature.

We also consider the reconstruction problem for
whiskers with multiple point contacts, which has
seen recent interest. It was reported in [17] that
2D whisker configurations with two point contacts
cannot be reconstructed from base measurements. Our
results confirm and explain this observation and show
that for 3D configurations reconstruction from base
measurements is possible for whiskers with (at most) two
point contacts.

We provide a theoretical explanation for experimental
and numerical results on the ability to discriminate, by
means of base measurements, between tip and non-tip
contact of a whisker in a planar configuration having
either one or two point contacts [22, 17]. We show that
these results extend to 3D whisker configurations and
to configurations with an arbitrary number of point
contacts.

The organisation of the paper is as follows. In
Section 2 we review well-posedness of boundary-value
problems (BVPs) for (nonlinear) ordinary differential
equations (ODEs) in the presence of conserved
quantities. In Section 3 we introduce the BVP for tactile
sensing by means of base measurements and identify its
conserved quantities. This BVP is then analysed for its
ability to predict the location of the (non-tip) contact
point in Section 4. We also examine the special case of a
planar sensing problem, more frequently studied in the
literature, where two base measurements are sufficient

(Section 5), and briefly consider the cases of tip contact
(Section 6) and multiple contact (Section 7), both of
which are easier to classify. Finally, in Section 8, we give
an extensive discussion of our results.

2 Boundary-value problems and conserved
quantities

The solution of an nth-order ODE, du/ds = f(u), u ∈
Rn, s ∈ [a, b], involves n integration constants. Physical
problems usually come with boundary conditions at
s = a and/or s = b, generally n conditions in the form
g(u(a), u(b)) = 0, that fix these integration constants. In
the special case of an initial-value problem, i.e., when
all boundary conditions are specified at one end (u(a) =
c or u(b) = c, with c a given constant), there exists a
unique solution (under very mild smoothness conditions
on f). For general, two-point, BVPs, however, this is
not guaranteed [18]. Non-uniqueness typically occurs as
branch points (bifurcations) at special values of any
parameters in f or g. An example of such non-uniqueness
is encountered in differential equations with conserved
quantities.

A conserved quantity (first integral) of an ODE is
a function of the dependent variables ui (i = 1, ..., n)
whose value is constant along solutions of the equation.
The presence of such quantities may put constraints on
the specification of boundary conditions: if conserved
quantities are fixed by boundary conditions at one end
they effectively add equations to the conditions g = 0
and therefore have to be compatible with them. For
instance, in the simple case that one of the variables
itself, say uk, is a conserved quantity, the boundary
condition uk(a) = c, for some constant c, implies uk(b) =
c. Then uk(b) = d is not a proper boundary condition
at the other end: if c and d were unequal there would
obviously be no solution, while if c and d were equal
there might be infinitely many solutions (depending on
the other boundary conditions), as one of the integration
constants is not fixed. In either case the BVP is said to
be ill-posed. Another, independent, boundary condition
needs to be imposed instead to obtain a locally unique
solution (i.e., a solution with no infinitesimally close
solutions, meaning that it is the only solution in an
infinitesimal neighbourhood but that there may be
additional solutions further away). It is not always
a priori clear that a given ODE has one or several
conserved quantities and well-posedness of a BVP is
generally not straightforward.

Conserved quantities can be viewed as continuous
symmetry properties of the ODE. A more obvious
example of continuous symmetry is rotational symmetry
of the equations, in which case for a well-posed BVP
one has to impose boundary conditions that break the
symmetry, thereby picking out one of the continuous
family of solutions. Besides continuous symmetry a BVP
may also have discrete symmetry, for instance reflection
symmetry, in which case the BVP has multiple isolated
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solutions. An example is the buckling of a ruler under
compression, with the ruler deflecting either ‘up’ or
‘down’. Nonlinear problems generally may have multiple,
isolated, solutions. Each of such isolated solutions will
generally be locally unique and the BVP is considered
well-posed, with the solution being globally non-unique.
Conserved quantities do not necessarily distinguish
between such isolated solutions. This paper is mainly
concerned with local non-uniqueness, not with this
global non-uniquenesss, which only occurs in nonlinear
problems.

3 Equilibrium equations for an elastic
whisker

We model the whisker as a Kirchhoff rod. This is a
geometrically exact elastic model suitable for slender
structures undergoing large deformations.

Let xyz be an orthogonal laboratory frame fixed at
the base of the whisker (see Fig. 1). The whisker is taken
to be inextensible and unshearable and to have length
L. Its thickness is neglected and its centreline is denoted
by r(s) = (x(s), y(s), z(s)), where s ∈ [0, L] is arclength
along the whisker, s = 0 corresponding to the base and
s = L corresponding to the tip.

Under the above assumptions we can introduce a
local orthonormal material frame {d1,d2,d3} along the
length of the whisker, with d1 tangent to the centreline
r, i.e.,

r′ = d1,

and d2 and d3 directed along principal axes of the
whisker’s cross-section (here and in the following a
prime denotes differentiation with respect to s). By
orthonormality of the material frame there exists a
(Darboux) vector Ω such that

d′
i = Ω× di (i = 1, 2, 3).

The components of this vector in the material frame,
(ω1, ω2, ω3) =: ω, ωi = Ω · di, are the strains of the
theory, i.e., the curvatures ω2 and ω3, about d2 and d3,
and the twist ω1, about d1 [10, 19].

The force and moment balance equations for the
whisker can be written as

F′ + ω × F = 0, (1)
M′ + ω ×M + i× F = 0, (2)

where F = (F1, F2, F3) and M = (M1,M2,M3) are
triples of force and moment components in the material
frame and i = (1, 0, 0) (this being the tangent vector r′

expressed in the material frame).
Finally, we assume linear elastic behaviour and

specify the following constitutive relations, relating the
moments to the strains:

M1 = C(s)ω1,

M2 = B(s)ω2, M3 = B(s)(ω3 − ω30(s)).

Figure 1 Whisker in point contact with an object at
s = s∗. For frictionless contact the contact force is
normal to the whisker and given by

Fn =
p

F 2
2 + F 2

3 .
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Here, B(s) and C(s) are the bending and torsional
stiffnesses, respectively, which both may vary with
arclength s (as, for instance, in a tapered whisker),
but the stiffnesses for bending about d2 and d3 are
identical. The undeformed shape of the whisker is taken
to be planar with (possibly zero) intrinsic curvature
ω30(s). Extension of the model to allow for unequal
bending stiffnesses or non-planar intrinsic curvature
is straightforward, but most whiskers have symmetric
cross-sections and are planar in their unstressed state
[20].

We are interested in whisker configurations with
a single (unknown) contact point at s = s? ≤ L (see
Fig. 1). It is convenient to introduce a scaled
independent variable σ = s/s?, σ ∈ [0, 1]. The full
system of equilibrium equations can then be written as

dr
dσ

− `d1 = 0,

ddi

dσ
− `ω × di = 0,

dF
dσ

+ `ω × F = 0,

dM
dσ

+ `ω ×M + ` i× F = 0,

d`

dσ
= 0, (3)

where ` is introduced as an auxiliary dependent variable
subject to the boundary condition `(1) = s∗. Taking into
account that the frame {d1,d2,d3} is orthonormal and
therefore defined by three independent components (we
could for instance parametrise it by means of three Euler
angles [10, 19]), this constitutes an ODE of order 13.
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The system (3) has a number of conserved quantities
[19, 21]. Eqs (1) and (2) imply, respectively, that F · F
and F ·M are constant. Further conserved quantities
exist in special cases. If the whisker is intrinsically
straight (ω30 ≡ 0) then the twisting moment M1 is
constant as a result of rotational symmetry about the
whisker’s centreline. Lastly, a special role is played by
the quantity

H =
1
2

(
M2

1

C
+

M2
2 + M2

3

B

)
+ M3ω30 + F1, (4)

called the Hamiltonian (in an appropriate Hamiltonian
formulation of rod mechanics [21]). This H, which does
not have a direct physical interpretation, is a conserved
quantity provided B, C and ω30 are constant.

We assume the whisker to be fixed in both position
and orientation at the base (σ = 0). At the contact point
(σ = 1) a contact force will act from the surface of the
object onto the whisker. In the case of frictionless contact
this force will be normal to the surface and hence also
normal to the whisker’s centreline, thus F1(1) = 0. We
will in addition make the common assumption that there
is no contact (bending or twisting) moment, i.e., M(1) =
0, which is consistent with neglecting whisker thickness.

We therefore consider the following 13 boundary
conditions for system (3):

r(0) = 0, M(1) = 0,

di(0) = di,0, F1(1) = 0,

P(0) = P0, (5)

where P = (P1, P2, P3) is the vector of base
measurements consisting of three components
chosen from the six force and moment components
F1, F2, F3,M1,M2,M3.

We note that three base measurements are sufficient
for the well-posedness of the tactile sensing BVP
(3)+(5), as also concluded in [15]. In Section 4 we analyse
how this well-posedness depends on the precise choice of
measured components Pi. For this, following [15], we also
introduce polar representations of the force and moment
in the whisker. Thus we write F2 = Fn cos α, F3 =
Fn sinα, M2 = Mn cos β, M3 = Mn sinβ. Here Fn =√

F 2
2 + F 2

3 and Mn =
√

M2
2 + M2

3 are the magnitudes
of the normal force and moment components, while α
and β are the angles these components make with the
material axes. We then have

F · F = F 2
1 + F 2

n = const,
F ·M = F1M1 + FnMn cos(α− β) = const = 0, (6)

while the Hamiltonian (4) becomes

H =
1
2

(
M2

1

C
+

M2
n

B

)
+ Mnω30 sinβ + F1. (7)

Considering the six quantities F1, Fn, α,M1,Mn, β as
possible independent measurements (as an alternative to
the six independent components F1, F2, F3,M1,M2,M3)

in Section 4 will give further insight into the sensing
problem even though it is not immediately clear how in
practice one could have direct access to, for instance, Fn

without first measuring the material-frame components
F2 and F3.

4 Analysis of the three-dimensional case

4.1 Intrinsically straight whiskers

For an intrinsically straight whisker (ω30 = 0), the
boundary condition M1(1) = 0, together with the
fact that M1 is conserved, implies that the whisker
remains twistless. It will consequently adopt a planar
configuration (lying in a plane containing the d1,0

axis). Thus, if the base boundary conditions include the
specification of the twisting moment M1 (i.e., if one of
the Pi equals M1) then the BVP (3)+(5) is ill-posed. It
will in general not have a unique solution, which means
that the location of the contact point cannot be inferred
from the base measurements P. The last is also true if
both α and β are included in P, because (6) implies
cos(α− β) = 0, unless Fn or Mn is zero, which is true
only in very exceptional cases (for instance, if the contact
force is in the direction of the base tangent r′(0)).

If the whisker has constant cross-section so that B
and C are constant, then H is constant. The right-end
boundary conditions imply that H = 0 (in addition to
M1 = 0). Referring to (4), it then follows that P cannot
equal (F1,M2,M3) for a unique solution since the three
components are not independent. In addition, referring
to (7), we see that P cannot include both F1 and Mn,
independent of the third measurement (the two cases are
of course equivalent if measuring Mn requires measuring
M2 and M3).

All other choices for P will generically yield a (locally)
unique solution and can therefore be used to predict the
location of the contact point for an intrinsically straight
whisker, with or without constant cross-section, but rare
obstructions to uniqueness and hence predictability may
occur as discussed in Section 2.

4.2 Intrinsically curved whiskers

For an intrinsically curved whisker M1 is not a conserved
quantity and hence M1(0) is not implied by the right-end
boundary conditions in (5). Thus, whether or not the
Hamiltonian is conserved, it will pose no constraint on
the values of P(0), and neither will F ·M. Generically,
any choice for P can be used to determine the location
of the contact point.

An intrinsically curved whisker in general will adopt
a non-planar configuration. This is true even if the
whisker is intrinsically planar: the contact force will
generally push the whisker out of its plane of intrinsic
curvature. In exceptional cases, however, an intrinsically
curved whisker may happen to be deformed into a
planar configuration. The whisker is then necessarily
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Table 1 Triples P of Cartesian measurements that give
rise to an ill-posed BVP, and therefore a
non-unique solution, for various intrinsic shapes of
the rod (* stands for any of the other quantities
and × indicates that there are no triples giving
non-unique solutions).

rod cylindrical tapered
(B,C = const.) (B,C 6= const.)

straight (M1, ∗, ∗) (M1, ∗, ∗)
(ω30 = 0) (F1,M2,M3)

curved
(ω30 6= 0) × ×

twistless and therefore M1(0) = 0. Since the whisker is
intrinsically curved, the plane will necessarily be the
plane of intrinsic curvature. This means that α = 0 (or
π) and β = ±π/2. We conclude that P cannot include
M1 but that Eq. (6) does not give any further constraint.
If H is conserved (i.e., if B, C and ω30 are constant) then
P cannot equal (F1,M2,M3) or include both F1 and Mn,
by the same argument as in Section 4.1. Section 5 gives
a detailed genuinely planar analysis of this exceptional
case.

4.3 Summary of results

The results of our analysis are summarised in
Tables 1 and 2 for Cartesian and polar components
respectively, where those combinations of force/moment
measurements are listed that are not appropriate in
the design of an effective set of sensors at the base
of a robotic whisker. A tapered whisker may here be
interpreted as any whisker whose B or C is not constant.

5 Planar whisker configurations

In Section 4.1 we found that intrinsically straight
whiskers always adopt a planar configuration in the
present tactile sensing problem, but that the precise
orientation of the plane is a priori unknown. By contrast,
according to the analysis in Section 4.2, intrinsically

Table 2 Triples P of polar measurements that give rise to
an ill-posed BVP (* stands for any of the other
quantities and × indicates that there are no triples
giving non-unique solutions).

rod cylindrical tapered
(B,C = const.) (B,C 6= const.)

straight (M1, ∗, ∗) (M1, ∗, ∗)
(ω30 = 0) (α, β, ∗) (α, β, ∗)

(F1,Mn, ∗)

curved
(ω30 6= 0) × ×

curved whiskers may or may not deform into a planar
configuration, but if they do then the orientation of the
plane is determined by the plane of intrinsic curvature. If
the whisker shape is planar, and we know in which plane
it lies, then a strengthened analysis can be given.

Assuming that the whisker lies in the xy-plane, we
may set z ≡ 0, d3 ≡ (0, 0, 1), ω1 ≡ ω2 ≡ 0 (hence, M1 ≡
M2 ≡ 0) and F3 ≡ 0 (i.e., α ≡ 0, β ≡ π/2). The frame
{d1,d2,d3} now has only one angular degree of freedom
and C is no longer relevant. Setting d1 = (cos θ, sin θ, 0),
θ being the angle the tangent makes with the x axis,
system (3) reduces to the following 7th-order system for
the remaining non-zero variables:

dx

dσ
− ` cos θ = 0,

dy

dσ
− ` sin θ = 0,

dθ

dσ
− `

(
M3

B
+ ω30

)
= 0,

dF1

dσ
− `F2

(
M3

B
+ ω30

)
= 0,

dF2

dσ
+ `F1

(
M3

B
+ ω30

)
= 0,

dM3

dσ
+ `F2 = 0,

d`

dσ
= 0.

In [7, 9] this system is solved with a complete set of
initial conditions at σ = 0. However, continuing with our
assumption that the contact point is unknown, the two-
point boundary conditions (5) reduce to

x(0) = 0, M3(1) = 0,

y(0) = 0, F1(1) = 0,

θ(0) = θ0,

P(0) = P0, (8)

where the vector of base measurements P = (P1, P2) now
contains two components chosen from the three force and
moment components F1, F2, M3.

The Hamiltonian is now given by

H =
M2

3

2B
+ M3ω30 + F1. (9)

The boundary conditions (8) imply that for a cylindrical
whisker with constant (possibly zero) intrinsic curvature,
H = 0. It follows that if we choose to measure F1(0)
and M3(0) then no unique solution will generically be
obtained, since the boundary conditions are constrained
by the value of H, but that the other (two) choices in
general yield a unique solution and can therefore be used
to determine the location of the contact point.

If the whisker has a non-uniform cross-section and/or
varying intrinsic curvature, then H is not constant
and therefore provides no constraint on the boundary
conditions. Any combination of base measurements will
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Table 3 Pairs P of measurements giving a non-unique
solution for planar whisker configurations (×
indicates that there are no pairs giving non-unique
solutions).

rod cylindrical tapered
(B = const.) (B 6= const.)

constant ω30 (F1,M3) ×
non-constant ω30 × ×

generically yield a unique solution. Table 3 summarises
the results for planar whisker configurations.

Note that these results of the planar analysis are
entirely consistent with the 3D analysis in Section 4.1,
where no a priori knowledge of the plane was assumed, if
we take into account that one extra boundary condition
is needed to determine the plane of the whisker (for
instance, from measurement of M2(0) and M3(0) the
plane can be deduced). The results also agree with (and
in fact explain) the numerical findings of section 2(f)
in [12] for straight cylindrical and tapered whiskers. In
particular, the graph in Fig. 2(f) is precisely a plot of
Eq. (9) for H = 0 (and ω30 = 0). The condition H = 0
is also noted in [22] for whiskers of constant intrinsic
curvature.

6 Tip contact

In the special case of tip contact the object exerts an
unknown axial force on the whisker (in addition to a
normal force). The boundary condition F1(1) = 0 must
therefore be dropped. However, since the location of
the contact point is now known, ` = s? = L, the last
equation in (3) can also be dropped. So for a well-
posed BVP we still require three base measurements.
Considering the (frictionless) case, in which H is
conserved, the constant value of H is then no longer
fixed at the right end (σ = 1) and H therefore poses no
obstruction to obtaining a (locally) unique solution (in
either the 3D or 2D formulation). This solution can for
instance be used to determine the reaction force F1(1).
This force will generally be nonzero, hence the value of H
will be nonzero in the case of tip contact. It follows that
by measuring the value of the Hamiltonian at the base
one can establish whether the whisker makes interior-
point contact or tip contact with an object (as also
observed in [22, 17]).

A base sensor for predicting the location of point
contact, that would be able to handle both tip and
non-tip contact without assuming either, could therefore
be based on the following procedure, valid only for
whiskers for which the Hamiltonian H is conserved
(i.e., whiskers with constant B, C and ω30). First
measure the three quantities M2, M3 and F1, and from
them, together with M1 = 0, compute H. If H = 0
(signalling non-tip contact) then we solve (3) subject to
the boundary conditions (5) with an appropriate triple of
base measurements. According to Table 1, for a whisker

with ω30 6= 0 the measured triple is appropriate and
allows the contact point to be determined. If ω30 = 0,
however, then an extra, fourth, base measurement (either
F2 or F3) has to be performed. If H 6= 0 (signalling tip
contact) then we drop the last equation in (3) and the
last boundary condition in (5). Whether or not ω30 = 0,
the measured triple is now acceptable, so no further base
measurement is required. In the planar case we need only
measure M3 and F1 to compute H. For tip contact these
two measurements determine the location of the contact
point. For non-tip contact, however, an extra, third, base
measurement (F2) is required.

7 Multiple point contact

The analysis of single point contact in the previous
sections can be extended to whisker configurations with
multiple frictionless point contacts provided the number
of such contacts may be assumed known. Along whiskers
with additional interior point contacts, all quantities
in equation (3) are continuous except for the force F,
which is only continuous (and constant) between point
contacts, where the normal (shear) component F2d2 +
F3d3 of the force makes a jump in the direction of the
contact point on the surface of the rod [24].

We can therefore compute whisker configurations
with multiple contacts, at say s = si, i = 1, 2, ..., by
solving the system of equations (3) for each contact-
free segment (scaled to [0, 1] 3 σ) while imposing `(1) =
si − si−1, s0 = 0, and continuity conditions on all other
variables, except for F2 and F3, at each contact point
between two segments, and the boundary conditions (5)
divided between the first and the last segment. Thus
for each additional interior point contact there are three
further unknowns, si (i.e., `(1)), F2(1) and F3(1), that
need to be resolved, by adding boundary conditions at
the whisker base, in order to be able to predict the
location of all contact points. This means that two non-
tip point contacts require six base measurements, while
three or more non-tip contacts cannot be resolved by
base measurements alone (of which there are only six
possible). Since all components Fi, Mi are now included
in the base measurements we have lost our ability to
predict the location of multiple contact points from base
measurements, except for those types of whisker against
which a × appears in Tables 1, 2 or 3 (and for two
contacts only). The conclusions of this paragraph also
apply if the last of the multiple contacts is tip contact.

In the planar case, each interior point contact
introduces two unknowns, si and the normal force
component F2 at si. There are, however, only three
base measurements possible so we cannot resolve two-
point contact. This confirms and explains preliminary
observations made in [17]. The result holds for both tip
and non-tip contact.
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8 Discussion

We have highlighted the role of conserved quantities in
whether or not a BVP for an ODE is well-posed in the
sense that it has an isolated, i.e., locally unique, solution.
If the boundary conditions at one end are such that they
fix the value of a conserved quantity, then this quantity
may constrain the choice of boundary conditions at the
other end. A conserved quantity in this situation where it
poses a constraint may be called active. We have shown
that in the BVP for the (non-tip) contact problem of
a (animal or robotic) whisker in tactile sensing, active
conserved quantities constrain the choice of force and
moment measurements, of which three are required (for
tip contact no such constraint occurs).

Explicitly, our analysis has revealed that the twisting
moment M1 is an active conserved quantity for tactile
sensing with an intrinsically straight whisker that
has equal bending stiffnesses about the two principal
directions (d2 and d3) of its cross-section. For such
whiskers the conserved quantity F ·M (i.e., the moment
about the contact force) is additionally active for
direct measurement of the directions, α and β, of
the normal force and moment (supposing this is
technically possible). The Hamiltonian H is an active
conserved quantity, again additional to M1, if the
whisker is cylindrical. Consequently, for such whiskers
some combinations of the three base measurements
do not allow the determination of the contact point.
Tables 1 and 2 list all triples, of Cartesian and polar
components respectively, that give rise to non-unique
solutions and therefore should be avoided when designing
robust sensors at the base of a robotic whisker [16,
23]. For completeness, Table 3 lists pairs of base
measurements that should be avoided in the planar
tactile sensing problem. Mammal whiskers, however, are
usually tapered and intrinsically curved and for them no
such obstruction occurs.

Statements on the uniqueness of a solution of a
BVP for a nonlinear ODE are only valid locally and
generically, i.e., away from any special (bifurcation)
parameter values. Multiple solutions occur, for instance,
in problems with reflection symmetry, elastic buckling
under axial loads being an example. These solutions
are usually isolated, in which case the analysis of this
paper applies locally to each of them individually. In
most sensing applications local uniqueness will likely be
sufficient, with ‘context’ providing clues as to which of
several global alternatives one is dealing with.

The complete test of non-uniqueness of the
pairing between contact point position r(1) and base
measurements P(0) may be carried out by numerically
integrating the BVP (3)+(5) for a range of values for the
chosen triple P and recording the corresponding values of
r(1). However, a more economical approach, that avoids
having to solve the problem for 20 different combinations
of triples P, would be to specify the position r(1) instead

and to solve equation (3) with boundary conditions

r(0) = 0, r(1) = r1,

di(0) = di,0, M(1) = 0,

F1(1) = 0 (10)

for a mesh of accessible values of r1 in physical space.
The solutions to (3) and (10) give all the base forces
and moments, from which any triple can be selected.
For a chosen triple P one can then consider the map
S : r1 7→ P0 and evaluate its 3× 3 Jacobian matrix ∂P0

∂r1
at a computed solution. If the determinant of this matrix
is zero then we have local non-uniqueness, otherwise
local uniqueness. Eigenvectors of ∂P0

∂r1
give measures for

the relative sensitivity in the various quantities of the
particular triple, which could be considered in sensor
design.

A comprehensive numerical study is beyond the scope
of this paper, but we computed the determinant in
this way for a few randomly chosen data for all 20
combinations of the force/moment triples and for all four
combinations of straight/curved and cylindrical/tapered
whiskers. All results are in agreement with the analysis
in Section 4.

Our analysis of active conserved quantities helps
explain numerical observations on contact point
predictability in the literature. Table 3 explains all
reports of non-uniqueness in [12] for the 2D sensing
problem. For the 3D problem, [15] lists results for all
20 cases of base triples P(0) in cylindrical coordinates.
Tables 1 and 2 explain all reports of non-uniqueness in
Table 2 of [15] for intrinsically straight whiskers except
for tapered ones in Case 7. For intrinsically curved
whiskers our Tables 1 and 2 are consistent with all results
in Table 2 of [15] but do not explain reports of non-
uniqueness for Cases 7, 16, 17, 19 and 20. In the following
paragraphs we discuss these exceptional cases further.

Non-uniqueness in Case 7 (F1,Mn, Fn) for straight
whiskers (tapered or cylindrical) can be explained by
noting that the deformed whisker configuration is planar
but that the base measurements do not include an
angle and therefore the orientation of the plane is not
determined. The whisker can lie in any plane through
the d1,0 axis. Since the contact point need not lie on this
axis, the same base triple P0 corresponds to multiple
r1 and the map S is therefore non-injective. This is
an example of continuous (namely rotational) symmetry
and the non-uniqueness is local.

Case 7 for curved whiskers can be explained by
discrete symmetry. The equations (3) are invariant under
the following symmetry transformation (involution):
F1 ↔ F1, F2 ↔ F2, F3 ↔ −F3, M1 ↔ −M1, M2 ↔
−M2, M3 ↔ M3. This transformation corresponds to
reflection of the solution in the (d1,0,d2,0) plane. Now
since in Case 7 no angular information is obtained at the
whisker base, measurement cannot distinguish between
any two symmetrically related solutions. This means
that for 3D whisker configurations with contact point
not lying in the (d1,0,d2,0) plane (i.e., r(1) · d3,0 6= 0)
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the base triple P0 corresponds to two different contact
points r1 and therefore the map S is non-injectivce. Note
that, unlike the non-uniqueness caused by the existence
of active conserved quantities, this non-uniqueness due
to discrete symmetry is a global non-uniqueness; it is not
detected by the determinant test described above. (This
discrete symmetry also highlights a subtle distinction
between non-uniqueness of solutions of the BVP and
non-injectivity of the map S: if the BVP has non-
planar solutions all of which happen to satisfy r(1) ·
d3,0 = 0 then by virtue of the above symmetry it has no
unique solution, but the map S is injective because all
symmetrically related solutions have the same contact
point.)

It is worth noting that both these instances of non-
uniqueness in Case 7, local and global, would have
been avoided by working with Cartesian components:
if Cartesian measurements Fi, Mi had been used there
would have been no sign degeneracy and one would
generically have expected injectivity of the map S.

For the other four exceptional Cases 16, 17, 19 and
20 we can only suggest that some similar global non-
uniqueness, with isolated solutions, was found in [15], a
non-uniqueness that, unlike in Case 7, is not explained
by an obvious symmetry. Cases 16, 17, 19 hint at this by
having different predictions for tapered and cylindrical
curved rods, which is hard to explain otherwise. As
our analysis, based on conserved quantities, is local,
we cannot make any general claims about global non-
uniqueness, and [15] does not give details on the precise
nature of the observed non-uniqueness (e.g., whether or
not the solutions are isolated). For planar configurations,
however, the reported non-uniqueness in Cases 16 and
17 is clear because the measurements include only one
meaningful quantity, F1, while two are required for
uniqueness (the same lack of meaningful measurements
explains all the cases labelled by an asterisk in Table 2
of [15]). Case 19 is also clear for planar configurations
because its two meaningful measurements, F1 and M3,
are inappropriate for unique prediction according to
Table 3. It is notable that the four exceptional cases
are the cases (F1,M1, ∗), with * any of the four polar
components. To demonstrate that it is possible to
construct isolated pairs of solutions with identical base
triples, in the Appendix we give details of two distinct
non-planar solutions with the same values of M1(0),
F1(0) and F2(0). Such pairs are accidental though and
could easily be missed in numerical searches as in [15].

Although our results have been obtained within the
context of geometrically-exact rod theory, our analysis
has been entirely qualitative and would equally apply
to any other 1D (hyper)elastic theory. This extends
to the existence of conserved quantities, which are
consequences of the fundamental laws of mechanics.
Indeed, the equations (3) could be considered a ‘black
box’ holding a 1D elastic medium that connects inputs at
σ = 1 to outputs at σ = 0. If another mechanical model
were used (e.g., a beam model only allowing for small
deformations or a model also including shearability or

extensibility of the whisker or a nonlinearly elastic rod
model) then different whisker shapes and different forces
and moments might be computed but the predictability
or otherwise of the contact point position from base
measurements would be unaltered. Thus all the above
statements of local non-uniqueness based on conserved
quantities or continuous symmetry and global non-
uniqueness based on discrete symmetry, which are all
independent of model details, would remain valid. By
contrast, statements of global non-uniqueness for the
exceptional Cases 16, 17, 19 and 20 of [15] would likely
be conditional on model details.

In a real laboratory situation M1 or H will never be
found to be exactly zero. However, if they are nearly
zero then this will significantly reduce the accuracy with
which the location of the contact point can be predicted
and it would be better to change the base measurements.
If H as given in (4) (for a whisker with constant B, C
and ω30) is found to deviate significantly from zero then
this points to a model error: some effect, for instance
friction at the contact point, has not been included in
the mathematical formulation.

In addition to M1, F ·M and H, the quantity F ·
F is conserved for an elastic rod, in fact independent
of material and geometrical properties [21]. Its value,
however, is not fixed at the contact point since F2 and F3

are generally not known there. This conserved quantity is
therefore not active and provides no obstruction for the
present tactile sensing BVP. It is also worth noting that
if M1 is not conserved (for instance for an intrinsically
curved whisker, but also for a whisker with unequal
principal bending stiffnesses) then M1(0) is not fixed and
hence H depends on four unknown quantities (M1(0),
M2(0), M3(0) and F1(0)) and thus provides no constraint
for three base measurements. Straight robotic whiskers
could for instance be constructed with oval cross-section
to avoid any obstruction to determining the location
of the contact point through base measurements. It
is good to realise though that when a whisker with
non-circular cross-section makes contact with an object
then generally a twisting moment will be induced, i.e.,
M1(1) 6= 0, which changes the BVP. Assuming that no
bending moments are induced, we then lose one of the
boundary conditions at σ = 1 in (5) and therefore need
an extra base measurement. Possible prediction of the
position of the contact point would have to be re-
examined for four base measurements, for which there
are 15 combinations (quadruples of forces/moments).

Similarly, if contact is frictional then we no longer
have F1(1) = 0. Since friction will generally also induce
a twisting moment M1(1), we in fact lose two right-end
conditions and therefore need to impose two more left-
end conditions, i.e., we require five base measurements,
for which there are 6 combinations. Because F1(1)
and M1(1) are now unknown, none of the conserved
quantities is active in this case, so there is no obstruction
to determining the location of the contact point through
(five) base measurements. In case of only a small
friction force, however, sensing accuracy would be
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significantly degraded if these measurements included
the combinations of Tables 1, 2 or 3, so it would still be
prudent to avoid these cases.

For other rod problems different conserved quantities
may be active, or different conserved quantities may exist
(which may or may not be active). For example, the
equilibrium equations for a conducting rod in a uniform
magnetic field, relevant for electrodynamic tethers, has
extra conserved quantities, involving the magnetic field,
in addition to the standard rod Hamiltonian [21].
Our approach in this paper can be used to explore
the implications of these extra conserved quantities
for sensing applications using magnetically controlled
whiskers.
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Appendix

The following graphs are three projections onto the coordinate planes and an axonometric projection of two deformed
configurations (‘red’ and ‘blue’) of the same curved rod of length L = 1. The initial conditions for the forces and
moments are:

red:

M1(0) = −0.35, M2(0) = 8.314, M3(0) = 0.908,

F1(0) = −35.0, F2(0) = 0.0, F3(0) = −21.913,

blue:

M1(0) = −0.35, M2(0) = 4.968, M3(0) = −6.728,

F1(0) = −35.0, F2(0) = 0.0, F3(0) = 1.731.

Both solutions satisfy the boundary conditions at the contact point: Mi(s∗) = 0, i = 1, 2, 3, F1(s∗) = 0 at s∗ = 0.225
(red) and s∗ = 0.325 (blue). The coordinates of the contact point are:

red: x = 0.168, y = −0.132, z = −0.016,

blue: x = 0.139, y = −0.149, z = 0.202.

The intrinsic shape is a circular arc of radius 9/π (black) in the xz-plane (i.e., ω30 = π/9). The bending and torsional
stiffnesses are B = 1.0 and C = 0.7. Only the part of the centreline from the base to the contact point is shown.
Arrows indicate the contact forces, which are chosen to be parallel to the xy-plane. Note that three initial components
(M1, F1 and F2) coincide for both solutions.


