
1

On the rapid preconditoning of data for
accelerating convex hull computations

J. Cadenas and G. M. Megson

Given a data set of 2D points in the plane with integer coordinates, the
method proposed, reduces a set of n points down to a set of s points s ≤

n, such that the convex hull on the set of s points is the same as the

convex hull of the original set of n points. The method is O(n). It helps

any convex hull algorithm run faster. Empirical analysis of a practical

case shows a percentage reduction in points of over 98%, that is

reflected as a faster computation with a speedup factor of at least 4.

Introduction: Computing the convex hull on a set of n 2D points is a

first pre-processing step to many geometric algorithms and in practical

applications (e.g. computer visualisation, maps, rover path finding and

home range [1]). Indeed, one can say with confidence, that finding the

boundary of a given set of points is a fundamental problem in providing

fast algorithms in many modern day mobile devices, games consoles,

digital cameras, and client-server (web) applications that seek to reduce

and create knowledge or patterns from raw data collection. Most known

convex hull algorithms are of time complexity O(nlogn) [2]; these

methods are general in the sense that they do not impose any restriction

in the order of points. Linear complexity (O(n)) methods, such as the

one due to Melkman [3], do exist but require a set of points that are

ordered in some way, for example, [3] requires an order where the

points form a simple polygonal chain. Such orderings are not always

easy given the process of data collection.

Regardless of the time complexity of an algorithm, reducing the set of n

points down to a set of s ≤ n points would result in faster computations,

provided that the smaller set preserves the convex hull of the original

(bigger) set. This reduction is often used as the first step in

implementation of convex hull algorithms to improve their performance

[4, 5]. This Letter presents a new approach, with three distinct

advantages. First, we show that the method is linear and general.

Second, no explicit sort of points is required; a common reduction

method in existing literature requires an explicit sort of the points along

a particular direction [4]. Third, by construction the reduced set of data

forms a simple polygonal chain and hence straightforwardly prepares

the data for linear methods such as [3]. We show through experimental

evaluation that the method makes faster convex hull computations for

both linear and non-linear algorithms.

Heuristic of the idea: Assume a 2D square of sides p, with integer

points whose coordinates are in the range 1, …, p. As a small example

consider the set of (x, y) points on the left of Fig. 1, given in any order

as an array P. Assume an array L of p elements with each element L[i], i

= 1, …, p, initialised to (p+1, -1), so L = [(p+1,-1), …, (p+1, -1)].

Consider the following pseudo-code:

1 foreach point in P do

2 xi, yi = point

3 y1, y2 = L[xi]

4 ly = min(yi, y1)

5 hy = max(yi, y2)

6 L[xi] = (ly, hy)

Fig. 1 Left: (x, y) integer points on a 2D grid with p = 5. Right: Points

with minimum and maximum y values for each x coordinate.

After all n points of P have been processed by the above routine, L =

[(1,4), (2, 4), (2,5), (3,3), (2,3)]. L[1] = (1, 4) since, y = 1 is the

minimum point (min); and y = 4 is the maximum (max) point for

column x = 1. This reduced set is shown on the right of Fig. 1; even

intuition tells you the convex hull on the left is the same as the convex

hull on the right. This is so, since local convexities of the boundary

points are the only ones which need to be considered when deriving a

convex hull [2]. Local convexities are maintained by keeping min and

max for each column while removing any collinear points for each

column.

The routine above visits each point of P once, therefore L is built in

O(n) time. Scanning L along x builds a simple polygonal chain, since

joining all points of the reduced set s ≤ n creates edges that do not

intersect. For each valid point in L (one different to (p+1, -1)) joining ly

to hy (min to max), and then from hy (max) to ly (min) of the next valid

point, forms a simple polygonal chain (see 9 points of Fig. 1 on the

right). Therefore, Melkman’s method, for example, can be applied to

the polyline built from a scan of L to build the convex hull. Scanning L

to build the polygonal chain then takes O(p) time and provided that p ≤

n the whole method of building the polygonal chain takes O(n) time. As

up to n = p
2
 points may be in the original set, a density of points s/n >

2/p makes the method O(n). Thus the method potentially reduces the

percentage of original points down to 1 – 2/p.

Table 1: Boolean array M[i] for i = 1, ..., 5 read in decimal as m and

recursively iterated until m = 0 to extract positions in M that had 1’s.

Iter. M m mj-1-mj pos x

0 [1, 0, 1, 0, 1] 21

1 [1, 0, 1, 0, 0] 20 1 0 5

2 [1, 0, 0, 0, 0] 16 4 2 3

3 [0, 0, 0, 0, 0] 0 16 4 1

Exploiting the method for building convex hulls: We have assumed a

2D region where the points lie in a square, and also that we know its

size p. In general, the method can be applied to any 2D box of size p

and q even without knowing the actual p, q values. In this general case,

a method to reduce a set of n points down to s points, before building a

convex hull is given by:

Step 1: Find the maximum and minimum x and y in the point set P

(define p, q).

Step 2: Translate the point set P into a point set P’ using (x’, y’) = (x-

p+1, y-q+1).

Step 3: Build array L[i] from the set of points P’ by applying the routine

above.

Step 1 and 2 are both O(n). Step 3 reduces P to a set P’ of s ≤ n and is

O(n). So the whole procedure of steps 1 through 3 is O(n), provided that

p ≤ n as explained before. The case n < p will be considered later.

Notice that step 3 does not require sorting the points. Also notice that

the values p, q are obtained from step 1 and can be used to do a sweep

of points along the min(p, q) for the greatest reduction. In many

problems, the size of p, q is already known (detecting the boundary of

binary images, collision detection, and cloud segmentation of a

geographical area) and so the size of L is pre-computed without a need

for step 1. Step 1, 2 and 3 can be fused into a single step, assuming that

e is the bit length required to express each x, y point coordinates, and

where e gets updated as points are analysed using schemes similar to

compressing bit vectors [6]. As steps 1-3 are O(n), any 2D convex hull

algorithm, including linear ones, can be used as a final step 4 to build a

convex hull for accelerated computations.

Complexity for the case n < p: In the example above it is assumed all p

elements were populated with points from the original set of n points.

Now, assume there are gaps in array L. Suppose, in the small example

above for p = 5, points in columns x = 2 and x = 4 are removed, so L =

[(1,4), (6, -1), (2,5), (6,-1), (2,3)]; the empty entries are (6, -1) since all

elements were initialised to (p+1, -1). Let an array M[i] i = 1, …, p with

Boolean entries be all initialised to False (‘0’). Then, immediately after

line 2 in the pseudo-code given above, insert the statement M[xi] = 1. At

5 3 4 1 2

1

2

3

4

5

5 3 4 1 2

1

2

3

4

2

the end of the routine, M = [1, 0, 1, 0, 1] indicating there were gaps in

array L at x positions 2 and 4. The idea is now to extract from M the 1’s,

skipping the 0’s in as many steps as 1’s in M. Such extraction is

accomplished by considering M as a binary number m and applying the

recurrence mj = mj-1 AND (mj-1-1) [7]. The procedure is illustrated in

Table 1. A ‘1’ position in M is computed as pos = log2(mj-1-mj) and

index in L as x = p – pos. In three iterations, x indices 5, 3, 1 are

recovered, these correspond to positions in this small example, where L

has valid points, skipping empty positions 2 and 4. Note that the

procedure takes O(k) time, where k is the number of 1’s in M, k ≤ p. As

n < p, k = n in this case, the method remains O(n). However, this has the

cost O(p) in memory space complexity. If p size is too large the

conversion of the binary string M to the decimal m is impractical. In this

case, M can be blocked into strings of size r and the whole procedure

remains O(n), as explained in [8]; an explicit call to log2() function is

not needed either. Block sizes of r = 32 or 64 are practical since m can

be directly expressed as integers or long integers in current processors.

Fig. 2 A 2D projection from a 3D scan of a Bison [9] of n = 2108416

points in a 2D grid of 5510×1366, reduced to s = 11020 points by the

method.

Experimental results: Data available for the mass estimation of

mammals from convex hulls was analysed (a Bison is shown in Fig. 2)

[9]. Table 2 shows the reduction of points from n down to s as a

percentage and compared to previous work [4]. The speedup in

execution time T(s4)/T(sh), due to this further reduction, using the

Quick Hull algorithm (of O(nlogn) complexity) and Melkman (O(n))

algorithms was evaluated as 5.2 and 4.3 respectively. By comparison, a

percentage range between 3.4% – 12.2% of the original points remained

after a reduction step for their dataset for the recent work in [5].

Table 2: Mammal’s data, n original points are reduced to s points, using

the common method in [4] against the method here.

Mammals [9] n s (%) in [4] (s4) s (%) here (sh)

Pig 535819 11.6 1.2

Polar 783025 15.4 0.9

Reindeer 845680 13.2 0.9

Bull 1411641 16.0 0.6

Bison 2108416 13.3 0.5

Camel 2120768 8.2 0.5

Elephant 7760648 16.6 0.2

Conclusion: The method presented here reduces a set of n 2D points (of

integer coordinates) to a set of s ≤ n, before applying any suitable

algorithm that produces the convex hull. The method is of time O(n) for

n ≥ p, and a mechanism for the method to remain O(n) for n < p is also

presented, although at the cost of O(p) in storage memory. Thus, the

method can be used as a first step to further improve the performance of

convex algorithms of any complexity; here it was evaluated to give an

extra speedup factor of at least four. The reduction method produces a

simple polygonal chain expressed as an array L of p pair of points. A

percentage reduction of up to 1 – 2/p points can be achieved depending

on the distribution of points. For a dataset of mammals, the method here

resulted in bigger reductions (of over 98%) than the method presented

in [4] (of around 85%). No explicit sorting, or cross-product between

points, also makes the method hardware amenable.

J. Cadenas (School of Systems Engineering, University of Reading,

Reading, RG6 6AX, United Kingdom)

E-mail: o.cadenas@reading.ac.uk

G. M. Megson (School of Electronics and Computer Science, University

of Westminster, London, W1W 6XH)

References

1 Wan, Z., SUN M., and Jiang J.: ‘Automatically fast determining of

feature number for ranking-based feature selection’, Electron. Lett.,

2012, 48, (23), pp. 23-24

2 Preparata, F., and Shamos M.: ‘Computational Geometry: An

Introduction’ (Chapter 3, Springer 1985)

3 Melkman A.: ‘On-line construction of the convex hull of a simple

polyline’, Inform. Process. Lett., 1987, 25, (1), pp. 11-12

4 Akl S. G., and Toussaint G. T.: ‘A fast convex hull algorithm’,

Inform. Process. Lett., 1978, 7, (6), pp. 219-222

5 Tang, M., Zhao, J., Tong R., and Manocha D: ‘Full GPU accelerated

convex hull computation’, Computer and Graphics, 2012, 36, (5), pp.

498-506

6 J. Teuhola: ‘A compression method for clustered bit-vectors’, Inform.

Process. Lett., 1978, 7, (6), pp. 308-311

7 Kernigham B. W., and Ritchie D.: ‘The C Programming Language’

2nd Ed, (Prentice Hall, 1978)

8 Megson G. M., and Cadenas J.: ‘A rank-based convex hull method

for dense data sets’ (arXiv:1301.4809 [cs.CG])

9 Sellers, W. I., et al.: ‘Minimum convex hull mass estimation of

complete mounted skeletons’, Bio. Lett., June 2012, pp. 1-4

