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Abstract—Aiming at an intelligent perception and obstacle 

avoidance of UAV in an environment, a UAV visual flight 

control method based on deep reinforcement learning is 

proposed in this paper. The method employs Gate Recurrent 

Unit (GRU) to the UAV flight control decision network, and uses 

Deep Deterministic Policy Gradient (DDPG), a deep 

reinforcement learning algorithm to train the network. The 

special gates structure of GRU is utilized to memorize historical 

information, and acquire the variation law of the environment 

of UAV from the time series data including image information 

of obstacles, UAV position and speed information to realize a 

dynamic perception of obstacles. Moreover, the basic 

framework and training method of the network are introduced, 

and the generalization ability of the network is tested. The 

experimental results show that the proposed method has better 

generalization ability and better adaptability to the environment.  
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I. INTRODUCTION  

As a machine leaning paradigm, deep reinforcement 
learning has found many applications due to its unique 
mechanism to enable an agent to automatically determine its 
most meaningful behavior within a certain context, in order to 
maximum its performance. In the area of Unmanned Aerial 
Vehicle (UAV) flight control, the essential problem to tackle 
is to enable UAV to deal with unfamiliar environments, and 
to make real-time, dynamic and autonomous decisions on 
their ideal behavior according to their ever-changing 
environments. The problem facing UAV flight fits the 
reinforcement learning framework well, and therefore 
deserves further research. This work presents such a research 
effort. 

At present, methods for UAV flight control based on deep 

reinforcement learning usually rely on a UAV's flight 

parameters of a single moment [1-3], and as a consequence, 

lack of temporal and 3D space information analysis in the 

process of UAV flight. Actually, the flight process of UAV 

has strong temporal dependence, so mining sequential feature 

of environment changes in the flight process of UAV is 

important to control the flight of UAV.  

This paper proposes a UAV intelligent flight control 

method which combines image information of obstacles and 

UAV state information as input, and continuously generates 

UAV linear velocity as outputs to control the movement of 

UAV to realize dynamic obstacle avoidance and flight. The 

image information refers to the gray value of the grayscale 

image of the obstacle in front of UAV. In the image 

processing, Gate Recurrent Unit (GRU) is added to control 

the input and memory information to make a prediction for 

the UAV linear velocity in the current time step. Therefore, 

based on GRU, an UAV flight control decision network is 

designed in this paper. The network is trained by Deep 

Deterministic Policy Gradient algorithm (DDPG). By using 

four consecutive images as input, mining the sequential 

variation features. This network is superior to tradition CNN 

in terms of sequential features extraction. The effectiveness 

of the proposed model for UAV flight control and obstacle 

avoidance is verified by experiments. 
The remainder of this paper is organised as follows. In 

Section II, this paper defines a UAV visual flight control 
method based on DDPG, and details the structure of UAV 
flight control decision network and reward function. In 
Section Ⅲ, this paper trains the UAV flight control decision 
network and completes the test of the generalization ability of 

the network. Finally, conclusions are presented in Section Ⅳ. 

II. UAV VISUAL FLIGHT CONTROL METHOD BASED ON DEEP 

REINFORCEMENT LEARNING 

A. Task Specification 

This paper is concerned with flight control for a UAV to 
fly to a designated destination through obstacle avoidance 
flight, and a UAV visual flight control method is proposed 
based on Deep Reinforcement Learning. The flight decision 
making is based on the image information of obstacles and the 
UAV state information. The distance change between the 
UAV and the obstacle is perceived through monitoring the 
change of continuous frame images of obstacle with time. The 
state information (of the UAV's position and speed) can reflect 
the relative position relationship between the UAV and the 
target to determine the direction of the UAV's movement. 
Accordingly, the UAV can make an obstacle avoidance action 
to realize the vision-based autonomous obstacle avoidance of 
UAV.  

In this paper, the agent outputs the linear velocity of the 
UAV as a command. After receiving the command, the UAV 
executes the action, obtains the corresponding reward in the 
environment, and updates its state. The interaction process 
between the agent and environment is shown in Figure 1. The 
task to be achieved by the UAV in this paper is as follows: 

Set the target, the UAV judges the obstacle information 
and the relative position between the UAV and the target 



based on the image information, its own position and speed 
information, makes decision to bypass the obstacle and reach 
the designated target.  

B. Related Theory 

1) Deep Deterministic Policy Gradient Algorithm 
Deep Deterministic Policy Gradient algorithm 

(DDPG)[4]is an actor-critic, model-free algorithm based on 
deterministic policy gradient that can operate over continuous 
action spaces. DDPG adopts network simulation policy 
function and Q function, and introduces replay memory to 
update network parameters. The training process of DDPG is 
shown in Figure 2. 

DDPG algorithm creates a copy of the actor and critic 

networks, ( )'' , QQ s a  and ( )'' ,s a    , respectively, and they 

are further used for calculating the target values. The weights 

of the target networks are then updated by having them 

slowly track the learned network: ' (1 ) '    + −  with 

1 . That means that the target values are constrained to 

change slowly, in order to greatly improve the stability of 

learning.  
The actor is updated by applying the chain rule to the 

expected return from the start distribution J with respect to the 
actor parameters to have higher reward: 
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The loss of policy network can be approximated as:  
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Optimize the Q network by minimizing the loss: 

 
21

( ) [( ( , )) ]Q Q

i i i

i

L y Q s a = −

  (3) 

where ( )'1 1' , '( ) Q
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where ty is also dependent on Q , this is typically ignored. 

2) Gate Recurrent Unit 
In terms of the network structure, the Recurrent Neural 

Network (RNN) is the same as the traditional neural network 
(CNN), except the hidden layer neurons in the RNN are 
interconnected. As such RNN can memorize the previous 
information and use this information to influence the output of 
the following successive nodes in the network. 

Gate Recurrent Unit (GRU)[5] is a type of RNN, and it has 
also been proposed to solve the problems of long-term 
dependencies in RNN, the same as Long-Short Term Memory 
(LSTM)[6]. The principle of GRU is that the gating mechanism 
is used to control input, memory and other information to 
make predictions at the current time step, so that the 
information can selectively affect the state of the current time 
in the RNN. The structure of GRU is shown in Figure 3. 

The GRU can be expressed as follows: 
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where 
tx is current input, 

1th −
is last output, 

th is current output. 

GRU has two gates, namely reset gate and update gate. 
The reset gate determines the fusion of input information and 
memory information. The update gate controls the amount of 
data that memory information is saved to the current time step. 

C. Data Processing 

We obtain data from the simulation system that simulates 

the real flight process of the UAV. During the process of 

flight maneuvering, all the data about the image, speed and 

position are generated with successive time tags. These data 

describe the state and trend of the UAV at a certain time and 

were collected to form the historical dataset. In this research, 

the data to be obtained includes image information from the 

front camera of the UAV and the position and velocity of the 

UAV. Each image needs to be processed into a gray-scaled 

image, and the grayscale values of four consecutive frames 

are stacked into a tensor of size (1, 4, 72, 128) as input. The 

speed and position information are tensors of size (1, 3). The 

value ranges of data collected for different attributes varies 

significantly, as such the data has been normalized by the 

max-min normalization method with an interval [0,1]. 

D. Network Structure 

The network structure for the UAV visual flight control is 

shown in Figure 4, where, the image information of obstacles, 

UAV position and speed information are inputted into the 

 
Figure 3. Structure of GRU. 

 
Figure 2. The training process of DDPG. 

 
Figure 1. Agent interaction process. 
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Batch Normalization layer for processing, and this layer is 

used to make various information have the same distribution. 

Therefore, adding Batch Normalization layer to the network 

can speed up the network training and convergence speed.  

The image information of obstacle is sequentially 

inputted to the convolutional layer, pooling layer and GRU. 

The convolutional layer conducts in-depth analysis of each 

small block in the neural network to obtain more abstract 

features. The pooling layer is used to reduce the 

dimensionality of features, quickly reduce the size of the 

matrix of input, and reduce the number of network parameters, 

and therefore speed up the calculation process and prevent 

overfitting. Moreover, the speed and position information of 

UAV is inputted into full connected layers for processing. 

Further, the data is integrated together and inputted into a full 

connected layer to output a tensor of size (1, 3). Finally, the 

flight control command, the linear velocity of UAV is 

obtained. The activation function in the network is set as 

follows: 

The Elu function is selected as the activation function for 

calculating the state value of GRU and the output value of 

convolutional layer in the hidden layer. And the output of the 

remaining layers is activated by the tanh function.  

E. Reward Function  

During the training process, each action taken by the 

UAV needs to be scored by the reward function. The flight 

process of UAV is divided into three stages 

(1) If UAV flies too far from the existing environment or a 

collision occurs, the UAV would be considered having 

crashed. The reward value is then is given as: 
 2r = −  (6) 

(2) If the UAV reaches near target, the reward value is: 
 2r =  (7) 

(3) The reward function during UAV flight is defined as 

follows: 

⚫ A positive reward is given if the UAV is closer to a 

target than it was at the previous time point, and a 

negative reward is given if it is not. The distance-based 

reward is defined as: 

( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 2 2

1 0 0 0aim aim aim aim aim aimr x x y y z z x x y y z z= − + − + − − − + − + − (8) 

where ( )0 0 0, ,x y z  is the last position of the UAV, ( ), ,x y z is 

the current position of the UAV, ( ), ,aim aim aimx y z is the position 

of the target. 

⚫ The UAV should always be flying towards a target. The 

UAV's flight direction reward is defined as: 

 ( ) ( ), , , ,aim aim aimx y z x y z= −s  (9) 

 ( ), ,x y zv v v=v  (10) 

 cos =
s v

s v
 (11) 

 2 2*cosr =  (12) 

The reward function during UAV flight: 

 
1 2r r r = +  (13) 

where  and  are weight coefficients, and they are adjusted 

according to the influence of various factors on the control 
effect in the experiment. And we set 0.6 = and 0.4 = . 

III. EXPERIMENT AND ANALYSIS 

The AirSim simulation platform was used for the 
experiments in this study. AirSim is a high-fidelity simulation 
platform with realistic visions, and it contains many modules 
to use to simulate the real environment, such as weather 
conditions, gravity, etc., A three-dimensional space 
environment has been considered. 

A. Experiment Settings. 

The details of the setting to the experiment parameters are 

as follows: 

(1) Algorithm uses Adam for learning the UAV flight 

control decision network parameters with a learning 

rate of 410−  and 310−  for the actor and critic 

respectively.  

(2) For Q, it includes 
2L weight decay of 210−  and uses a 

discount factor of 0.99 = .  

(3) For the soft target updates, this paper uses 0.001 = . 

The final output layer of the actor was a tanh layer, 

to bound the actions. The final layer weights and 

biases of both the actor and critic are initialized from 

a uniform distribution 3 33 10 3 10− − −   ，  and 

4 43 10 3 10− − −   ， for the low dimensional and pixel 

cases respectively. This is to ensure the initial outputs 

for the policy and value estimates are near zero. The 

other layers are initialized from uniform distributions

1 1
,

f f

 
− 
  

, where f is the fan-in of the layer. 

(4) We complete the construction and trains the UAV 

flight control decision network based on Torch 

module. 

B. Results of network training and test 

The changes in the loss of the policy network (UAV flight 

control decision network) training process are shown in 

Figure 5. It can be seen that the obstacle avoidance flight 

result has achieved the expected value after the network 

trained for 10,000 iterations. 

We choose a set of parameters of flight control decision 

network completing training to test. During the test, the UAV 

can successfully identify obstacles and avoid them, and 
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Figure 4. The network structure of UAV visual flight 

control method 



finally reach the designated destination. The flight trajectory 

of the UAV is shown in Figure 6. 

C. Generalization Ability Test 

The generalization ability of the deep reinforcement 

learning model used has been tested upon: (1) Verify the 

validity of image information in the decision-making process. 

Change the initial flight position and speed of the UAV in the 

environment, and place a column obstacle ahead the UAV at 

the same position for testing; And (2) Test the adaptability of 

the model to different types of image information including 

the distribution of gray value in image information. Change 

the shape of the obstacle. 

As shown in Figure 7, when the obstacle is far away, the 

UAV flies forward and approaches the specified target. When 

reaching the obstacle, the drone flies forward to the right to 

avoid the obstacle. After that, the UAV flies steadily and 

reaches the target. After changing the starting point to modify 

the position and speed information in the state information, 

the UAV can still bypass obstacles and reach the target. This 

indicates the effectiveness of the image information of 

obstacles in the decision-making process.  

As shown in Figure 8, when the obstacle is far away, the 

UAV flies forward and approaches the specified target. When 

reaching the obstacle, the UAV keeps changing its direction, 

bypassing the obstacle along the surface of the spherical 

obstacle. After that, the UAV flies steadily and reaches the 

target. It can be concluded that even though the distribution 

of gray values in the image data is different, the network can 

still output the correct action to avoid obstacle. 

The model generalization ability test results show that the 

UAV visual flight control method based on Deep 

Reinforcement Learning has a strong generalization ability, 

which can identify unknown obstacles and make decisions 

according to the distance changes between the UAV and the 

obstacles, and successfully avoid obstacles. 

IV. CONCLUSION 

Aiming at the intelligent perception and obstacle 

avoidance of UAV for the environment, this paper constructs 

obstacle-avoidance flight decision network by using the 

powerful ability of processing in time series data processing 

of GRU. By training a large amount of image data, the 

network can directly extract the internal relationship between 

image information and maneuvering decision variables. The 

experimental results show that the network is accurate in 

obstacle-avoidance flight decision. 

 Finally, the generalization ability test of the model is 

carried out. The results show that the autonomous obstacle-

avoidance method of UAV based on image information has 

good scalability and improved adaptability to the 

environment. It provides a solution for autonomous flight of 

UAV in unfamiliar environment. 
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