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Abstract

In today’s manufacturing settings, a sudden increase in the customer demand may enforce manufacturers to alter their manufac-
turing systems either by adding new resources or changing the layout within a restricted time frame. Without an appropriate strategy
to handle this transition to higher volume, manufacturers risk losing their market competitiveness. The subjective experience-based
ad-hoc procedures existing in the industrial domain are insufficient to support the transition to a higher volume, thereby necessitat-
ing a new approach where the scale-up can be realised in a timely, systematic manner. This research study aims to fulfill this gap by
proposing a novel Data-Driven Scale-up Model, known as DDSM, that builds upon kinematic and Discrete-Event Simulation (DES)
models. These models are further enhanced by historical production data and knowledge representation techniques. The DDSM
approach identifies the near-optimal production system configurations that meet the new customer demand using an iterative design
process across two distinct levels, namely the workstation and system levels. At the workstation level, a set of potential workstation
configurations are identified by utilising the knowledge mapping between product, process, resource and resource attribute domains.
Workstation design data of selected configurations are streamlined into a common data model that is accessed at the system level
where DES software and a multi-objective Genetic Algorithm (GA) are used to support decision-making activities by identifying
potential system configurations that provide optimum scale-up Key Performance Indicators (KPIs). For the optimisation study, two
conflicting objectives: scale-up cost and production throughput are considered. The approach is employed in a battery module
assembly pilot line that requires structural modifications to meet the surge in the demand of electric vehicle powertrains. The pilot
line is located at the Warwick Manufacturing Group, University of Warwick, where the production data is captured to initiate and
validate the workstation models. Conclusively, it is ascertained by experts that the approach is found useful to support the selection
of suitable system configuration and design with significant savings in time, cost and effort.

Keywords: Manufacturing systems, production planning, scale-up, demand amplification, demand uncertainty, data-driven
method, discrete-event simulation, DES, multi-objective optimisation, evolutionary optimisation algorithm, genetic algorithm,
GA, kinematic modelling.

1. Introduction1

1.1. Research background2

The current manufacturing era faces a lot of challenges such3

as increased customisation, complexity and customer demand,4

shorter product life-cycles and adaptation to new technologies5

[1]. In particular, the shortened product life-cycles and unpre-6

dictable demand variations impose frequent hardware and soft-7

ware modifications to the industrial production lines. However,8

to stay competitive, industries must be able to rapidly progress9

from concept/small-scale to operational/full-scale production.10

To realise this, industries rely on prototype testing, either virtu-11

ally or physically, to detect and anticipate potential issues that12

could impact the line in the early stages. This can lead to sig-13

nificant cost and time savings while allowing the industries to14

stay competitive by shortening the concept to volume duration15
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[2, 3]. The core challenge, however, is that the approach to16

perform this critical transition is lacking in literature [4].17

The term ’production scale-up’ is defined by the authors as:18

“The transition from low-volume or pilot-scale to high-volume19

or commercial-scale production that is realised with changes in20

the manufacturing system to accommodate the increase in pro-21

duction volume”. In other words, the scale-up phase involves22

modifying or transforming the hardware and/or the software of23

the existing line or redesigning the system to meet the new de-24

mand. The performance of the modified line has to be evalu-25

ated either by commissioning the line or building virtual mod-26

els. Therefore, a diverse set of digital tools that are effective in27

modelling and simulation can be employed to understand the28

behaviour of manufacturing systems, especially the complex29

ones, and subsequently predict their performance [2, 5, 6, 7].30

Consequently, the adverse effects associated with and imposed31

by the modifications brought about during scale-up phase can32

be identified and curtailed before the commencement of the33

changeover [8, 9].34

A detailed survey of white papers and reports reveals that in-35

Preprint submitted to Journal of Manufacturing Systems September 21, 2021



dustrial practices for scale-up can be classified into automation,36

improving existing processes, and/or adding more production37

lines, workstations and factories [10, 11, 12, 13, 14, 15]. Dis-38

cussions with industrial project partners reveal that the modi-39

fications during the changeover phase is carried out as an im-40

promptu procedure that is not reinforced by a robust systematic41

approach or framework. It is also understood that the industrial42

scale-up practices heavily rely on personnel experience to mod-43

ify and improve production lines. However, the changes made44

to a certain region of the system could inadvertently trigger a45

disturbance elsewhere; it is difficult to predict such issues based46

on experience alone. Moreover, such trial and error based scale-47

up could potentially lead to costly time-consuming sub-optimal48

solutions that might not provide the desired results.49

In the academic body of knowledge, a multitude of discus-50

sions on scale-up process and its details have been done in51

the domains of pharmaceutics and process industries [16, 17,52

18, 19, 20]. However, in the manufacturing domain, the focus53

remains on scale-up management, quantification of scalability54

and capacity scalability [4, 21, 22, 23, 24, 25]. A significant55

proportion of the reviewed papers highlight the disturbances56

and events that occur during the transition from concept to oper-57

ational phase and the strategies to manage and prevent these dis-58

turbances. The existing approaches in industries and academia59

i) generally refer to trial and error based methods that adversely60

impact the time and cost of performing scale-up projects and61

ii) do not provide a systematic method or workflow to ensure62

smooth transition during the scale-up process. This further em-63

phasises the need for a framework to support manufacturing64

system scale-up.65

1.2. Research approach66

This research proposes a data-driven manufacturing system67

scale-up decision support that builds upon the methods of kine-68

matic modelling and DES, further enhanced by historical pro-69

duction data and knowledge representation techniques. The70

methodology is divided into two main stages: i) workstation71

and equipment modelling with kinematic modelling software72

(Stage one) and ii) pilot and production line modelling with73

DES software (Stage two). In Stage one, a kinematic model74

of the existing manufacturing system is designed and analysed75

to understand the product and process specifications. To bet-76

ter support the selection of suitable workstation configurations,77

the existing kinematic model is coupled with an ontology edi-78

tor that can query and select equipment that perform the desired79

assembly process defined by a set of parameters. The selected80

candidate equipment reflect the potential workstation configu-81

rations, the performance of which can further be weighed; the82

filtered results can be tested and validated with a kinematic83

modelling software. The corresponding workstation KPIs of84

each selected solution in Stage one is utilised in Stage two85

for performing multi-objective simulation optimisation using86

MATLAB and FlexSim DES software. In simulation optimi-87

sation, the values of the decision variables are provided to the88

DES model and at the end of each simulation run, the system89

KPIs are passed back to MATLAB for calculating the objective90

function. Since the DES model is fundamentally constructed91

using the workstation data obtained from Stage one, the ap-92

proach provides a novel bottom-up design selection process that93

ultimately improves the accuracy of the system/assembly line94

model in DES.95

In summary, this research study proposes an overarching96

framework to support the scale-up of assembly systems through97

the data integration of two distinct modelling methods, kine-98

matic modelling and DES for workstation level and production99

line level modelling, respectively. The ultimate goal is to pre-100

dict and virtually validate the performance and behaviour of the101

potential assembly system configurations that are represented102

by the varying quantity, type and arrangement of workstations,103

equipment, and material handling units to meet the predicted104

increase in demand.105

1.3. Research scope106

This study focuses on industrial assembly systems which are107

decomposed into five levels of granularity, referred to as ’lay-108

ers’, such as: i) component, ii) station, iii) pilot line, iv) pro-109

duction line and v) factory. The ‘component’ layer represents110

the highest level of granularity and is the basic unit of a system111

which can be further sub-divided into elements [26, 27]. For ex-112

ample, robot is a component that is composed of elements such113

as motors, drives, etc. The ‘station’ layer comprises of process-114

ing units that can assemble the workpiece. The ‘pilot line’ layer115

represents a prototype line that is used for process and prod-116

uct validation at low volume. The ‘production line’ layer en-117

compasses workstations and material handling units and is as-118

sociated with assembly/manufacture of parts at a higher volume119

than that of the pilot line. The ‘production line’ layer, however,120

does not cover the logistics and warehouse areas. At the high-121

est level of abstraction is the ‘factory’ layer that encompasses122

vehicle management systems, packaging units, warehouses and123

production lines. The modelling of factories and supply chains124

is beyond the scope of this research; the study is limited to the125

modelling of component, station, pilot and production line lay-126

ers. The scale-up phase comprises of different dimensions such127

as hardware and software modifications, work culture changes,128

data management, automation of data transfer, etc. However,129

the research revolves around the hardware and software mod-130

ifications associated with assembly system design during the131

scale-up phase; it is also assumed that there is an existing pilot132

or production line during the start of the scale-up project that133

can provide essential data regarding the considered processes.134

1.4. Research contribution135

The main contributions of this paper are highlighted as fol-136

lows:137

• A novel approach to replace the existing experience based138

scale-up process in industries is proposed. This helps to139

shorten the development and changeover time, enabling140

industries to maintain a strategic advantage over their com-141

petitors and ensuring the reduction of the cost, time and142

effort spent on the scale-up projects.143
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• A component-based bottom-up methodology for scale-up144

design support is formulated over four blocks of software:145

VueOne, Protégé, Flexsim and MATLAB, that are respec-146

tively used for process simulation, knowledge representa-147

tion, production system simulation and optimisation. Con-148

sequently, the accuracy of the production system simula-149

tion in DES can be increased with data from knowledge-150

based kinematic modelling.151

1.5. Structure of the paper152

The remainder of the paper is structured as follows. Section153

2 reviews the related literature on scale-up. Section 3 presents154

the overall architecture of the proposed Data-Driven Scale-up155

Model (DDSM) model with a detailed description of work-156

station configuration selection,ontology model generation and157

production line configuration selection. Section 4 details the158

multi-objective optimisation considered. Section 5 presents the159

case study and section 6 discusses the results and the validity160

of the approach. Section 7 concludes the paper and outlines the161

future work.162

2. Literature review163

2.1. Scale-up definition and characteristics164

Scalability is regarded as a subset of reconfigurability and165

is related to changeable manufacturing and flexibility [22] and166

identified as one of the characteristics of Reconfigurable Man-167

ufacturing Systems (RMS) [28]. Closely associated with scala-168

bility is the term ‘scale-up’, originating from computer-science169

background [29]. Another term akin to scale-up is ‘capacity170

planning’ which, like scale-up, is associated with modifying171

the configurations of a system, both physical and logical, to ac-172

commodate the changes in demand [21, 4]. However, as seen173

from Figure 1, the capacity planning phase considers the daily174

demand changes and endeavours to meet the demand, primarily175

by modifying the operational policies and is characterised and176

influenced by the frequent but slight demand changes. No ma-177

jor hardware or software changes are generally executed and it178

does not comprise of production line stoppages since the scale179

of demand change does not warrant such practices. On the180

other hand, the scale-up phase is a critical project that is under-181

taken to make major modifications to the facility, both hardware182

and software. A minor modification to the control strategy or183

the manufacturing policy is insufficient to achieve the required184

demand following scale-up phase. The target demand for the185

scale-up project is usually a significantly higher number than186

the existing demand.187

2.2. Scale-up and ramp-up188

Ramp-up phase is defined as [2]: “the time between the first189

part produced following system reconfiguration until reaching190

the required throughput level”. In the manufacturing system191

life-cycle, ramp-up phase commences on conclusion of the con-192

cept development stage where process conception and develop-193

ment is done [30] and is primarily associated with New Prod-194

uct Introduction (NPI) and product changes. Depending on the195

Figure 1: Capacity planning vs. scale-up

industry and the phase of the system life-cycle, scale-up phase196

may or may not be pursued by a ramp-up phase. While the term197

ramp-up considers product volume, variety, and quality and198

commences on completion of the planning activities for major199

system modifications and ends on achieving the desired targets,200

the term scale-up primarily considers product volume increase.201

It is to be noted that ramp-up phase might be prolonged with202

additional adjustments to meet the targets if the planning phase203

involves poor decision making. Since both scale-up phase and204

ramp-up phase intend to achieve the desired volume, it is en-205

visioned that the available research and knowledge on ramp-up206

could be applicable for scale-up and hence the review on ramp-207

up as part of the literature survey.208

2.3. Existing knowledge on scale-up and decision-making209

Several work in the pharmaceutical domain pursued by Levin210

[16], Faure [18], Tsinontides [17] and Wirges [31] discuss pro-211

cess industry scale-up. A decision support framework is pro-212

posed by Stauder [32] for technology selection in high volume213

production. Klocke et al. [6] proposed a framework wherein214

a hybrid simulation model using DES and system dynamics is215

used to support the ramp-up phase. Surbier et al. [33] sum-216

marised the characteristics of ramp-up phase and the problems217

faced during ramp-up. A simulation-based approach to plan for218

personnel during ramp-up is discussed as part of another re-219

search wherein a simulation-based algorithm using Plant Sim-220

ulation and DES-based decision support are employed during221

the ramp-up phase [34]. In their paper, Almgren [35] identified222

the factors that affect the efficiency of ramp-up and in another223

research work, Ball et al. [36] identified a production ramp-up224

modelling framework. According to Colledani [2], an under-225

standing of the disturbances that affect the system can lead to226

reduction of throughput losses during ramp-up by creating a227

system design that is robust. In another piece of work, three228

performance metrics which are the functionality, quality and229

optimisation are discussed to measure the progress of ramp-230

up [37] and a methodological approach for early identification231

and minimisation of scale-up risks is proposed by Elstner and232

Krause [38].233

A plethora of papers discuss scalability of manufacturing234

systems with most of the papers focusing on the reconfigurable235

manufacturing systems. From a survey of related papers, the236
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Table 1: Summary of existing work related to scale-up.

Principle Production line Station Scalability Capacity Solution
S.No Author(s) Year management scale-up scale-up quantification scalability approach

1 Almgren [25] 2000 � NA
2 Fricke & Schulz [23] 2005 � NA
3 Deif & H.A. Elmaraghy [4] 2007 � System dynamics
4 Deif & H.A. Elmaraghy [21] 2007 � Genetic Algorithm optimisation
5 A.M. Ross et.al [24] 2008 � NA
6 Guschinskaya et. al [39] 2008 � Heuristic-based approach
7 Wang & Koren [40] 2012 � Genetic Algorithm optimisation
8 Putnik et.al [22] 2013 � NA
9 Bensmaine et. al [41] 2013 � Optimisation using NSGA II
10 Ghani [42] 2013 � � DES & Kinematic modelling
11 Michalos et. al [43] 2015 � � DES-based hybrid approach
12 Renna [44] 2017 � Gale-Shapely method
13 Manzini et.al [45] 2018 � � Simulation Optimisation (Linear Programming)
14 DDSM (presented approach) 2020 � � Multi-domain Simulation Optimisation (GA)

two important principles of implementing scale-up can be iden-237

tified as i) linking or adding identical elements/stations to in-238

crease the productivity ii) increasing the performance of an el-239

ement/station by changing its functionality [22]. In this regard,240

a method of quantifying scalability within the wider context of241

changeability is proposed by Ross [24]. A notable work that242

discusses cost modelling for scalability is proposed by Deif and243

Elmaraghy [21]. It provides significant pointers for scale-up244

but the actual method of performing the design modifications245

for scale-up is not discussed. In another related paper [4], Deif246

and ElMaraghy have assessed alternate strategies for different247

demand scenarios for RMS with the help of a System Dynam-248

ics model. Both the above-mentioned papers focus on capacity249

scalability and not on the scale-up planning phase which is dis-250

cussed in this research work.251

With regards to scalability planning and management at the252

production line level, Almgren [25][35] emphasised the impor-253

tance of identifying disturbances, modelling failure and break-254

down of workstations during the pilot phase. Wang and Ko-255

ren have presented a GA-based optimisation algorithm that can256

help decision making about adding or removing machines from257

production lines in the event of a new market demand [40].258

However, certain elements such as the material flow, labour, op-259

erational cost, space occupancy and the use of simulation mod-260

els to better represent the complex production systems are not261

considered in detail. Additionally, the use of multi-objective262

optimisation over single-objective optimisation could provide263

the decision maker with more choices and flexibility. Hafeza-264

lkotob et al. [46] have tackled production planning and decision265

making across multiple plants using a game theory approach.266

On a similar note, Renna [44] has proposed an approach using267

the Gale-Shapley Model through which they support decision-268

making in reconfigurable workstations.269

In the domain of workstation level scale-up, Bensmaine et270

al. [41] tackled the machine selection problem for RMS with271

a multi-objective optimisation method using Non-dominated272

Sorting Genetic Algorithm (NSGA - II). However, the ap-273

proach primarily focusses on RMS, Reconfigurable Machine274

Tools (RMT) and machining operations, with a subjective can-275

didate selection procedure. Manzini et al. [45] proposed a276

top-down approach designed around the Core Manufacturing277

Simulation Data (CMSD) standard to support production sys-278

tem design and reconfiguration. However, the article does not279

include a detailed discussion of production equipment and Ma-280

terial Handling Units (MHU) selection which are both vital for281

the scale-up phase. Kampker et al. highlight the benefits of282

DES during the planning stages to enable fast decision making283

and reduce time-to-volume [47]. Although a methodology to284

use DES to support the early developmental phase is provided285

and the modelling of scalable production system is described,286

the actual strategy of implementing scale-up is not clearly dis-287

cussed.288

2.4. Summary of literature review289

A significant proportion of the reviewed papers focus on the290

disturbances and events that occur during production scale-up291

and the approaches to manage and prevent these disturbances.292

As perceivable from Table 1, a small number of papers discuss293

the selection of suitable technologies or solutions and the im-294

pact of technology changes on product quality. The solution295

approaches for the reviewed papers are also presented in the ta-296

ble and it can be seen that optimisation using GA is a popular297

solution approach. However, the difficulty associated with the298

mathematical modelling of complex manufacturing systems has299

resulted in the adoption of simulation-based optimisation. An-300

other interesting stream of research is the application of game301

theory for supporting decision making in manufacturing sys-302

tems; this is an avenue that will be explored in future works.303

From the above mentioned review, the benefits of using sim-304

ulation to support the system design is well-established and305

proven to reduce time to market. However, enough emphasis306

is not given to the selection of suitable system designs for a307

successful scale-up project. Additionally, a robust systematic308

approach for smooth transition during scale-up phase is not suf-309

ficiently explored. This is the research gap that this article aims310

to fulfill.311
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Figure 2: Architecture of DDSM

3. A data-driven scale-up model (DDSM)312

3.1. Overview of the methodology313

The methodology proposed in this article is termed as the314

Data-Driven Scale-up Model (DDSM) and is constructed upon315

two main pillars: i) Workstation Configuration Selector (WCS),316

also known as Stage one and ii) System Configuration Selec-317

tor (SCS), also known as Stage two. The core idea behind the318

approach is to use digital manufacturing to identify system de-319

signs that could help realise scale-up. The concept is to leverage320

the data from workstation models in kinematic modelling soft-321

ware to improve the accuracy of system models in DES soft-322

ware to further perform meaningful analysis to support deci-323

sion making during scale-up phase. However, the behaviour324

modelling of complex systems demands a broad spectrum of325

software, hence the importance of data integration. Although326

commercially available software platforms for digital manufac-327

turing promise interoperability among a multitude of software,328

their capability to support heterogeneous software is not quan-329

tified. Regardless, this research study does not discuss issues330

related to software interoperability.331

3.2. Architecture of DDSM332

The architecture of the DDSM (Figure 2) is divided into two333

stages: i) generation of the workstation candidates and ii) gen-334

eration of system candidates. Stage one is framed upon the335

assumption that the workstations that comprise of one or more336

equipment to perform the required assembly process can be cat-337

egorised depending on the process that they perform. Thereby,338

there can be different types of workstations that perform sim-339

ilar, if not the same, process. Equipment for each worksta-340

tion are selected within the knowledge representation module341

and the workstation KPIs are stored in the database. In Stage342

two, the workstation KPI data available in the database are ac-343

cessed by the DES module for creating production system mod-344

els. Thereby, data from the kinematic models at lower level345

of abstraction are accessible by the DES module models at a346

higher level of abstraction to subsequently improve the mod-347

elling accuracy. Successively, the DES model is coupled with348

the optimisation module, wherein, a multi-objective optimisa-349

tion model for selecting near-optimal system designs for suc-350

cessful scale-up is employed.351

3.3. Workstation Configuration Selector - Stage one352

This phase is comprised of three elements: kinematic mod-353

elling module, knowledge representation module and the work-354

station design table (Figure 3). The kinematic modelling mod-355

ule is positioned within the kinematic modelling software and356

its primary objective is the analysis of the process sequence,357

parameters, constraints, etc. of the existing virtual model of358

the production line, prior to the modifications. The kinematic359

modelling module is coupled with the knowledge representa-360

tion module which is built upon a Product, Process, Resource361

and Resource Attribute (PPRR) framework adapted from the362

equipment ontology proposed by Ferrer et al [48]. The work-363

station design table comprises of the workstation designs, con-364

stituent equipment and workstation KPIs.365
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Table 2: KM component input

Data Importance Data format Data source

Core Optional Numerical Graphic String CAD Datasheet/Vendor
documents

Component CAD � � �
Mass � � �
Payload � � �
Torque � � �
Direction of motion � � �
Range of motion � � �
Accuracy � � �
Repeatability � � �
Energy consumption � � �
Cost � � �
Acceleration/deceleration profile � � �

Figure 3: Workstation Configuration Selector.

3.3.1. Kinematic modelling module366

Kinematic modelling software is typically used to model and367

visualise production systems, primarily for path planning, clash368

detection and verification of assembly process in the absence of369

a physical system [49]. Due to their ability to model the kine-370

matics, they can predict the workstation processing time [50].371

The workstation processing time data from the kinematic model372

can be leveraged to increase the accuracy of DES models [51].373

Hence, in this research, a kinematic modelling tool, vueOne,374

developed by the Automation Systems Group in the University375

of Warwick, is used to model the existing pilot line to encapsu-376

late within it, the product and process data available from the377

physical system. This model can then be utilised to perform378

future analysis on the behaviour and performance of potential379

workstation designs. This way, the concept designs of work-380

stations can be virtually validated in the absence of a physical381

counterpart.382

The data presented in Tables 2 and 3 serve as typical inputs383

for process and workstation modelling. The architecture of the384

component and workstation databases are shown in Figure 4.385

It is important to note that the terms ‘equipment’ and ‘com-386

ponent’ essentially refer to the same object in this article. The387

component database consists of data regarding both non-control388

and control components, and the various parameters associated389

with them. Non-control components, such as the workstation390

frame, are not related to any process or action tasks and are391

generally stationary. However, it is important to model them392

since they support the visualisation and analysis of necessary393

workstation features such as station footprint, weight capacity,394

etc. which are useful to compare the workstation configura-395

tions. Control components, such as grippers and robots, typi-396

cally perform tasks or actions and are associated with kinemat-397

ics and process sequence. The ‘lifecycle data’ from the physical398

system (the existing assembly line) and ‘user inputs’ that deal399

with product and process data are embedded in the created kine-400

matic model. Following the analysis of data, the process param-401

eters, constraints, process sequence, machine setup, etc. are402

passed from the kinematic modelling module to the knowledge403

representation module. It is important to note that the above-404

mentioned process and product-related parameters might take405

up different values depending on the product variant that will406

be assembled. At this stage, the various product, process and407

resource elements such as workpiece, processes, AGVs, con-408

veyors, etc. are referenced with an ‘identification tag’ that is409

unique to them.410

3.3.2. Knowledge representation module411

The knowledge representation module is designed using412

protégé, a free open source ontology editor developed by Stan-413

ford Centre for Biomedical Informatics Research [52]. It was414

selected due to its wide and active user community, accessibil-415

ity, availability of support and its potential to communicate with416

other research software [53, 52, 54]. Ontology, as explained417

by Gruber, “is an explicit specification of a conceptualization”418

[55].The reasons for using ontology can be summarised as fol-419

lows: i) providing people and software a shared understanding420

of concepts and terminologies ii) for knowledge reuse and anal-421

ysis iii) to store collections of data and query its contents for422

information retrieval [56] and iv) to achieve data mapping be-423
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Table 3: KM workstation input

Data Importance Data format Data source

Core Optional Numerical Graphical String CAD Process Component Historical/ Datasheet/Vendor
planning library empirical data documents.

Footprint � � �
Process seq. � � � �
Safety interlock � � �
M/C setup � � �
Energy consumption � � � � �
Work instruction � � �
Cost � � � �
Comp. motion time � � �
Position of states � �
Layout � � �

Figure 4: Component and workstation modelling architecture

tween heterogeneous software [57]. Having presented the ben-424

efits of using ontology, the following brief write-up explains425

the need to employ ontology for this particular research. The426

DDSM methodology, in Stage one, endeavours to generate po-427

tential workstation configurations by retrieving, from an exist-428

ing catalogue of equipment, suitable candidates that meet the429

process requirements. Additionally, considering the fact that430

the manufacturing system is comprised of the physical exist-431

ing entities, it is suitable to use ontology, which typically deals432

with the study of existence and relationships, for specifying and433

mapping the workpiece, equipment and their relations. More-434

over, an ontology-based approach is considered suitable for rep-435

resenting complex manufacturing systems [58, 59].436

The authors would like to highlight two previously published437

work on manufacturing ontology that are relevant to the re-438

search study. The first one is a PPR ontology adapted from [48],439

[60] wherein product attributes are mapped to process and re-440

source concepts and integrated with a kinematic modelling soft-441

ware. The second work presents a Function Behaviour Struc-442

ture framework for equipment selection [58]. The research pro-443

posed in this article is based on the PPR framework from [48]444

since both research works aspire the integration of the ontol-445

ogy model with a kinematic modelling software. The existing446

PPR ontology is improved with the novel addition of i) the ‘re-447

source attribute’ class ii) data properties that relate to process448

parameters for assembly operations and iii) query design for449

workstation configuration selection. Additionally, the proposed450

methodology differs from the mentioned articles in that it pur-451
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Figure 5: DDSM ontology structure in protégé.

sues the objective of supporting system configuration selection452

for transition from low-volume to high-volume. Another point453

to note is that the DDSM approach is not necessarily bound to454

system reconfiguration but also considers the commissioning of455

new facilities and replacement of existing workstations that are456

unfit for purpose.457

The presented ontology framework comprises of product,458

process, resource and resource attribute classes as explained459

in Figure 5. The product class comprises of a ‘workpiece’ or460

‘part’ that is mapped to a resource as well as the required as-461

sembly process. The process class comprises of tasks that are462

the elementary actions that cannot be further sub-divided. They463

can be derived from the process sequence that can either be464

obtained from the kinematic module or the production system.465

Within the kinematic module, the operation sequence is repre-466

sented as a state transition diagram (STD). For the purpose of467

this research, five task types, move, hold/release, feed, transport468

and join, adopted from [27] are considered. In the ontology, the469

five considered tasks are represented as five instances that be-470

long to the ‘task’ subclass.471

The resource class is sub-divided into system, station and472

component sub-classes in increasing order of granularity; a sys-473

tem is built up of stations and stations are in turn built up of474

components. The term component here refers to the equipment475

such as weld gun, robots, etc. that are used to perform vari-476

ous tasks. Components are further subdivided into control and477

non-control component, as shown in Figure 4, depending on478

whether they have logical behaviour or not. Five types of con-479

trol components are considered in this study: the gripper, Au-480

tomated Guided Vehicle (AGV), manipulator, bowl feeder and481

conveyors; the components may or may not differ in the type of482

tasks that they perform. A specific component such as a ‘two-483

finger gripper’ from brand ‘XY’ having certain parameters can484

be added as an ‘instance’ to the gripper subclass. In this way,485

the various components are added to their corresponding sub-486

classes as ‘instances’ and mapped to one or more of the defined487

five tasks using the ‘performsTask’ object property; object prop-488

erties are used to relate or map two instances or individuals. To489

illustrate this, consider a robot ‘ABC’ capable of performing490

the ‘move’ as well as ‘feed’ tasks; robot ‘ABC’ is an instance491

of the ‘robot’ subclass. The ‘move’ and ‘feed’ are instances of492

the ‘task’ subclass and robot ‘ABC’ is mapped to the two tasks493

using the ‘performsTask’ object property.494

On the other hand, data properties are used to map an in-495

stance to a specific type of data that can be real number, inte-496

ger or string. The values of data properties such as range, di-497

mensions and payload of the resource elements can be obtained498

from the component and workstation database, the architecture499

of which is illustrated in Figure 4. Consider a pneumatic grip-500

per named ‘GAXF1’ having a payload of 500g; it is an instance501

of the ‘gripper’ subclass. To map the gripper to the value of502

500g, the data property ‘hasPayload’ is used.503

The resource attribute class consists of two sub-classes: i)504

axis of motion, which includes the assembly directions of the505

resource and ii) category, which includes the robot type, joint506

type, gripper type and feeder type. This information is use-507

ful to enrich the workstation configuration selection process by508

screening the resources that possess the desired axes of motion509

and category.510

The kinematic model is analysed to obtain the operation se-511

quence and the total number of operations. The operations are512

identified as ‘O’ and the total number of operations is ‘No’. The513

tasks are identified from the operation sequence. According to514

the flow chart in Figure 6, the tasks that belong to each oper-515

ation are verified to understand whether they belong to one of516

the defined task types. If they do, then the operation is explored517

in detail within protégé to identify suitable workstation designs.518

Otherwise, the operation will be ignored and the next operation519

in sequence will be subjected to the same procedure. Within520

protégé, the requirements for each operation are first considered521

and translated to parameters that are used to screen the existing522

set of components using ‘query’ to identify suitable equipment.523

The process of information retrieval is done with the help of the524

query language, SQWRL (Semantic Query-enhanced Web Rule525

Language). This enables the screening of a catalogue of equip-526

ment, those defined as instances within component subclass527
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Figure 6: Knowledge representation module process flow.

of the resource class, to find the components that are suitable528

to perform the required tasks. A demonstration of the query529

process is provided in section 5.2. Since it is not possible to530

do certain validations that ascertain the feasibility of the solu-531

tions within the knowledge representation module, the selected532

equipment are further modelled in the kinematic module. For533

instance, after performing query, the selected equipment might534

meet all the required parameters, but in reality it might collide535

with an object in its path of motion. Although these discrepan-536

cies cannot be identified within the knowledge representation537

module, they can be diagnosed within the kinematic modelling538

module. In addition to validation using kinematic model, the539

workstation process time can also be calculated. In this regard,540

a previous work done by the author highlights the benefits of541

the integration of kinematic model and ontology module [51].542

To summarise the characteristics of the knowledge represen-543

tation module, it is necessary to explain how the kinematic544

model and ontology editor complement each other. The knowl-545

edge representation module is typically used to select those546

equipment that meet certain requirements or criteria and elim-547

inate those that do not; the selection is done from a pool of548

standard off-the-shelf equipment that are available in the indus-549

try catalogue or equipment library. However, there are certain550

limitations in using this module. It is difficult to calculate the551

workstation process time, investigate collision detection, per-552

form path planning and ergonomical analysis, and check as-553

sembly feasibility within the knowledge representation mod-554

ule. These issues can, however, be overcome by using the kine-555

matic model module and hence the coupling of both modules556

improves the accuracy of workstation modelling. An important557
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Figure 7: The integration of the the optimisation module and DES module using OPC-UA based communication

point to note is that the solutions provided at the end of the558

selection process in protégé are by no means the only feasible559

solutions and there is always the possibility of designing be-560

spoke equipment. Hence, the ontology-based selection process561

should be considered as an elementary guideline to support the562

equipment selection process.563

3.3.3. Workstation design table564

The workstation design table comprises of the workstation565

KPI schema which serves as a template to create the worksta-566

tion design matrix. The design table consists of the workstation567

candidate configurations that were validated in the kinematic568

model. The workstation configuration is defined by the iden-569

tified equipment that are suitable for the considered processes570

and the corresponding metrics such as investment cost, process571

time, energy consumption, geometry and Computer-Aided De-572

sign (CAD) information of the workstation. This data is stored573

in the workstation database such that it is accessible by the soft-574

ware used in Stage two of the methodology.575

3.4. System Configuration Selector - Stage two576

The primary aim of Stage two, shown in Figure 7 is to iden-577

tify potential assembly line configurations with the help of two578

modules, the ‘DES Model’ module and ‘Optimisation’ module,579

that facilitate simulation optimisation for stochastic discrete-580

event systems. DES is increasingly used in the field of man-581

ufacturing for building models that allow the comparison of al-582

ternate scenarios, answering ‘what-if’ questions and supporting583

decision making [61, 62, 63]. The inherent capability of DES584

to model production systems is a key reason to use it as part585

of the methodology. The system models in DES may be used586

to create scenarios that might, in reality, be impossible or im-587

practical to build. To overcome this drawback, it is possible to588

integrate DES with kinematic modelling software (Stage one)589

to increase the accuracy of DES [51].590

Optimisation is the process of finding one or more solutions591

that either maximise or minimise the formulated objective func-592

tion whilst satisfying the defined constraints [64]. It is challeng-593

ing to follow traditional optimisation approaches for stochas-594

tic systems due to the presence of probabilistic elements which595

make it difficult to derive a closed-form expression of the objec-596

tive function. In such situations, it is possible to use DES to re-597

place the closed-form expression of the objective function. Ad-598

ditionally, since real world complex manufacturing problems599

consist of a number of conflicting objectives, it is considered600

appropriate to employ multi-objective optimisation for the pro-601

posed research [65].602

3.4.1. DES model module603

The workstation KPIs from Stage one are conveyed to the604

DES model to increase the accuracy and transparency at the605

system modelling level. Additionally, certain user inputs such606

as the consideration of model abstraction, simulation graphic607

settings and parameters, representation of the process logic, etc.608

are also required as seen from Figure 2. In a previously pub-609

lished work by the author [66], pilot line scale-up using DES to610

investigate the impact of scheduling policy and scale-up princi-611

ples on certain system level KPIs was demonstrated. As part of612

the paper, additional stations and configuration changes were613
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Table 4: Notations.
Notation Description

w index to represent the workstation type
NW total types of workstations
Kw total number of workstations of type ‘w’
t index to represent the workstation types that have alternate configurations
Nt total number of workstation types with alternate configurations
Sw capital cost of workstation of type ‘w’
m index to represent the MHU type
NM total types of MHU
Qm total number of MHUs of type ‘m’
Mm capital cost of MHU of type ‘m’
ω index to represent operator type
NL total types of operators
Rω total number of operators of type ‘ω’
Wω hourly wage of operator type ‘ω’
T total production time in hours
Tω total shift time for operator type ‘ω’
β penalty cost for exceeding the available space
p index to represent product type
Np total number of product variants
εp throughput of product ‘p’ at the end of time ‘T ’

implemented in the virtual model. However, it was not pos-614

sible to analyse the practicality of such solutions using DES615

alone. This was due to top-down approach using a standalone616

DES model and hence the lack of access to the workstation-617

level data. This is a vital issue that will be addressed in the618

following sections.619

3.4.2. Optimisation module620

Genetic Algorithm (GA) is a popular meta-heuristic numer-621

ical evaluation method that is compatible with DES for simu-622

lation optimisation [67]. The optimisation module is coded in623

MATLAB and the ‘gamultiobj’ solver which uses a controlled624

elitist GA is employed. The controlled elitist GA favours diver-625

sity which is considered essential for convergence. The elitism626

is controlled by the ‘pareto fraction’ and ‘distance function’627

options. The former limits the number of solutions on the front628

and the latter favours diversity. The set of trade-off solutions are629

expressed on the pareto front; the pareto front plays a key role in630

decision making along with inputs from user. Additionally, the631

scale-up KPI schema provides criteria for decision making. The632

selected system configurations encompass the workstation con-633

figurations along with the various reference IDs that are used634

to address the process, workstation, components, etc. Conse-635

quently, they are stored in the system database and intended to636

support the scale-up planning in industries.637

3.4.3. Data exchange between DES and optimisation module638

In order to support the ease of data transition between the639

DES and optimisation modules, the DES model needs to be640

parametric such that it can reach the desired level of configura-641

bility and adaptability which is considered vital for simulation642

optimisation [68]. The parameters need to be modified from643

outside the DES model automatically. In order to achieve this644

integration, it is important to consider three main elements i)645

the interface for data transfer ii) the method of sending and646

receiving data from MATLAB iii) the method of sending and647

receiving data from DES.648

For the interface, KEPServerEX software which provides649

real-time data transfer with the OPC UA communication proto-650

col is used. The local server is first created and the device and651

groups are defined within it. Within the group, various ‘tags’652

can be added and their name plays an important role in estab-653

lishing the link with both MATLAB and FlexSim. The tags in654

the server hold the values of the decision variables which are655

passed to FlexSim and throughput values that are passed back656

to MATLAB. The ‘emulator’ tool in FlexSim allows creation657

of two types of variables, those that need to be read and those658

that need to be written. The decision variable values from the659

MATLAB need to be read by FlexSim. On the other hand, the660

KPIs such as system throughput that are necessary for objective661

function evaluation need to be written by FlexSim. Since the662

DES model is parametric, all time-related, maintenance-related663

values and other resource-related parameters can be stored in664

the form of a ‘Global Table’ in FlexSim. In this way, all nec-665

essary input sources for FlexSim are established. The commu-666

nication between MATLAB and the server is established using667

‘OPC toolbox’ in MATLAB. At the end of the simulation run668

in FlexSim, the throughput values are passed back to MATLAB669

using the server. Depending on the software used for the DES670

and optimisation, this procedure might vary. However, the un-671

derlying approach and objectives remain similar.672

4. Problem formulation673

4.1. Objective functions674

The considered mathematical notations are given in Table 4675

and it is to be noted that workstations are categorised accord-676

ing to the operations performed and all workstations that per-677

form the same operations belong to the same type (represented678

as ‘w’). For some of the considered workstation types, differ-679

ent alternatives performing the same operation are identified in680
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Stage one and referred to as workstation configurations. The681

alternate configurations for a particular workstation type con-682

stitute a decision variable in the optimisation module.683

The considered optimisation problem has two conflicting ob-684

jectives, i) scale-up cost which is detailed in Equation 1 and685

ii) system throughput which is detailed in Equation 2. The686

specific aims of this optimisation study are to: i) identify the687

number of workstations of each type required, ii) identify the688

number of operators of each type required, iii) identify the num-689

ber of MHUs of each type required and iv) identify the suitable690

configuration for workstations such that the required through-691

put can be achieved while within the scale-up budget.692

Objective 1 is the scale-up cost which consists of four main693

elements. Due to confidentiality reasons, scale-up cost is rep-694

resented in units. The first element is the investment cost of695

adding new machines, the second element is the cost of mate-696

rial handling units and the third element is the cost of labour.697

The fourth element is a penalty cost for exceeding the available698

space which is represented as slots within which workstations699

can be added. If the space restriction is not violated, then the700

penalty cost, β , is zero. However, on violation of the space con-701

straint, the penalty cost is calculated to be a value greater than702

zero.703

f1(x1
i ,x

2
j ,x

3
k ,x

4
l ) = Min(

NW

∑
w=1

(Sw ·Kw)+
NM

∑
m=1

(Mm ·Qm)

+
NL

∑
ω=1

(Wω ·Tω ·Rω)+β )

(1)

Please note that the direct and indirect raw material costs,704

indirect labour costs and maintenance costs are not considered705

in this objective function as they are assumed to be a constant706

across the iterations.707

Objective 2 is to maximise the system throughput.708

f2(x1
i ,x

2
j ,x

3
k ,x

4
l ) = Max(

Np

∑
p=1

εp) (2)

Four types of decision variables are considered for the optimi-709

sation study as follows:710

• x1
i (i = 1, ...,Nw) to decide the number of each type of711

workstation required,712

• x2
j ( j = 1, ...,Nm) to decide the number of each type of713

MHU required,714

• x3
k (k = 1, ...,No) to decide the number of each type of op-715

erator required,716

• x4
l (l = 1, ...,Nt ) to decide the workstation configuration of717

each type of workstation considered.718

Additionally, two types of design constraints are considered719

in this case study: i) integer constraints and ii) bound con-720

straints. The integer constraints are defined to allow GA to per-721

form the optimisation for integer decision variables. The bound722

constraints are used to limit the maximum number of stations,723

operators and transporters due to budget restrictions.724

4.2. Assumptions725

• The station footprint of all workstations are assumed to be726

equal in size.727

• The production facility is divided into a number of slots to728

represent the available space and each workstation occu-729

pies only one slot.730

• The new demand for which the scale-up transition is done731

is assumed to remain constant during the period of simu-732

lation.733

• The simulation model does not include warehouse and734

other industrial departments; only production line and as-735

sociated operations are considered.736

4.3. Proposed GA method737

The proposed optimisation method utilises the multi-738

objective mixed-integer GA, which is a heuristics-based evo-739

lutionary algorithm. In GA, the individuals of each generation740

comprise of different values of the decision variables and a cer-741

tain number of these individuals make up the population. Each742

simulation run corresponds to one individual from the popu-743

lation selected and their decision variable values are used to744

control the simulation parameters. Through the process of evo-745

lution, fitter solutions are selected for subsequent generations.746

Two essential operators, mutation and crossover are used to747

generate new solutions. Crossover operator is considered to748

support convergence by combining two chromosomes of par-749

ents to form new chromosomes. In such a way, it is expected750

that good chromosomes appear more frequently. Mutation in-751

troduces diversity back into the population and is vital for es-752

caping the local minima [65].753

The pareto front population fraction which determines the754

number of solution points on the pareto front is 0.35 by de-755

fault. The initial set of population is selected at random and756

subsequent populations for future generations are chosen using757

non-dominated rank and distance function. The individuals are758

given a non-dominated rank depending on their fitness value.759

The distance function, ‘crowding distance’, is used for selec-760

tion when two individuals of a population have the same rank.761

Typically, three different stopping criteria can be considered for762

termination of the optimisation. These are: i) maximum num-763

ber of generations, ii) stall generation limit, and iii) maximum764

time limit. The pseudo code for the GA is given in Table 5.765

It is important to ensure that the individuals represented on766

the pareto front should be diverse enough to represent the range767

of pareto front. The pareto front solutions around the ‘knee’ of768

the front, exhibit acceptable fitness scores for both the objec-769

tives considered. The selection of candidates from the pareto770

front requires an evaluation process using the decision maker’s771

priorities and inputs which is demonstrated in the case study.772

The workflow of the data transfer is provided in the follow-773

ing steps and the details regarding the MATLAB and FlexSim774

codes and functions are provided in the next section.775
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Table 5: Genetic Algorithm pseudo code

Pseudo code of the GA

(1) Initialisation and population selection;
(2) Evaluate the initial population through fitness function;
(3) For (generation < max gen.)
(4) While (not meet the stopping criteria)
(5) Select parents for next generation using

binary tournament selection;
(6) Create children using mutation and crossover;
(7) Combine current population and children;
(8) Compute rank and crowding distance;
(9) Trim population size;
(9) End While
(10) Evaluate the new population fitness;
(11) End For
(12) Output the best solutions;

1. The initial set of values for decision variables are decided776

in MATLAB and the first iteration is now initialised.777

2. In the first iteration, the values of the first member of the778

population, which is essentially a combination of decision779

variable values, are passed from MATLAB to FlexSim780

through the server along with the signal to trigger FlexSim781

for every optimisation iteration using a ‘batch file’.782

3. The simulation model is run for the pre-defined parame-783

ters of speed, warm-up time and simulation run time for a784

certain number of replications.785

4. The average throughput value for the considered product786

variants are calculated at the end of the simulation run and787

passed back to MATLAB through the server.788

5. As the simulation terminates, a signal is passed back to789

MATLAB to continue the optimisation process, such that790

the obtained throughput values can be used to calculate the791

objective function two.792

6. The workstation cost, material handling unit cost and op-793

erator cost are accessed from the database by MATLAB to794

calculate objective function one.795

7. In this way, the optimisation process continues for the next796

member in the population till all the members are evalu-797

ated; this constitutes one generation. The next generation798

is initialised and the process continues until the stopping799

conditions are met.800

5. Implementation801

5.1. Description of the assembly line802

The methodology is implemented in a pilot production line803

that assembles two variants of battery modules, A and B. Most804

operations are common across both variants with some varia-805

tions present in the welding and cooling system assembly. The806

considered case study has eight operations, as shown in Ta-807

ble 6; operations one and two are explained in more detail to808

demonstrate the use of knowledge representation module. Vari-809

ant A comprises of 120 cylindrical ‘18650’ cells while variant810

B has 90 cylindrical ‘21700’ cells. The testing (operation one)811

and cell loading operations (operation two) are performed in812

workstation one. The thermistor (operation three) and cooling813

system assembly (operation four) are performed in workstation814

two. Plastic welding (operation five) and busbar assembly (op-815

eration six) are performed in workstation three. Pulse arc weld-816

ing (operation seven) for variant A is performed in workstation817

four and ultrasonic wire bonding (operation eight) for variant B818

is performed in workstation five. Considering the allocation of819

the operations to workstations, there are five workstation types820

in total; workstation type four is bypassed by variant B since821

it does not require pulse-arc welding. Similarly, workstation822

type five is bypassed by variant A since it does not require wire823

bonding. Variant B also has a different cooling system assem-824

bly due to the inherent difference in the module design in com-825

parison to variant A. The transfer of products between stations826

is achieved with conveyors; buffers to store products between827

stations are not available. The product designs are confidential828

and will not be explained in detail. An image of the pilot line829

facility at the University of Warwick is presented in Figure 8.830

The case study starts with the modelling and encapsulation of831

data pertaining to the five workstation types in VueOne. The832

target daily demand that is considered is 65 products of A and833

B while the current daily production volume is 20 products of834

A and B.

Table 6: Allocation of operations to workstations

Station number Operation number Operations name

Station 1 Operation 1 Cell testing
Operation 2 Cell loading

Station 2 Operation 3 Thermistor assembly
Operation 4 Cooling system assembly

Station 3 Operation 5 Plastic welding
Operation 6 Busbar assembly

Station 4 Operation 7 Pulse arc welding
Station 5 Operation 8 Ultrasonic wire bonding

835

Figure 8: Pilot line for electric vehicle battery module assembly.

5.2. Demonstration of methodology: Stage one836

The first two operations from Table 6 are explored in detail837

to demonstrate the implementation of the workstation configu-838

ration selection process. The task sequences for operations one839
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and two are provided in Tables 7 and 8, respectively. The task840

sequence for both product variants is the same with slight varia-841

tions in the positioning due to the geometrical differences in the842

cells. The first step is to model the operations in vueOne. For843

operation one, which is the testing operation, the vueOne model844

replicates the tasks performed in the pilot line using the CAD845

of the cell testing equipment and actuators to lift and lower the846

testing system to the cell cartons. Translation kinematics are847

defined on the actuators as they move along the ‘z axis’. For848

operation two, which is the cell loading operation, the V-Rob849

module is used; the V-Rob module has a pre-defined library of850

robots from which a general purpose ABB robot is selected.851

The gripper CAD is imported into the model and the translation852

kinematics are defined on all three fingers such that they oper-853

ate simultaneously when the signal is received. The robot picks854

the battery cells from the cell carriers that are available on ei-855

ther side and loads them into the battery module. The kinematic856

model of operation two is presented in Figure 9.857

Table 7: Task sequence for operation one

Task number Task name

1.1 Move to position (x1,y1,z1)
1.2 Test battery cell (*30)
1.3 Repeat steps 1.1 & 1.2 with offset of 120mm in x

Table 8: Task sequence for operation two

Task number Task name

2.1 Move to position 1
2.2 Hold battery cell
2.3 Move to position 2
2.4 Release battery cell
2.5 Repeat steps 2.1 to 2.4 with offset 20mm in x
2.6 Move to position 3
2.7 Hold battery cell
2.8 Move to position 4
2.9 Release battery cell
2.10 Repeat steps 2.6 to 2.9 with offset 20mm in x
2.11 Move to position 5
2.12 Hold battery cell
2.13 Move to position 6
2.14 Release battery cell
2.15 Repeat steps 2.11 to 2.14 with offset 20mm in x
2.16 Move to position 7
2.17 Hold battery cell
2.18 Move to position 8
2.19 Release battery cell
2.20 Repeat steps 2.16 to 2.19 with offset 20mm in x
2.21 Move to position 9
2.22 Hold battery cell
2.23 Move to position 10
2.24 Release battery cell
2.25 Repeat steps 2.21 to 2.24 with offset 20 mm in x

The next step is to use the flow chart in Figure 6 to consider858

and assess the eight operations that are distributed across the859

workstations. For operation one, there are two tasks, 1.1 which860

is a move tasks and 1.2 which is a test task. The test task does861

not fall within the defined five tasks and hence operation one862

will not be considered for further analysis. Advancing to opera-863

Figure 9: Kinematic model of the cell loading operation.

tion two, the cell loading operation has two types of tasks which864

are the move, hold/release tasks. Both tasks are within the de-865

fined list and hence operation two is considered eligible for fur-866

ther analysis. Progressing to the next step in the flowchart, the867

information such as product weight, dimensions, assembly di-868

rections, batch size, gripping force required, drive type, grip-869

ping distance, repeatability, accuracy, gripper range, payload,870

space available in the workstation, and allowable weight are871

obtained from the kinematic model for performing the query.872

One query is designed for each operation, considering the873

parameters for both product variants. Operation two contains874

the move and hold/release tasks; the query is designed in three875

sections as seen in Figure 10. The first and second sections876

are for finding components that perform the move tasks and877

hold/release tasks, respectively. Section three is for combining878

the results of the first and second sections. The ‘sqwrl:makeSet’879

function is used to create two sets, one for each task and the880

‘sqwrl:union’ is used to combine both sets together.881

Figure 10: Query design and results
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Figure 11: Modelling the workstation configurations in vueOne kinematic mod-
elling software.

For the move task, the degree of freedom and working range882

are considered as primary criteria for equipment selection; for883

the hold/release task, the payload and gripper stroke are con-884

sidered as primary criteria for gripper selection. The compo-885

nents from both sets, move and hold/release, are combined to886

provide a total of 30 components that meet the defined crite-887

ria. Two configurations are selected from this component list888

and validated as shown in Figure11. For workstation con-889

figuration one with an ID of ‘WS1GRG24LB13’, a vacuum890

gripper and gantry with respective IDs of ‘GRG24WEGWR34’891

and ‘LB13TR314242’ are selected. For workstation configura-892

tion two, with an ID of ‘WS1GRG28LB15’, a vacuum gripper893

and delta robot with respective IDs of ‘GR4668HTDSD3’ and894

‘DB434DGSH’ are selected. Both workstation configurations895

are associated with their respective workstation KPIs using the896

references IDs.897

The new configurations are visualised and checked for poten-898

tial issues such as collision by modelling in vueOne. Following899

this, process time calculation is done with data available from900

datasheet, physics-based model, machine learning algorithm or901

experience based results [51]. It is also possible to calculate the902

time values using the capabilities of vueOne. It was found that903

the time taken to perform operation two in workstation config-904

uration one is 360 seconds for product A and 270 seconds for905

product B. Similarly, the time taken to perform operation two in906

configuration two is 120 seconds for product A and 90 seconds907

for product B. In order to get the total workstation processing908

time of workstation one, the cell testing time needs to be con-909

sidered since both cell testing and loading are performed on the910

same workstation. Therefore, the current cell testing time of 30911

seconds is added to the time taken for operation two to get the912

total process time. It should be noted that it might be necessary913

to combine the process times of two or more processes to obtain914

the total workstation process time. The calculated time values915

and workstation configurations are ultimately intended for use916

in Stage two and hence stored in the workstation database along917

with their respective ID information, geometry, cost and main-918

tenance data as seen in Figure 12.919

5.3. Demonstration of methodology: Stage two920

In Stage two, the system configurations need to be generated921

while also considering the workstation configurations chosen922

in Stage one. Firstly, a parametric DES model is created with923

workstations, AGVs and operators as shown in Figure 13. The924

distance between workstations is assumed to be a constant and925

the production line layout for the optimisation problem is as-926

sumed to be rectangular. Although the initial pilot line utilises927

conveyors for transportation, for the scale-up scenario mod-928

elling, AGVs are employed due to their flexibility to cater to929

more than one workstation. In the DES model, the eight oper-930

ations seen in Table 6 are allocated to five workstations. The931

assembly system is assumed to be mixed model and all work-932

stations are assumed to be available at time zero of the sim-933

ulation model. The workstations are arranged in a sequential934

manner with the AGVs transporting products between stations;935

stations can be bypassed if product variant does not need to be936

processed in a particular station. Buffers are allocated between937

workstations and can hold a maximum of five products; first-in-938

first-out (FIFO) scheduling policy is considered for the transfer939

of products from buffer to workstations. Each of the five work-940

stations assemble only one product at a time. Similarly, AGVs941

can transport only one part at a time. Each workstation has942

a setup time for product changeover which is assumed to be943

the same for changing from product A to product B and vice-944

versa. Preemption of operators who are already working on a945

specific job is not allowed and once the operators start working946

on a product, they remain in the corresponding workstation un-947

til the product assembly is finished. The AGVs that are used for948

transportation, have control points where they are charged; they949

return to these points on completion of transportation tasks.950

Both AGVs and operators are monitored using the task executor951

which allocates the job on a FIFO basis. Therefore, the AGV952

and operator are free to work on any workstation and are not953

restricted to a particular region of the production system. Op-954

erators are assumed to be multi-skilled and both operators and955

AGVs are assumed to be always with the exception of break956

times. Stochasticity is introduced in the model using the prob-957

ability distributions. Five different aspects of the system where958

probability is introduced are i) part arrival ii) process and setup959

times iii) downtime iv) time between failure and v) first time960

failure. The process time, setup times and down times follow961

triangular distribution, but part arrival follows the exponential962

distribution. These distributions are obtained based on litera-963

ture and data from pilot line. A warm-up time of 2500 seconds964

is found suitable for the model; the total simulation time that965

represents a single shift is 28800 seconds and only one shift is966

modelled. The subcomponents and raw materials required for967

the assembly are assumed to be always available.968

The DES model will be updated with i) information from969

Stage one pertaining to the workstation processing and setup970

time, cost of workstations and IDs of the selected candidates971

and ii) the values of the decision variables from MATLAB to972

generate scale-up solutions. The workstations are allocated to973

slots and workstations of the same type are added in parallel to974

the existing ones. In other words, each of the five workstation975

types can have copies of the same to improve productivity and976

this is represented using five decision variables, one for each977

workstation type. Each variable value refers to the quantity of978

the respective workstation type. For instance, if the second de-979

cision variable has a value of two, it means that workstation980

type two has another copy in parallel that performs the thermis-981
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Figure 12: Workstation design table and workstation configuration data in the common database.

Figure 13: Flexsim model of the pilot battery module assembly line.

tor assembly (process 3) and cooling system assembly (process982

4).983

5.3.1. KEPServerEX to FlexSim connection984

As explained in section 3, KEPServerEX is used to pass vari-985

able values to FlexSim. The run speed and model termina-986

tion time can be controlled from outside FlexSim using a batch987

file. The use of the termination time enables automation of the988

simulation optimisation process since the MATLAB optimisa-989

tion can be continued only when the execution of FlexSim is990

stopped. For each optimisation iteration in MATLAB, ten repli-991

cation are of the experiment are done within FlexSim. The av-992

erage of the throughput values across these ten replications for993

products A and B is passed back to MATLAB. These replica-994

tions are very important as they impact the convergence of the995

simulation optimisation; based on trial and error, it was found996

that ten replications were sufficient for good convergence to a997

pareto front for the considered case study.998

5.3.2. MATLAB to KEPServerEX connection999

Following the creation of the parametric DES model, the1000

optimisation problem is formulated in MATLAB and for this1001

purpose, several ‘functions’ need to be written. The algorithm1002

settings include a population size of 20 and a maximum1003

generation limit of 100, with ten simulation repetitions for1004

each evaluation and a stall generation limit of 15. The settings1005

are decided after experimentation and are found sufficient1006

to provide the required set of non-dominated solutions. The1007

pareto fraction is set as 0.7 and the default settings used for1008

distance calculation and function tolerance for pareto spread1009

are ‘phenotype’ and 1e-4, respectively.1010

1011
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Step 1: Fitness function1012

Starting with the core ‘optimisation algorithm’, the first step is1013

to create the fitness function which evaluates the score of a par-1014

ticular population with respect to the objective function. Two1015

conflicting objectives, scale-up cost and throughput are consid-1016

ered. For objective one, the aim is to minimise the scale-up1017

cost and for objective two, the aim is to maximise the through-1018

put. However, since MATLAB typically minimises the objec-1019

tive functions, objective two is rewritten as (1/throughput).1020

1. A vector called ‘flexin’ that has the values of the eight de-1021

cision variables is the input for this function. Equation 11022

which represents the scale-up cost is considered.1023

2. It comprises of four elements of cost: the processor cost,1024

material handling cost, operator-related cost and penalty1025

cost. The values of the first three cost elements are ob-1026

tained from the common database and stored in a lookup1027

table within MATLAB.1028

3. The fourth element, penalty cost, depends on the space oc-1029

cupation; if the total number of workstations is more than1030

22, which is the maximum number of available slots, then1031

the penalty cost is considered. This evaluation of scale-up1032

cost can be done without DES module.1033

4. The second objective is the throughput for which it is nec-1034

essary to use DES. The ‘FlexSim initialisation’ function,1035

that will be described later, is ‘called’ to initiate the DES1036

model. MATLAB is temporarily paused while the simula-1037

tion runs and resumes on termination of DES.1038

5. The DES model communicates the throughput values to1039

the the server with the help of the ‘emulator’ in FlexSim.1040

These values are read by MATLAB to calculate Equation1041

2.1042

6. A new group and two item objects are created using MAT-1043

LAB OPC toolbox for acquiring the throughput data from1044

the server. The first item object represents the throughput1045

value of product A and the second item object represents1046

the throughput value for product B.1047

7. Using these values, the score of objective function two1048

is obtained. In this case, both products are assumed to1049

be equally important and hence no weights are given to1050

throughput values. But if this is deemed necessary, it can1051

be added to the objective function.1052

Step 2: Decision variables1053

The next step is to define the number and parameter of the1054

decision variables. The four types of decision variables1055

considered for the optimisation study are x1
i , x2

j , x3
k , x4

l that1056

represent the number of each type of workstation, number1057

of each type of MHU, number of each type of operator, and1058

the number of workstations that have alternate configurations,1059

respectively. For this case study, because there are five different1060

types of workstations, in x1
i , the value of i ranges from one to1061

five. Considering the variable x2
j , only one type of MHU is1062

considered and hence the value of j is one. For the variable1063

x3
k , only one type of operator is considered and hence the1064

value of k is one. For the last variable type, the workstation1065

configuration selection was done in the ontology editor only1066

Table 9: Decision variables and their values.

Variable Description Lower Upper

bound bound

x1
1 Number of workstations of type 1 1 5

x1
2 Number of workstations of type 2 1 5

x1
3 Number of workstations of type 3 1 5

x1
4 Number of workstations of type 4 1 5

x1
5 Number of workstations of type 5 1 5

x2
1 Number of MHUs of type 1 1 2

x3
1 Number of operators of type 1 1 6

x4
1 Configuration for workstation type 1 1 2

for the first workstation which performs the testing and cell1067

loading process and hence only workstation one has alternate1068

configurations; therefore, the value of the variable l is one.1069

1070

In total, there are eight decision variables and the memory1071

load that is brought about due to the simulation optimisation1072

restricts the total number of decision variables that can be1073

considered. All eight decision variables considered are integers1074

and hence a multi-objective simulation optimisation with1075

integer GA is selected.1076

1077

Step 3: Boundary conditions1078

Following this, the upper bound and lower bound for the1079

decision variables are set as shown in Table 9. A total of 221080

slots are considered for the workstations and this restricts the1081

maximum number of workstations that can be accommodated.1082

If the variables x1
1 to x1

5 have the upper bound values of five,1083

then the total number of workstations exceeds the available1084

space. To overcome this, it is possible to add inequality con-1085

straints in the algorithm. However, it is not advisable to add the1086

inequality constraint whilst already having integer constraints1087

in the MATLAB GA algorithm. Hence, for those iterations1088

where the number of workstations exceed the available space,1089

a penalty cost is added to the scale-up cost. In this way, such1090

iterations will not be considered as good solutions and will be1091

removed from the solution space.1092

1093

Now that the core optimisation algorithm is defined, the1094

‘FlexSim initialisation’ function function is written in MAT-1095

LAB to support the core function. It is used to initialise the1096

‘batch file’ that starts the simulation. The pseudocode for the1097

FlexSim initialisation function is shown in Table 10. It starts1098

with the creation of ‘daobj’ to connect to the server. This is1099

followed by the creation of a ‘Group’ to store the decision1100

variables. Step three, from Table 10, is very important for1101

establishing the link between the decision variables in MAT-1102

LAB to the ‘tags’ in KEPServerEX. In this step, the decision1103

variables are defined. The ‘Device’ and ‘Group’ mentioned1104

in step three represent the elements in the KEPServerEX1105

and the ‘AGVQty’ represents the tag in the server. The next1106
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Table 10: FlexSim initialisation function.

Initialisation function

(1) Create ‘daobj’ to connect to server using OPC UA protocols;

daobj = opcda(‘localhost’,‘Kepware.KEPServerEX.V6’);

(2) Create group for item objects; this represents the decision variables;

Grp = addgroup(daobj,‘Group’)

set(Grp,‘LogFileNAme’,‘opcdatalog.olf’);

(3) Create item objects for eight variables within created group and set their datatype;

AGVQty = additem(Grp,‘MFConnection.Device.Group.AGVQty’);

set(AGVQty,‘DataType’,‘int16’);

(4) Write the values for the decision variables;

write(AGVQty,flexin(6));

(5) Run batch file to start Flexsim;

command = “C:\Users\RunFlexsim.bat”;

[status,cmdout] = system(command);

step is to store the values of the decision variables that are1107

decided by MATLAB for each iteration in the ‘AGVQty’ item1108

object. The ‘flexin’ vector represents the values of the decision1109

variables decided within MATLAB. The last step is to write1110

a code to start FlexSim from MATLAB, for which the batch1111

file is used. Figure 14 provides some shows the communica-1112

tion elements such as the tags, emulator elements and batch file.1113

1114

1115

6. Results1116

The simulation optimisation is achieved using a laptop with1117

Intel Core i7 with a processor speed of 2.60GHz. To monitor1118

the the progress towards convergence, the best fitness scores for1119

both objective functions are plotted at the end of each genera-1120

tion. The diversity of the pareto front is checked by the measur-1121

ing the distance and pareto spread. The distance measurement1122

ensures even spread of solutions on the pareto front, provided1123

it is continuous. The average change in the pareto spread over1124

the ‘MaxStallGenerations’ is a parameter that terminates the1125

optimisation on satisfying the stopping criteria. If this average1126

change is less than the function tolerance value of 1e-4, then1127

optimisation will be terminated. For a diverse pareto front, it is1128

expected that the average distance measure and spread of pareto1129

front have low values. Figure 15 shows the trade-off solutions1130

obtained as a result of the multi-objective optimisation. Fol-1131

lowing this, the filtering of the optimisation results is necessary1132

as the verification of whether the target demand is achievable1133

by the proposed solutions is not done as part of the optimisa-1134

tion run. From analysing the results, it is identified that the data1135

Figure 14: MATLAB and FlexSim integration.

points indicated with the ‘asterix’, which are located towards1136

the left end of the graph, do not meet the required through-1137

put and hence will not be considered for further analysis. Four1138
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Table 11: Trade-off solutions selected for further analysis.

Solution x1
1 x1

2 x1
3 x1

4 x1
5 x2

1 x3
1 x4

1 Obj 1 [Cost(units)] Obj 2 [1/(ε1 + ε2)] Throughput A (ε1) Throughput B (ε2)

1 1 2 2 1 2 1 4 1 65520 0.0064 77 78
2 1 2 3 2 2 1 5 1 74000 0.0051 100 93
3 2 2 3 2 3 2 5 1 98400 0.0046 105 112
4 2 3 4 2 3 2 5 1 112100 0.0045 108 114

Figure 15: Non-dominated solutions for the battery module assembly case
study.

solutions indicated with the ‘coloured circle’ are selected for1139

further analysis as they provide reasonable trade-off between1140

scale-up cost and throughput. The selected solutions are tabu-1141

lated in Table 11. They are further subjected to ‘a posteriori’1142

approach, where the preferences from the decision maker are1143

used to select a suitable solution from the considered list. The1144

evaluation is performed according to the scale-up KPIs such as1145

i) cost efficiency (c1/scale-up cost), where c1 is a constant value1146

ii) throughput (product A) iii) throughput (product B) iv) ease1147

of transition and v) compactness (c2/no. of slots occupied),1148

where c2 is a constant value. In this context, the ease of tran-1149

sition represents the time and effort taken to change the system1150

configuration from the existing one to the proposed one.1151

6.1. Decision making from industrial perspective1152

A radar plot is provided in Figure 16 to compare the con-1153

sidered four solutions using the indicated scale-up KPIs. The1154

higher the value of a particular solution in the plot, the better1155

that solution is in terms of the considered KPI. Solution one,1156

represented in ‘blue’ has the best results in terms of cost effi-1157

ciency, compactness and ease of transition. Solution four, rep-1158

resented in ‘purple’ has the best results in terms of through-1159

put. All four solutions are capable of achieving the the tar-1160

get throughput of 65 products of variant A and 65 products of1161

variant B. However, solution four has more production capacity1162

than required. Depending on the application and scenario under1163

consideration, the decision maker might consider solution 4, i)1164

if the production line is intended to be used over a long period1165

of time and ii) if the demand is expected to increase again in1166

the future. Despite the solution being expensive and exacting1167

a lot of effort for the transition, the buffer capacity provided1168

by solutions three and four might be considered useful in the1169

above situations. However, the solutions one and two might be1170

considered i) for production lines that have relatively shorter1171

lifespan or ii) for products predicted to become obsolete in the1172

near future.1173

Figure 16: Comparison of solutions using radar plot

For the purpose of comparing the alternate DES scenarios,1174

the total simulation time is considered as a constant and it is1175

assumed that infinite number of products are available for pro-1176

cessing. As a result, it is difficult to compare the solutions with1177

regards to scheduling policies that prioritise one product over1178

the other. For such cases, it might be better to allocate a finite1179

number of products at the start of the simulation and consider1180

the simulation time as a variable.1181

7. Discussion and future work1182

The calculation of workstation process time in Stage one1183

of the methodology is achieved with the help of a kinematic1184

model. It is also possible, with proper ontology and query de-1185

sign, to achieve the same using protégé for certain workstations,1186

as long as the motion time information of actuators and such1187

can be sourced from either datasheets, historical results, expe-1188

rience, etc. This approach can be considered more beneficial1189

since it is capable of filtering only those workstation designs1190

that fall within the preferred bounds of process time. Hence, the1191

number of candidate solutions that need to be modelled virtu-1192

ally can be significantly lowered. Although similar approaches1193

for selection of equipment from an available list of products for1194
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Table 12: Evaluation of DDSM methodology.

Evaluation criteria Assessment of DDSM methodology

Time reduces time-to-market and time-to-volume

virtual validation of concepts reduces the time spent on physical prototyping

reduces human errors

Cost reduces risk of choosing expensive sub-optimal solutions

reduces risk of project failure

provides alternate solution to product lifecycle management suites

Effort provides decision support for cognitively complex design solutions

pre-defined libraries reduce effort involved in virtual model creation

Reusability use of parametric models supports reusability

data encapsulation in virtual models supports planning stages

Extendability the methodology could be extended by addition of other software

Traceability use of common database with IDs enables traceability

use of digital twins enables performing quality checks at every stage

Applicability applicable to industries that envision digital transformation

decision support using virtual models drives the digital transformation

specific brands are available in some manufacturer’s website,1195

a screening process across a wider range of brands might be1196

more beneficial and time-saving. The reason behind this is that1197

manufacturing industries, typically, employ a myriad of brands1198

across their production systems.1199

The workstation configurations that are considered in the1200

case study are mostly automatic or semi-automatic. In situa-1201

tions where manual workstations are involved, it is not neces-1202

sary to perform the equipment selection process in protégé. The1203

simulation optimisation process in Stage two has certain disad-1204

vantages due to the computation time as a result of the real-1205

time connection, number of decision variables considered and1206

replications within DES. Additionally, the process of triggering1207

FlexSim from MATLAB negatively influences the computation1208

time. Although the use of a batch file with a ‘timeout’ allows1209

the termination of Flexsim at the end of simulation run, the use1210

of KEPServerEX to transfer data in real-time and issues with1211

the quality of the connection, delay the execution process. The1212

extra lines of code written in the algorithm for objective func-1213

tion calculation to ensure that good quality data is passed from1214

FlexSim to MATLAB also prolongs the simulation optimisa-1215

tion time. To overcome this, ‘a priori’ approach, where the1216

decision maker’s preferences are considered before performing1217

the optimisation in order to focus the solutions in a particular1218

region of the pareto space can be considered. An evaluation1219

of the industrial applicability of DDSM is provided in Table1220

12 where seven different criteria are considered. Accordingly,1221

the methodology is found beneficial in providing cost, time and1222

effort-savings along with supporting the reusability, extendabil-1223

ity and traceability. The process of DES modelling demands1224

some background knowledge about the considered application1225

and production system as there is need to abstract and model the1226

system in an efficient way. Also, several parts of the methodol-1227

ogy in its current state, require human intervention. However,1228

it is possible to achieve seamless integration in a more effec-1229

tive way using i) plugin for data transfer between the ontology1230

editor and database for equipment selection ii) ‘xml’ files for1231

automatic transfer of process parameter from kinematic model1232

to the ontology editor iii) functions within MATLAB to obtain1233

information from database and write back to it. Associated pa-1234

pers that discuss the connectivity between ontology model and1235

database can be found in literature [69, 70, 71]. Currently, the1236

selected solutions comprise of information about the quantity of1237

operators, machines and material handling units but not about1238

the layout. Further work needs to be done in the area for lay-1239

out analysis of the selected solutions and improving the DES1240

model to automatically place the newly added elements in the1241

new layout.1242

In the case study implementation, four solutions from the1243

pareto front were selected for further analysis using five scale-1244

up KPIs which focus on the system design. However, it is possi-1245

ble to consider other criteria from operational perspective such1246

as the machine utilisation, buffer usage, machine blockages,1247

etc. The four solutions were further analysed in the DES model1248

to check for potential bottlenecks and deadlock situations. Al-1249

though not discussed as part of this research, there are plans1250

to provide an improved version of the decision making process1251

using multi-criteria decision making techniques along with the1252

consideration of additional criteria about the selected solutions1253

in terms of machine maintenance, breakdown and energy con-1254

sumption. The proposed methodology could also be extended1255

for warehouse modelling and complex material handling sce-1256

narios.1257
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Table 13: Comparison of DDSM methodology with similar works.

Related works

Ghani et al. [42] Michalos et al.[43] Manzini et al. [45] DDSM (presented work)

Research focus Integration of DES and Production line configuration System design and reconfiguration Scale-up decision support

kinematic model problem problem

Application area Reconfigurable Robotic workstations Modular assembly systems Assembly systems

assembly systems

Station configuration Kinematic modelling Analytical method Knowledge-based cell Knowledge-based kinematic

configuration tool modelling

Line configuration DES modelling Virtual modelling approach Knowledge-based system Simulation-based optimisation

configuration tool

7.1. Comparison with related works1258

The DDSM approach is closely related to the work done1259

by Ghani [42]. The research work done on the integration1260

between Kinematic modelling software and DES proposed1261

by Ghani [42] is adopted for the DDSM approach to support1262

scale-up decision making . However, in DDSM, the kinematic1263

modelling software is enriched with knowledge representation1264

using the ontology editor. Moreover, the DES model is coupled1265

with an optimisation algorithm to support the scale-up decision1266

making. The other related works include the research done by1267

Michalos et al. [43] and Manzini et al. [45]. Both these works1268

focus on the system configuration and design problem. While1269

Michalos et al. [43] support the robotic workstations using a1270

two-stage approach combining analytical method and virtual1271

modelling, Manzini et al. [45] support the modular assembly1272

systems using a knowledge-based tool. In DDSM, however,1273

both station and assembly line configuration and design1274

selection are supported with the help of virtual modelling tools.1275

A comparison of the related works is provided in Table 13.1276

1277

7.2. Conclusion1278

This research study proposes a methodology to support deci-1279

sion making for transition from low to high volume manufac-1280

ture in a systematic way. This is achieved by data integration of1281

virtual engineering tools that specialise in production line and1282

process modelling. To support the transition phase, it is essen-1283

tial to understand the number of operators, new workstations1284

and material handling units that are necessary for the new sys-1285

tem design in addition to ensuring that the required throughput1286

is achieved while still meeting the budget constraints. There-1287

fore, two conflicting objectives, cost and throughput are con-1288

sidered for an evolutionary multi-objective simulation optimi-1289

sation using MATLAB and FlexSim. The input parameters for1290

the DES model such as the number of machines, operators,1291

material handling units are passed from MATLAB to FlexSim1292

through KEPServerEX and throughput of products A and B are1293

passed back to MATLAB. Each workstation in DES is linked to1294

a process simulation model to obtain the workstation processing1295

time, subsequently improving the accuracy of DES and ensur-1296

ing that the time values are feasible and realistic. The approach1297

is demonstrated using a case study of battery module assembly1298

and the multi-objective simulation optimisation along with the1299

process simulation model provides potential system design so-1300

lutions that are represented on the pareto front. The alternate1301

solutions are compared according to five criteria that represent1302

the scale-up KPIs and the pros and cons of each are discussed1303

with the final decision left at the hands of the system designer.1304
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