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Abstract  

This study provides a systematic review of the existing literature on Zipf’s law for city size 

distribution. Existing empirical evidence suggests that Zipf’s law is not always observable even 

for the upper-tail cities of a territory. However, the controversy with empirical findings arises 

due to sample selection biases, methodological weaknesses and data limitations. The hypothesis 

of Zipf’s law is more likely to be rejected for the entire city size distribution and in such case the 

alternative distributions have been suggested. On the contrary, the hypothesis is more likely to be 

accepted if better empirical methods are employed and cities are properly defined. The debate is 

still far from to be conclusive. In addition, we identify four emerging areas in Zipf’s law and city 

size distribution research including the size distribution of lower-tail cities, the size distribution 

of cities in sub-national regions, the alternative forms of Zipf’s law, and the relationship between 

Zipf’s law and the coherence property of the urban system.  
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1. Introduction 
The empirical regularity often named as Zipf’s law is famous in city size distribution 

literature. This regulatory has fascinated urban scientists since the study of Felix Auerbach 

[1] who first observed that the size distribution of cities fits a Pareto distribution. Later the idea 

was further refined by the others such as Singer [2] and Zipf [3]. Specifically, Zipf [3] provided 

an empirical analysis which suggested that city size distribution can be approximated with a 

Pareto distribution having a shape parameter (i.e., Pareto exponent) exactly equals to one. This 

rule is often referred as Zipf’s law. In more general terms, Zipf’s law implies that, in a system of 

cities, the largest city is roughly twice the size of the second largest city, about three times the 

size of the third largest city, and so on. If cities are ranked according to their size and drawn on a 

graph, the plot of the log of the ranks of cities versus the log of the sizes of cities shows a scatter 

diagram with a regression line having a slope equals to -1. Figure 1 shows a typical log-rank 

versus log-size plot for 135 largest urban areas of the United States in census year 2010. Slope of 

the fitted line is -1.019.    

 

 
Figure 1: the plot of the log of the ranks versus the log of the sizes of the US cities 

 

For a long time, it has been a common belief that Zipf’s law holds for city size 

distribution (i.e., Zipf’s law is universal for cities). Consequently, the urban empiricists have 

widely used the law as a benchmark to understand urban systems. The estimated value of Pareto 

exponent shows the hierarchical degree of a system of cities. When the Pareto exponent equals 

one, Zipf’s law holds precisely. The higher the Pareto exponent, the more equally distributed is 

the city system. On the contrary, the smaller the value of exponent, the more uneven is the 

system of cities. On the extremes, when exponent=∞, the urban system is very even with all 

cities of same size. When exponent=0, the urban system is very uneven where one city hosts the 

entire urban population. The deviations from Zipf’s law are considered as the evidence of 

distortions in urban systems, such as aggregations, segregations and efficiency losses [4]. These 

distortions then can be traced for possible causes that might be institutional, economic, 

localization of resources and historical accidents, among others [5-9]. 
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However, a recent parallel literature is more skeptical of the law. For example, Benguigui 

and Blumenfeld-Lieberthal [10] argue that despite the widespread acceptance of Zipf’s law, it is 

not always observable even as an approximation for city size distribution. In another study, 

Ausloos and Cerqueti [11] argue that a mere hyperbolic law, like the Zipf's law power function, 

is often inadequate to describe rank-size relationships. Similar skepticism is evident in empirical 

literature. For example, Nitsch [12] performed a meta-analysis of 29 publised studies and found 

that the combined estimate of Pareto exponent is significantly greater than one which suggests a 

more even city size distribution. Similarly, Soo [9] examined the city size distribution of 73 

countries and found that Zipf’s law is more often rejected than is expected based on a random 

chance.  

The findings of existing studies have been criticized due to sample selection biases, 

methodological weaknesses and data limitations. Empirical studies usually use the data of large 

cities to examine Zipf’s law. Opponents however argue that a certain set of cities from the upper-

tail of city size distribution can be selected to support the hypothesis of Zipf’s law. On the 

contrary, proponents debate that the fit to Zipf’s law improves if appropriate empirical methods 

and proper definition of cities are used. As a result, some authors have examined Zipf’s law for 

all cities to avoid sample selection bias and show that Zipf’s law largely breaks down for the 

entire city size distribution and in such case the alternative distributions offer a better fit to cities. 

While at the same time, some others have suggested improvements in empirical methods and city 

definitions. In addition, several new areas have emerged in Zipf’s law and city size distribution 

research. Due to all these developments, a voluminous literature has mushroomed on city size 

distribution in last few years. Since the topic is attractive to several fields of studies, the experts 

such as physicists, statisticians, geographers and economists have contributed to the debate. 

Though this multidisciplinary approach has helped to shed light on different aspects of the city 

size distribution, however it also adds to the complexity of the topic. The objective of this paper 

is to review this diverse literature to consolidate the findings of existing studies, highlight the 

most important issues in this literature and identify the potential areas for future research. Since 

the debate of city size distribution has heated up in recent years, our study would be a timely 

contribution to the debate at its peak.  

Our study is different from the review of Nitsch [12] in several aspects. Nitsch [12] used 

a quantitative approach and did a meta-analysis of 29 empirical studies published from 1969 to 

2002 to analyze Zipf’s law for overall city size distribution. In contrast, we provide a qualitative 

review of city size distribution literature. We believe qualitative approach is helpful to shed light 

on city size distribution literature which in recent years has spread beyond Zipf’s law. In this 

context, our review not only provides a comprehensive and critical analysis of contemporary 

issues in Zipf’s law and city size distribution research, but also includes the studies which 

provide theoretical underpinnings to Zipf’s law or suggest alternative distributions. Moreover, 

we also identify emerging areas in Zipf’s law and city size distribution research. Finally, our 

review covers the most recent time period from 2000 to 2017 and the number of studies reviewed 

(114 studies) is comparatively very large.     

Previewing the main results, we find that Zipf’s law is not always observable even for the 

upper-tail cities of a territory. This result is not consistent with the common belief that Zipf’s law 

holds precisely at least for upper-tail cities. We further find that the hypothesis of Zipf’s law is 

too often rejected for the entire city size distribution, and in such case the alternative 

distributions have been suggested. However, the Zipf’s law still stands as a strong alternative 

candidate for the entire city size distribution due to the controversy of how a city is defined and 



Page 5 of 32 

 

which statistical methods are used. The debate is still far from to be conclusive. Further, we 

identify several emerging areas in city size distribution research, including the size distribution 

of lower-tail cities, the size distribution of cities in sub-national regions, the alternative forms of 

Zipf’s law and the coherence property of the urban system. 

The paper is organized as follows: Section 2 introduces our literature search methods. In 

Section 3, we report main findings of literature review. We use a systematic approach in 

literature review by classifying the studies in specific areas. First, we introduce Zipf’s law for the 

city size distribution in more general terms. Then, we review the theoretical studies which have 

tried to provide a theoretical explanation to Zipf’s law for cities. Next we provide a review of the 

empirical research. Finally, we examine the specific issues in Zipf’s law and city size distribution 

research. In Section 4, we identify the emerging areas in the city size distribution research. The 

final section concludes the study.    

2. Search of the related literature  
We started our review by searching the relevant studies on Zipf’s law and city size 

distribution. We largely restricted our survey to the studies published from 2000 to 2017. This 

time period was selected for at least two reasons: First, an enormous amount of city size 

distribution literature has appeared over this period due to the pioneer studies of Gabaix [13] and 

Eeckhout [14]. Second, the survey conducted by Nitsch [12] can be referred for the literature 

published before the year 2000.   

We used Google Scholar and Scopus as two major databases for our search. The 

keywords ‘Zipf’s law’, ‘city size distribution’ and ‘city growth’ were searched in both databases 

by limiting the search from 2000 to 2017. To ensure the maximum coverage of published 

studies, we augmented our search with forward citations and backward references approaches. 

For the former approach, we searched papers from the citations of major papers published in the 

early 2000s. For the latter approach, we selected very recent published papers and check their 

references for previously published studies. In total, we found 327 articles. After a detailed 

review of these papers, we included 114 most related papers in this study. We tried to include as 

many studies as we could search and which were related to city size distribution debate. 

However, we would like to apologize if a significant work of any author has been omitted.  

3. Review of the mainstream theoretical and empirical literature  
In this section, we briefly summarize the findings of our review. The first subsection 

introduces the Zipf’s law and discusses the empirical methods which have been used to validate 

the Zipf’s law for city size distribution. Second subsection presents the review of theoretical 

studies. Third subsection sums up the findings of empirical studies. Final subsection discusses 

how the controversial empirical evidence is reconciled.  

3.1 Introduction to Zipf’s law  

The history of Zipf’s law for city size distribution dates back to Felix Auerbach [1] who 

first observed the Pareto distribution for cities (later Singer [2] also made a similar observation) 

as. 

𝑅 = A. 𝑃−α          𝐸𝑞. (1) 
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Or 

𝐿𝑜𝑔 (𝑅) = Log (A) −  𝛼. 𝐿𝑜𝑔 (𝑃)          𝐸𝑞. (2) 

Here, P represents the population of a city. R is the rank of a city when cities are ranked from 1 

to n by the population size. A and α are constants. α is also referred as Pareto exponent.  

This observation later on received greater recognition due to George Kingsley Zipf [3], 

whom the law also owes its name to. Zipf restated the above relation by positing that the size of 

objects is inversely proportional to their rank (also referred as ‘rank-size rule’ or ‘power law’). 

This relation implied that in a system of cities the largest city is roughly twice the size of the 

second largest city, about three times the size of the third largest city, and so on. 

𝑃 =
K

Rq
         𝐸𝑞. (3) 

Or  

𝑃 = K. 𝑅−q          𝐸𝑞. (4) 

Or  

𝐿𝑜𝑔 (𝑃) = Log (K) −  q. 𝐿𝑜𝑔 (𝑅)          𝐸𝑞. (5) 

q is referred as Zipf’s exponent. In the special case, when the exponent q equals one (q=1), the 

city size distribution said to follow Zipf’s law. K is a constant. 

The relationship between Pareto-form Eq. (2) and Zipf-form Eq. (5) is straightforward, 

and a simple mathematical manipulation can show that q=1/α. When α→infinity, q→0, and the 

size of all cities is equal. Zipf’s law holds in strict form when α=q=1. This relation implies that 

Zipf’s law holds when city size distribution follows a special form of Pareto distribution with 

Pareto exponent equals one (α=1).  

The empirical literature has used two approaches to confirm Zipf’s law for city size 

distribution. First approach is to estimate any of the Pareto-form Eq. (2) or Zipf-form Eq. (5) to 

estimate Pareto exponent or Zipf exponent, respectively. If the estimated value of Pareto or Zipf 

exponent equals one, it confirms that Zipf’s law holds precisely. However, the Pareto-form 

equation has attracted more attention recently. Parameter estimates of Eq. (2) for the 135 largest 

US urban areas as shown in Figure (1) are 𝐿𝑜𝑔 (𝑅) = 17.745 −  1.019 𝐿𝑜𝑔 (𝑃). Since both 

equations (i.e., Eq. (2) and Eq. (5)) use the city size data at a specific point of time to examine 

Zipf’s law, this approach is also called a static method.  

Second approach is to confirm the Zipf’s law by validating the Gibrat’s law of 

proportional growth for city growth process. Gibrat’s law implies that the growth rate of a city’s 

population does not depend on the size of the city [15]. That is, we cannot predict a systematic 

behavior between city growth rates and their size, even though the cities can grow at different 

rates. More generally, we cannot assert that smaller cities grow faster than larger ones or vice 

versa. In a seminal study, Gabaix [13] demonstrated that Zipf’s law is an outcome of Gibrat’s 

law. He argued that Gibrat’s law implies that the growth process of cities have a common mean 

(equal to the mean city growth rate) and a common variance, that is, both the mean and variance 

have to be independent from the size of the cities. More in this direction, Córdoba [16] and 

Córdoba [17] argue that a more generalized Gibrat’s law that allows city size to affect the 

variance of the growth process but not its mean, can result more general rank-size distributions. 
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Building on these arguments, Modica, Reggiani and Nijkamp [18] focus on bidirectional 

relationship between Zipf’s law and Gibrat’s law and show that if the coefficient of Pareto 

distribution/Zipf’s law equals one, the mean and variance of city growth rates are independent of 

city size. And if the coefficient is different from one, then the mean is still independent while the 

variance of city growth rates depends on city size.     

A number of recent studies have examined the Gibrat’s law for city growth process to 

confirm Zipf’s law [18-20]. For example, Modica, Reggiani and Nijkamp [18] and Berry and 

Okulicz-Kozaryn [19] largely used the following model to explore Gibrat’s law.   

𝐿𝑜𝑔 (𝑃𝑖,𝑡) = β0 +  β1𝐿𝑜𝑔 (𝑃𝑖,𝑡−1) + εi         𝐸𝑞. (6) 

Here, subscripts i and t represent the city and time, respectively. P represents the size (i.e., 

population) of a city. εi is an error term. The coefficient β1 is the parameter of interest and shows 

whether size distribution diverges or converges toward its mean. Gibrat’s law holds if β1 is equal 

to one. When β1 is greater than one, the size diverges from its mean; that is, the expected growth 

is larger for large cities. On the contrary, when β1 is less than one, the size converges toward its 

mean; that is, the expected growth rate is smaller for large cities. εi is an i.i.d random variable 

with mean μ and variance σ2. We estimate Eq. (6) for 135 largest US metropolitan areas with the 

data from latest two census years of 2000 and 2010. We find that β1= 0.923 (with a robust 

standard error of 0.0405) which is statistically equals to one; the 95% confidence intervals lie 

between 0.843 and 1.003. εi is also normal. These results confirm Gibrat’s law. Since the city 

size data over a certain time-period is required to calculate city growth rates, this second 

approach is also referred as dynamic method.  

3.2 Review of theoretical studies  

Given the widespread acceptance of Zipf’s law for cities, several authors have 

endeavored to provide theoretical underpinnings to the law. This literature can be divivded into 

three types: First are the studies that use Gibrat’s law of proportional growth to explain Zipf’s 

law. Second are the studies which use the human capital accumulation and the central place 

theories to explain Zipf’s law. On the contrary, the third type of studies argues that Zipf’s law is 

a steady state outcome of a self-organizing system and does not need an underlying theory for its 

justification. Table 1 summarizes these studies. 

The underlying principle in the first strand of theoretical models is that in industrialized 

countries, cities concentrate not only a large part of the population but also the economic activity, 

and the urban structure is an outcome of dynamic interplay between economic activity and 

growth process of cities [13, 16, 17, 21-25]. In these models, various economic shocks (i.e., the 

amenity, productivity or innovations shocks) generate skew in city size distribution. When 

economic shocks are randomly distributed across cities, there would only be a few large cities 

due to the lower probability of a city being consistently hit by positive economic shocks which 

increase city size. When the shocks are independent of city size than city growth will follow 

Gibrat’s law of proportional growth (i.e., the growth rates of cities are independent of their 

absolute size) and consequently the size distribution would be Pareto with Pareto exponent 

exactly equals to one. In this context, the seminal study of Gabaix [13] shows that a randomly 

growing set of cities, which faces random amenity shocks and an impurity that restricts cities to 
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become too small1, can result in Zipf’s law at least in the upper-tail of the city size distribution. 

Gabaix hypothesizes that growth shocks are independently and identically distributed (i.i.d.) and 

impact the utilities both positively and negatively. The migration of workers occurs to the cities 

with higher wages that, in equilibrium, equates the utility-adjusted wages at the margin. By 

assuming a fixed number of cities and the constant returns to scale for production technology, he 

shows that all cities exhibit same expected growth rates and the deviations from expected growth 

rates observe random normal distribution (i.e., city growth follows Gibrat’s law). In such a 

scenario, the coefficient of city size distribution tends to be one and city sizes follow a pure 

Zipf’s law. In this model, only the size distribution of upper-tail cities would follow Zipf’s law if 

new cities emerge in the urban system. Extending this work, Córdoba [17] shows that a 

generalized form of Gibrat’s law where the variance of growth rates can depend on city size but 

not the mean can produce a distribution with Zipf’s exponent different from one. He also shows 

that under certain conditions, it can produce a pure Zipf’s law with Pareto exponent equals to 

one. 

Rossi-Hansberg and Wright [25] develop a model of urban growth that depends on the 

exogenous productivity shocks specific to each industry. When such a shock occurs, the volume 

of production and the size of the cities specialized in this industry increases. Urban system, 

where migration affects the growth, birth and death of cities, would eliminate these local 

increasing returns to scale at the margins yielding constant returns to scale for the whole urban 

system in aggregate. In the similar vein, Duranton [22] found that randomly distributed 

innovation shocks across cities can result in a size distribution of cities which follows Zipf’s law. 

In his model, a city is a collection of industries, and the industries randomly move to the places 

where research is more successful due to innovations. This model predicts that the size 

distribution of cities obeys an approximate Pareto distribution. In contrast to above models which 

assume only one factor at a time (i.e., amenity, productivity or innovation shocks), Lee and Li 

[24] show that several randomly distributed factors, which might correlate with each other to 

some extent, can result in a city size distribution which obeys Zipf’s law. In a more general 

framework, Córdoba [16] establishes a standard urban model with localization economies that 

can produce a size distribution of cities which is Pareto. He shows that to observe Pareto 

distribution, a system of cities must have a balanced growth path (i.e., all cities have same 

expected growth rate) and an exogenous driving force whose steady state distribution must be 

Pareto.  
The second strand of studies models the Zipf’s law distribution based on alternative 

approaches, rather than the city growth processes. For example, Behrens, Duranton and Robert-

Nicoud [26] model that big cities have higher productivity due to their ability to attract and sort 

out talented individuals. The individuals move to larger cities for agglomeration economies, 

however the higher urban costs in big cities let only talented and highly productive individuals to 

stay. They show if a Pareto distribution is assumed for the talent across cities, then the city size 

distribution also follows a Pareto distribution similar to the Zipf’s law. In another recent study, 

Hsu [23] models the city size distribution using a hierarchy approach based on central place 

theory. In this model, the differences in city sizes arise due to the heterogeneity in economies of 

 

1 Eeckhout [14] shows that if growth rates of cities follow Gibrat’s law then it will result a lognormal distribution, 
which is exponential but not power law even in upper-tail. So to get a power law it is necessary to introduce a 
truncation point or lower size limit.    
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scale across goods. If the distribution of scale economies is regularly varying, then the size 

distribution of cities under a central place hierarchy exhibits a power law.  

On the contrary, the third type of studies argues that Zipf’s law either breaks down in 

certain situations or it does not need a theoretical explanation. For instance, Mansury and Gulyás 

[27] developed a spatial agent-based model to generate a system of cities that exhibits the 

statistical properties of the Zipf's Law. When agents have the properties of bounded rationality 

and maximum heterogeneity, their migration to urban areas does not always generate a Zipf's 

Law city size distribution. In addition, the Zipf's Law breaks down unless the extent of 

agglomeration economies overwhelms the negative disagglomeration forces. Among the studies 

which suggest that Zipf’s law does not need a theoretical explanation, Axtell and Florida [28] 

and Semboloni [29] use agent based models where agents interact through probabilistic law for 

opposing goals and their movements within different places conform to Zipfian process under 

which the whole urban system converge to power law rule as a steady state. In another study, 

Gan, Li and Song [30] showed through Monte Carlo simulations that Zipf’s law is a statistical 

occurrence that does not require an economic theory. Similarly, Batty [31] explains that a 

complex adaptive system can self-organize itself in a distribution which can be described by the 

Zipf’s law. Finally, Corominas-Murtra and Solé [32] argue that the scaling behavior is a common 

statistical property of stochastic systems which evolve to a steady state between order and 

disorder.  

In this perspective, an important area for future research is to adopt a consolidated 

approach to settle the issue whether Zipf’s law requires a theoretical explanation.  

 

Table 1 Summary of theoretical studies   
Findings Studies 

Economic shocks (i.e., the amenity, productivity or 

innovations shocks) and random city growth 

process can result a city size distribution which 

obeys Zipf’s law 

Gabaix [13] 

Córdoba [17] 

Rossi-Hansberg and Wright [25] 

Duranton [22] 

Lee and Li [24] 

Córdoba [16] 

Human capital accumulation and the central place 

theory are used to explain Zipf’s law 

Behrens, Duranton and Robert-Nicoud [26] 

Hsu [23] 

Zipf’s law is a steady state outcome of a self-

organizing system and do not need an underlying 

theory for its justification 

Mansury and Gulyás [27] 

Florida [26] 

Semboloni [29] 

Gan, Li and Song [30] 

Batty [31] 

Corominas-Murtra and Solé [32] 

 

 

3.3 Review of empirical studies 

This section presents the review of empirical research. As described in Subsection 3.1, 

Zipf’s law can be confirmed either by estimating the log-rank log-size regressions (i.e., Eq. (2) 

and Eq. (5)) or by validating the Gibrat’s law of proportional growth. Recent empirical studies 

have used any one or both of these approaches to confirm Zipf’s law, and we include all these 

studies in our review.   
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 The studies reviewed are mostly country specific except a few which use multi-country 

datasets for the empirical analysis. After reviewing the literature, we classified the studies into 

five groups. First group are the studies which have debated whether Zipf’s law applies to a 

system of cities with mixed answers; some studies support the Zipf’s law while others reject it. 

Second are the studies which accept the hypothesis that Zipf’s law precisely holds for cities of 

territory. Third are the studies which reject the hypothesis of Zipf’s law for city size distribution. 

Fourth type of studies shows that city size distribution approaches to Zipf’s law as countries 

experience urbanization. Finally the last group of studies concludes that city size distribution 

may evolve away from Zipf’s law over time. 

We start from the first group of studies which report mixed evidence. Table 2 

summarizes the findings of this group of studies. The urban systems of the United States and 

China are major focus of these studies. For instance, a number of recent studies have supported 

Zipf’s law for the US city size distribution. In this regard, Krugman [33] and Gabaix [13] found 

that the largest 135 US Metropolitan Statistical Areas (MSAs) follow Zipf’s law. Similar 

evidence is reported by Levy [34] for 150 largest metropolitan areas. Ioannides and Overman 

[35] analyzed the city growth dynamics over the period 1900-1990 and confirmed the Zipf’s law 

by validating the Gibrat’s law of proportional growth. Some studies have shown that the fit to 

Zipf’s law improves if cities are properly defined [19, 36, 37]. For example, Berry and Okulicz-

Kozaryn [19] found that Zipf’s law holds precisely for the US cities above 500,000 inhabitants if 

measured as economic areas. Rozenfeld, Rybski, Gabaix and Makse [37] measured cities as area 

clusters and found that Zipf’s law applies to the area clusters with at least 13,000 inhabitants. 

Jiang and Jia [36] reported that Zipf’s law holds remarkably well for all cities (over 2-4 million 

in total) across the United States when a natural definition of city is used; a city is measured with 

covered land area.  

In contrast, some studies have opposed Zipf’s law for the US city size distribution. For 

example, Black and Henderson [38] analyzed the data of 282 metro cities over the period 1900-

1990 and reported a far less than one (0.842) Pareto exponent. They suggested a higher urban 

concentration in major cities than predicted by the Zipf’s law. In another influential contribution, 

Eeckhout [14] proposed an equilibrium theory to explain the lognormal distribution of cities. 

Considering the data of all US census places, he showed that the entire city size distribution is 

lognormal2, not Pareto. Eeckhout [14] identified the difficulty in distinguishing between the 

power law in upper-tail and the tail of lognormal distribution. The power law in upper-tail may 

just be a tail of lognormal distribution and not necessarily a separate Pareto distribution. For a 

Pareto distribution, the Pareto exponent should not be sensitive to the choice of truncation point. 

Becaue by choosing a specific truncation point and hence selecting a certain set of cities from the 

upper-tail, Pareto distribution can be favored over the lognormal. In another recent study, Bee, 

Riccaboni and Schiavo [40] did a thorough analysis by applying some counterfactual exercises 

and found that the power-law behavior of the upper-tail is less robust than previously claimed. 

They argued that the controversy arises due to the limited power of available statistical tests. 

Rafael González-Val and coauthors find that Gibrat’s law only weakly applies in the US and 

Zipf’s law breaks down for the entire city size distribution [41-43]. Some studies have supported 

this argument when they analyze Zipf’s law by validating the Gibrat’s law. For instance, 

 

2 Eeckhout [14]’s observation was consistent with Parr and Suzuki [39] who long ago suggested the lognormal 
distribution as a good description of the city size distribution. 
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González-Val, Lanaspa and Sanz-Gracia [43] find that Gibrat’s law is valid only for upper-tail 

cities and breaks down in the long-term for all cities. They conclude the lognormal distribution 

offers a better fit to the untruncated data over the whole twentieth century.  

To settle the controversy, some studies find that upper-tail of the US city size distribution 

is Pareto while body is lognormal. For example, Levy [34] analyzed the same dataset as used by 

Eeckhout [14] and found that 150 largest metropolitan areas (0.6% of sample) in Eeckhout’s 

dataset adhere to Zipf’s law. Malevergne, Pisarenko and Sornette [20] used uniformly most 

power unbiased (UMPU) test to distinguish between Pareto and lognormal distribution and found 

that the largest 1000 places in Eeckhout’s data follow a Pareto distribution while lower range 

cities follow a lognormal distribution. Ioannides and Skouras [44] suggest an ‘upper-tail Pareto 

lognormal distribution’ where distribution is robustly Pareto in the upper-tail (top 5%) while it is 

lognormal in the body. Fazio and Modica [45] use recursive approach and identify similar 

difficulty in distinguishing between a Pareto upper-tail and the tail of a lognormal distribution. 

They conclude that 1,000 largest cities follow Zipf’s law while lower range is lognormal. 

Similarly, whether the city size distribution in China follows Zipf’s law is a pending 

question with different answers. Some studies say “yes” [46-50], while others say “no” [51-57]. 

For example, Gangopadhyay and Basu [47] used the data of the census years of 1990 and 2000 

and find that the largest Chinese cities follow a Pareto distribution. Similarly, Ziqin [50] 

considered the data of 647 largest cities in the census year 2000 and 655 cities in 2010 and found 

that city size distribution is exactly Pareto. He reports a Pareto exponent equals to 1.0426. On the 

contrary, Song and Zhang [57] used the city-level data for the census years 1991 and 1998 and 

found that Zipf’s law does not apply. Anderson and Ge [51] and Li, Wei and Ning [54] favored 

the lognormal over the Pareto distribution for Chinese cities. In a methodological improvement, 

Peng [58] employed rolling sample regressions in which sample changes with truncation point. 

He observed a monotonically decreasing Pareto exponent when lower truncation points are 

chosen. He reports a 0.84 mean value of the Pareto exponent for his sample. Similarly, 

Luckstead and Devadoss [56] investigated the data of largest 142 Chinese cities over seven 

decades from 1950 to 2010. They found that the city size distribution was lognormal from 1950 

to 1990, while it is tilting towards Zipf’s law (though has not approached exact Zipf’s law) in the 

years 2000 and 2010. More in this direction, Li and Sui [55] observed that the Pareto exponent 

presents a turning point in 1996 illustrating China’s transition from a planned economy to a more 

market-oriented economy during that period. The specific characteristics of Chinese urban 

system are devoted to the specific institutional arrangement in China such as the socialist 

institutions, urban and regional development policies, changes in the urban administrative 

system, state and local government interests, one child policy and Hukou system [4, 59].  

Some studies examine the growth process of Chinese cities and largely fail to validate 

Gibrat’s law. These studies report that Chinese urban system is characterized by parallel growth 

where small and medium size cities have grown faster than the large cities [48]. Similarly, the 

particular groups of cities with common location-specific characteristics, such as the similar 

policy regimes and a natural resource endowment, grow parallel in the long run [60, 61]. 

However some recent studies find divergence in cities growth process that may result in Zipf’s 

law to hold in future. For example, Fang, Li and Song [62] find that the growth of Chinese cities 

was size convergent before 2000, but size-independent after 2000. Consequently, the major cities 

have grown at a rapid pace as compared to small and medium-sized cities after the year 2000. 

Some multi-country studies have also reported similar mixed evidence. For example, 

Rosen and Resnick [63] examined the Zipf’s law for 44 countries and found that 32 out of 44 



Page 12 of 32 

 

countries had a Pareto exponent equal to or greater than one. Soo [9] used a sample of 73 

countries and more recent data from the 1990s. His findings suggest that Zipf’s law is more often 

rejected than is expected based on a random chance; Zipf’s law is rejected for 30 out of 73 

countries with the Hill estimator and for 53 out of 73 countries with the OLS estimator. Nitsch 

[12] performed a meta-analysis of 29 studies and showed that the combined estimate of Pareto 

exponent is significantly greater than one which suggests a more even city size distribution. 

 

Table 2: Summary of empirical Studies (urban systems and studies with mixed evidence)  
Findings Studies Country Sample 

City size distribution 

obeys Zipf’s law 

Krugman [33] US 130 largest metropolitan areas 

 Gabaix [13]  135 largest metropolitan areas from the 

census year 1990 

 Ioannides and Overman [35]  112 cities in the census year 1900 to 334 

in the census year 1990  

 Berry and Okulicz-Kozaryn [19]  >150,000 inhabitants 

 Rozenfeld, Rybski, Gabaix and 

Makse [37] 

 1,947 US cities above 12,000 inhabitants 

 Jiang and Jia [36]  2-4 million urban agglomerations 

City size distribution 

does not obey Zipf’s law 

Black and Henderson [38]  282 largest metro cities 

 Eeckhout [14]  25,359 places (all places in the year 

2000 US census with population from 1 

to over 8 million) 

 Eeckhout [64]  Same as Eeckhout [14] 

 Bee, Riccaboni and Schiavo 

[40] 

 28,916 cities; or 17,569 clusters  

Upper-tail of city size 

distribution conforms to 

Zipf’s law, while body 

and lower-tail are 

lognormal  

Levy [34]  Sample is same as Eeckhout [14]. 150 

largest census places follow Zipf’s law 

 Malevergne, Pisarenko and 

Sornette [20] 

 1,000 largest cities with population 

above 37,000 inhabitants follow Zipf’s 

law 

 Ioannides and Skouras [44]  Census Defined Places above 60,290 

inhabitants, Metro and Micro areas 

above 34,853 and Area clusters above 

30,635 follow Zipf’s law. 

 Fazio and Modica [45]  1,000 largest cities follow Zipf’s law, 

lower range is lognormal. 

City size distribution 

obeys Zipf’s law 

Gangopadhyay and Basu [47] China Different sample compositions; 

minimum threshold is the cities above 

50,000 inhabitants in the census year 

2000 

 Ziqin [50]  655 largest cities in the census year 2010 

City size distribution 

does not obey Zipf’s law 

Song and Zhang [57]  665 largest cities in the census year 1998 

 Anderson and Ge [51]  Cities with more than 100,000 

inhabitants 

 Luckstead and Devadoss [56]  142 largest cities from 1950 to 2010 

 Li, Wei and Ning [54]  657 large in the census year 2010 

Average Pareto 

exponent is greater than 

Rosen and Resnick [63] 44 

countries 

Truncated samples 
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1 

Zipf’s law is more likely 

to be rejected 

Soo [9] 73 

countries 

Truncated samples 

 

The second group of studies finds that Zipf’s law precisely holds (Table 3 summarizes 

the findings of second to fifth group of studies). In this context, the city size distributions of 

Germany, Romania, Morocco and Russia are major examples. Giesen and Südekum [65] found 

that Zipf’s law exactly holds for German cities with population above 100,000 inhabitants at 

both national- and regional-levels. They also find evidence in favour of Gibrat’s law. Gligor and 

Gligor [66] supported the Zipf’s law for 265 large and medium urban settlements of Romania for 

the census year 2002. Ezzahid and ElHamdani [67] explored the Zipf’s law for Moroccan cities 

for the census years 1982, 1994, and 2004. Zipf’s law holds for Moroccan cities with more than 

50,000 inhabitants3. Rastvortseva and Manaeva [69] found that the size distribution of largest 

Russian cities was Zipf in the census year 2014.  

Opposite to the second group, the third group of studies argues that Zipf’s law does not 

hold. City size distributions of Canada and Spain are clear examples. Lalanne [70] examined the 

size distribution of 152 largest Canadian cities for the census years 1971, 1981, 1991 and 2001. 

He rejected the Zipf’s law for all periods. Urban structure is dominated by few large cities such 

as Toronto, Montreal and Vancouver. Similarly, the growth process is deterministic, rather than 

random, where city growth rates depend on city size, previous growth and spatial structure. In 

another study, Dubé and Polèse [71] analyzed the size distribution of 135 largest urban areas 

over the period 1971-2011 and found that the initial city size positively affects subsequent 

growth. Likewise, some studies have estimated much lower Pareto exponent for Spanish urban 

system [6, 72]. For example, Le Gallo and Chasco [6] analyzed the data of 722 Spanish 

municipalities over the period 1901-2001 and found that the estimated values of Pareto exponent 

varies from 0.54 to 0.66 in different years.  

The fourth set of studies reports that city size distribution approaches to Zipf’s law as 

countries experience urbanization. In this context, the urban systems of India and Brazil are 

major examples. For India, Gangopadhyay and Basu [47] supported Zipf’s law for upper-tail 

Indian cities in the census years 1981 and 2001. Similar observation was made by 

Gangopadhyay and Basu [48] when they considered the data of four census years 1981, 1991, 

2001 and 2011. In addition, Gangopadhyay and Basu [48] found that the growth process of 

major Indian cities follows Gibrat’s law. Luckstead and Devadoss [56] examined the size 

distribution of Indian cities from 1950 to 2010. They found that the distribution was lognormal 

from 1950 to 1980, while the Pareto in census years 1990 and 2010. Later was the period when 

India experienced rapid economic growth through industrialization, which caused widespread 

migration of workers from rural to urban areas. For Brazil, Moura and Ribeiro [73] examined the 

size distribution of Brazilian cities (with at least 30,000 inhabitants) for the four census years of 

1970, 1980, 1991 and 2000. They concluded that upper-tail Brazilian cities follow a power law. 

Matlaba, Holmes, McCann and Poot [74] looked at the evolution of 185 functionally defined 

urban areas of Brazil over the period from 1907 to 2008. They found that even though both 

Zipf's and Gibrat's laws did not formally hold in Brazil's past, however gradually the stochastic 

urban growth process that is consistent with Gibrat’s law has led to a more Zipfian city size 

 

3 In another study, Schaffar and Nassori [68] focused just on urban growth process of Moroccan urban system from 
1994 to 2010 and found that urban system is converging towards more even distribution. 
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distribution in recent years. In another recent study, Ignazzi [5] reported similar results for the 

large Brazilian cities for the data from 1871 to 2010. 

Finally, the last group argues that the distribution of a system of cities may evolve away 

from Zipf’s law over time. In this context, the size distributions of Malaysian, Mexican and 

Turkish cities are key examples. For instance, Soo [75] examined the Zipf’s law for Malaysian 

cities with at least 10,000 inhabitants. Using the data of five census years 1957, 1970, 1980, 

1991 and 2000, he showed that Zipf’s law held only in 1957 but not in other years. Since the 

year 1957, the city size distribution in Malaysia has evolved away from Zipf’s law. He also 

rejected Gibrat’s law by finding that some cities (i.e., smaller cities, state capitals and the cities 

in the states of Sabah and Selangor) have grown faster than the rest of the urban system. Pérez-

Campuzano, Guzmán-Vargas and Angulo-Brown [7] studied the size distribution of Mexican 

cities from 1900 to 2000 using the census data collected every ten years. The estimated values of 

Pareto exponent range between α≈0.7 and α≈1.1. The deviations from Zipf’s law were more 

remarkable at the beginning and at the end of the 20th century. For Turkey, Duran and Ozkan 

[76] found that Zipf’s law held in 1965 with a Pareto exponent of 1.004 and the exponent 

increased to 1.014 till 1980 and started decreasing after that with values of 0.96 in 1990, 0.894 in 

2000 and 0.824 in 2010. It was significantly different from one from 2007 onward4.  

 

Table 3 Summary of empirical studies   
Main findings` Study Country Sample 

City size distribution 

exactly conforms to Zipf’s 

law. 

Giesen and Südekum [65] Germany Cities with more than 

100,000 inhabitants 

 Gligor and Gligor [66] Romania 265 large and medium 

urban settlements 

 Ezzahid and ElHamdani [67] Morocco Cities with more than 

50,000 inhabitants 

 Rastvortseva and Manaeva [69] Russia  

City size distribution does 

not conform to Zipf’s law 

Lalanne [70] Canada 152 largest urban areas 

 Dubé and Polèse [71]  135 largest urban areas 

 Lanaspa, Pueyo and Sanz [72] Spain  

 Le Gallo and Chasco [6]  722 Spanish municipalities 

City size distribution 

approaches to Zipf’s law as 

countries experience 

urbanization 

Gangopadhyay and Basu [47] India Different samples; 

minimum threshold is the 

cities above 10,000 

inhabitants in the census 

year 2001  

 Gangopadhyay and Basu [48]  Cities above 212,523 

inhabitants in the census year 

2011 
 Luckstead and Devadoss [56]  58 largest cities from 1950 to 

2010 
 Moura and Ribeiro [73] Brazil Cities with 30,000 

inhabitants or more 

 

4 Deliktas, Önder and Karadag [77] use data from 1980 to 2007 and find strong support in favor of Zipf’s law for 
Turkish cities when the rank-minus-half rule of Gabaix and Ibragimov [78] is used to estimate rank-size regression. 
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 Matlaba, Holmes, McCann and 

Poot [74] 

 185 largest functionally 

defined urban areas 

 Ignazzi [5]  Census years data from 

1871 to 2010  

City size distribution may 

evolve away from Zipf’s 

law over time 

Soo [75] Malaysia Cities with more than 

10,000 inhabitants 

 Pérez-Campuzano, Guzmán-

Vargas and Angulo-Brown [7]  

Mexico Cities with more than 

15,000 inhabitants 

 Duran and Ozkan [76] Turkey Cities with more than 

37,522 inhabitants in the 

year 2012  

 

 

Above discussion suggests that Zipf’s law is not a universal phenomenon even for the 

upper-tail cities. The validity largely varies from country to county and depends on country 

characteristics such as the institutional setting, cultures, economic and urban policies and history. 

One important implication from above findings is that we specifically need to establish the 

validity of Zipf’s law for the city size distribution of an urban system at a specific point of time.   

3.4 Reconciling the empirical evidence  

Empirical evidence provided by different studies on Zipf’s law has been criticized on 

several grounds. The studies which support Zipf’s law are criticized based on sample selection, 

while the studies which reject Zipf’s law are criticized due to weak empirical methods and 

improper definition of cities.   

As shown in Tables 2 and 3, almost all studies which support Zipf’s law work with 

truncated data from the upper-tail of the city size distribution. The choice of truncation point 

remains with researcher and introduces arbitrariness in sample selection. Due to this shortcoming, 

the opponents of the Zipf’s law argue that the choice of a truncation point biases the results 

because a sample of cities from the upper-tail can be selected to accept the hypothesis of Zipf’s 

law over other alternative distributions.  

One the contrary, the proponents of Zipf’s law argue that too often rejection of Zipf’s law 

for city size distribution is a result of improper definition of cities and the use of weak empirical 

methods. These studies suggest that cities should be measured as economic/functional urban 

areas rather than the administrative units. Functional definition considers close suburbs while the 

administrative usually ignore them. The fit to Zipf’s law improves if cities are properly defined. 

Similarly, these authors suggest that the empirical results reported by a number of studies are 

biased due to inappropriate econometrics techniques. Zipf’s law is more likely to hold if an 

accurate method is used. Below subsections review these opinions.           

3.4.1 Sample selection and alternative distributions  

Sample selection issues 

One main challenge for the authors to confirm Zipf’s law for cities is to decide the data 

truncation point for sample selection. A truncation point can be selected to accept the Zipf’s law 

over another alternative distribution. Though different studies have suggested different methods 

for data truncation, the arbitrariness remains a concern in all methods. 
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Rosen and Resnick [63] proposed two alternative methods for choosing the data 

truncation point: ‘the number threshold method’ whereby a fixed number of cities are selected 

and ‘the size threshold method’ whereby the cities above a fixed size threshold are kept in 

sample for each time period or for each region/country. Further, Wheaton and Shishido [79] 

suggested the third ‘the urban population threshold method’ whereby the cities with a given 

proportion of a country’s total urban population are included into the sample5. Recently, Li and 

Sui [55] proposed the fourth ‘the number percentage threshold method’ to select sample. This 

method chooses a fixed percentage of the number of cities. 

All these sample selection methods face criticism. For example, the number threshold 

method will include only a small proportion of the cities in large countries which have higher 

number of cities, while a large proportion of cities in small countries which have small number 

of cities. Similarly, the size threshold method will include higher number of cities in a large and 

populated country, while only few cities from a country with small size and less population. 

Further, the urban population threshold method is influenced by the degree of 

metropolitanization of an urban system. Finally, the number percentage threshold method will 

exclude more cities in absolute terms if an urban system has a large number of cities as 

compared to the cities excluded from an urban system with small number of cities.  

Thus in all methods, the sample selection remains arbitrary. One plausible answer is to 

use untruncated data. However, when untruncated city data is considered, the Zipf’s law largely 

breaks down. Several studies have shown the sensitivity of Pareto exponent to sample size [14, 

45, 58, 75, 80]. For example, Krugman [33] and Gabaix [13] found that Zipf’s law applies to 135 

largest US Metropolitan Statistical Areas. In contrast, Eeckhout [14] showed that the US city size 

distribution is lognormal if all census defined places (25,359 places in the census year 2000) are 

considered. Fazio and Modica [45] specifically examined the data truncation issue for the US 

cities using a recursive regressions  approach. They concluded that Zipf’s law may be favored in 

upper-tail by truncating the data, however the lognormal distribution seems to better fit the entire 

sample. Similarly, Gangopadhyay and Basu [47] found that Zipf’s law can only be favored for 

Chinese cities if a higher truncation point is chosen. In another study, Peng [58] employed the 

rolling sample regressions for Chinese cities and discovered that Pareto exponent monotonically 

decreases if lower truncation points are chosen.    

Alternative distributions  

Considering that Pareto distribution may break down for untruncated samples, a number 

of new distributions have been suggested for the entire city size distribution 6 . Table 4 

summarizes these distributions. Of these the q-exponential was suggested by Malacarne, Mendes 

and Lenzi [88]. Eeckhout [14] showed that the lognormal distribution is appropriate. Some 

studies have combined Pareto and other distributions to formulate composite distributions. 

Different statistical methods have been used to construct these distributions. In this vein, the 

 

5 This method is referred as urban population threshold method by the Li and Sui [55]. 
6 Other similar distributions are also available in literature. For example, Eliazar and Cohen [81], Eliazar and Cohen 
[82] and Eliazar and Cohen [83] drive power law distributions to describe incomes of individuals in a country 
(including other natural phenomena) by using Lorenz asymptotic analyses. In another strand,  Eliazar and Cohen 
[84] and Eliazar and Cohen [85]  and Cohen and Eliazar [86] construct composite distributions, such as a 
distribution with power laws in both tails and log-Gaussian body, using geometric Langevin dynamics. Recently, 
Eliazar [87] employ an entropy based approach to establish power-law distributions. 
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prominent distributions are the upper-tail Pareto lognormal distribution [44], the Pareto-tails 

lognormal distribution [89], the double Pareto lognormal distribution [90-92], the threshold 

double Pareto Singh–Maddala distribution [93], the Pareto-positive stable distribution [94] and 

the Pareto ArcTan distribution [95]. 

Malacarne, Mendes and Lenzi [88] introduced the q-exponential distribution to cities and 

found that it offers a better fit to the entire city size distribution of the US and Brazil. Subbarayan 

and Kumar [96] used the untruncated data of all Indian cities and towns over the period 1951-

2011 and examined that the which one Pareto, three parameter lognormal or q-exponential 

distribution is a good fit to empirical data. They find that q-exponential outperforms the other 

two distributions. On the other hand, Soo [75] found that the q-exponential distribution does not 

offer a good fit to the data of all administratively defined Malaysian cities.    

Ioannides and Skouras [44] found that the US city size distribution is robustly Pareto in 

the upper-tail (top 5%) while it is lognormal in the body. They introduced it as a new ‘upper-tail 

Pareto lognormal distribution’ function which switches between a Pareto upper-tail and a 

lognormal body and lower-tail7. Extending the work of Ioannides and Skouras [44], Luckstead 

and Devadoss [89] suggested the Pareto-tails lognormal distribution which consists of upper-tail 

Pareto, middle range lognormal, and lower-tail Pareto. Pareto-tails lognormal distribution defines 

two switching points, one between a Pareto upper-tail and a lognormal body and the other 

between a lognormal body and a reverse Pareto lower-tail, and thus clearly delineates between 

the three behaviours. Luckstead and Devadoss [89] found that the Pareto-tails lognormal 

distribution outperforms the upper-tail Pareto lognormal distribution for the entire US city size 

distribution. In another recent study, Luckstead, Devadoss and Danforth [98] found similar 

evidence for all Indian cities.  

Reed [91] and Reed and Jorgensen [99] suggested that the size distribution of lower-tail 

cities is an inverse power law, in addition to the power law distribution in upper-tail. They 

modeled that a lognormally distributed initial state, which follows a geometric Brownian motion 

over an exponentially distributed length of time, results in a new double Pareto lognormal 

distribution (DPLN). This distribution has power laws in both upper and lower-tails and a 

lognormal body, but without clearly delineating between the three behaviours. This distribution 

has shown a good fit to empirical data. For instance, Giesen, Zimmermann and Suedekum [100] 

found that DPLN distributions outperforms the lognormal for the entire city size distributions of 

eight countries (Brazil, the Czech Republic, France, Germany, Hungary, Italy, Switzerland and 

the US) Similarly, González-Val, Ramos, Sanz-Gracia and Vera-Cabello [101] used untruncated 

city data of Italy, Spain and the US from 1900 until 2010, and the data of last available year for 

remaining countries of the OECD to examine city size distribution. They compared 

DPLN, lognormal, log-logistic and q-exponential and found that the distribution which best fits 

the data in most of the cases (86.76%) is the DPLN. In another study, Vitanov and Ausloos [102] 

observed that DPLN outperforms Zipf’s law for Bulgarian cities.  

Ramos, Sanz-Gracia and González-Val [93] introduced the threshold double Pareto 

Singh–Maddala (TDPSM) distribution to city size data. This distribution has Pareto behaviour in 

the upper and lower-tails, and Singh–Maddala body (see Singh and Maddala [103] for the details 

of Singh-Maddala function). They found that TDPSM distribution outperforms lognormal and 

 

7 Calderín-Ojeda [97] find that the size distribution of all French settlements (i.e,. communes) from 1962 to 2012 is 
best explained by lognormal upper-tail Pareto distribution.  
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DPLN distributions for the entire US city size data of three types (all places in 2000–2010, 

incorporated places in 1900–2000 and CCA clusters in 1991–2000). Puente-Ajovín and Ramos 

[8] compared lognormal, DPLN, TDPSM, and normal-Box–Cox distributions for four European 

countries (i.e., France, Germany, Italy and Spain). They found that TDPSM outperforms the 

other three while the DPLN is second best. 

Sarabia and Prieto [94] introduced a new Pareto-positive stable (PPS) distribution 

function to explain the entire city size distribution. In this function, zero and unimodality are 

possible, and the classical Pareto and Zipf distributions are included as a particular case. They 

compare this new distribution with the Pareto, lognormal and Tsallis distributions using the city 

data of Spain over several census years, and observe that new distribution offers a better fit to the 

data than the other three distributions. This distribution has been examined at sub-national levels 

also. For instance, Kumar and Subbarayan [104] examined the city size distribution of the 

Andhra Pradesh state of India and found that Pareto-Positive Stable (PPS) distribution offers a 

better fit to actual city data than the Pareto and lognormal distributions. In another study, similar 

evidence has been reported by Vallabados and Arumugam [105] for another Indian state of 

Kerala.  

Gómez-Déniz and Calderín-Ojeda [95] drove a more generalized Pareto distribution, the Pareto 

ArcTan (PAT) distribution, using the circular inverse of the tangent function. This distribution 

includes Pareto and Zipf’s distributions as limited cases. Using the city data of Australia and 

New Zealand, they showed that PAT distribution improves the performance of classical Pareto, 

lognormal and Pareto positive stable distributions. 

These all are very interesting developments in the city size distribution literature. Though, 

several functions have been invented with some empirical validation, however the widespread 

empirical acceptance of any of these functions is still need to be established and is an interesting 

area for future research. In addition, future research may endeavor to provide theoretical 

underpinnings to these alternative distributions.  

 

Table 4 Alternative distributions  
Distribution Studies 

q-exponential distribution Malacarne, Mendes and Lenzi [88] 

Subbarayan and Kumar [96] 

Soo [75] 

Lognormal distribution Eeckhout [14] 

Double Pareto-lognormal (DPLN) 

distribution 

Reed [91] 

Reed and Jorgensen [99] 

Giesen, Zimmermann and Suedekum [100] 

González-Val, Ramos, Sanz-Gracia and Vera-Cabello 

[101] 

Vitanov and Ausloos [102] 

Threshold double Pareto Singh–Maddala 

(TDPSM) distribution 

Ramos, Sanz-Gracia and González-Val [93] 

Puente-Ajovín and Ramos [8] 

Pareto-positive stable (PPS) distribution Sarabia and Prieto [94] 

Kumar and Subbarayan [104] 

Vallabados and Arumugam [105] 

Pareto ArcTan (PAT) distribution Gómez-Déniz and Calderín-Ojeda [95] 

Upper-tail Pareto lognormal distribution Ioannides and Skouras [44] 

Pareto-tails lognormal distribution Luckstead and Devadoss [89] 

Luckstead, Devadoss and Danforth [98] 
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3.4.2 Methodological improvements  
As described in Subsection 3.1, the empirical literature has widely used the regression 

approach in the form of Eq. (2) (restated below) to examine Zipf’s law for cities.    

𝐿𝑜𝑔 (𝑅) = Log (A) −  𝛼. 𝐿𝑜𝑔 (𝑃)          𝐸𝑞. (2) 

Eq. (2) is estimated using ordinary least squares (OLS) estimator. To accept Zipf’s law, the 

estimated value of α from Eq. (2) should be statistically equal to one. A usual t-test is used to test 

the null hypothesis that the estimated value of α is not different from one. However, a number of 

recent studies have identified the weaknesses of this approach and suggest some improvements.   

In this respect, Gabaix and Ioannides [106] argued that the estimated value of α from Eq. 

(2) is likely to be downward biased because the size of the largest city appears ‘too big’. This 

effect would particularly be strong when the sample size is relatively small. In the same vein, the 

standard errors for the Pareto exponent by OLS estimator would also be underestimated and, as a 

result, Zipf's law can be rejected too often based on the t-test. Nishiyama, Osada and Sato [107] 

introduced a new test and demonstrated by using the same data as used by the Soo [9] that Zipf 

law is rejected for only 1 of 24 countries under their new test whereas it is rejected for 23 of 24 

countries under the usual t-test used by the Soo [9].  

To control these problems, Gabaix and Ibragimov [78] proposed an alternative version of 

Eq. (2) by introducing the log of rank-1/2 as dependent variable. Specifically, the following form 

is suggested.   

𝐿𝑜𝑔 (𝑅 −
1

2
) = Log (A) −  𝛼. 𝐿𝑜𝑔 (𝑃)          𝐸𝑞. (7) 

Gabaix and Ibragimov [78] argue that this methodological development eliminates the biases 

linked with the estimation of Eq. (2). By doing so, the regression specified in Eq. (7) might 

improve the chances of accepting the hypothesis in favour of Zipf’s law. However, from the 

empirical evidence reviewed in Subsection 3.3, it seems that this methodological improvement 

cannot account for all the empirical deviation from Zipf’s law. Several empirical studies have 

tried to validate the Zipf’s law by confirming the Gibrat’s law for city growth process, and still 

have rejected the Zipf’s law8. To reject the Zipf’s law with the alternative method to some extent 

suggests that the methodological improvement would not account for all the deviations from 

Zipf’s law in empirical research. However, we do acknowledge that more empirical research is 

needed by using the new regression model to rule-out this allegation. Another suggestion for 

future research is to confirm Zipf’s law by using the log-rank log-size regression and Gibrat’s 

law approaches together for more robust empirical evidence.  

In other methodological improvements, Eq. (7) can be estimated using rolling samples 

regression [58] and recursive regression [45] approaches. Use of rolling and recursive regression 

approaches can shed light on how the estimated values of Pareto exponent change if data 

truncation point is changed. In this regard, recursive regression approach is specifically useful 

since it has the ability to estimate Pareto exponent by adding lower size cities one-by-one. If the 

 

8 As described in Subsection 3.1, Gibrat’s law can be confirmed by using the nonparametric (see, for example, 
Ioannides and Overman [35]) and parametric approaches (see, for example, Black and Henderson [38]). 
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estimated Pareto exponent remains invariant after adding lower size cities into the sample then 

Zipf’s law holds. Conversely, if the estimated Pareto exponent changes with the increase in 

sample size then the city size distribution follows some alternative distribution such as the 

lognormal. 

Several studies have criticized the Lilliefors approach used by Eeckhout [14] to favour 

lognormal over Pareto distribution. Ioannides and Skouras [44] argue Lilliefors test is not 

appropriate to test a lognormal specification. This test has very little power to detect deviations 

from a hypothesized distribution when these deviations occur in the tail. Using a switching 

approach, Ioannides and Skouras [44] showed that upper tail fits a Pareto distribution. 

Malevergne, Pisarenko and Sornette [20] used uniformly most power unbiased (UMPU) test to 

distinguish between Pareto and lognormal distributions and supported the Pareto distribution for 

1000 largest places in Eeckhout’s data.  

3.4.3 Definition of a city and Zipf’s law  
Another major support in favor of Zipf’s law comes from the studies who argue that a 

proper definition of the city should be used. This literature shows that empirical validation of 

Zipf's law is sensitive to the definition of cities [12, 14, 19, 36, 37, 63, 108-112]. Though 

different authors have used different words to define cities, overall the literature has used three 

types of city definitions: administratively defined cities [14], functionally defined cities [19, 37, 

111, 112] and natural cities [36, 109, 110]. This literature has shown that Zipf’s law offers a 

better fit to city size distribution when cities are defined as functionally defined urban areas 

rather than the administratively defined cities, and a pure form of Zipf’s law is observed if the 

cities are measured as natural cites.  

Most of the studies on Zipf’s law have used administrative definition to measure cities 

(incorporated places, municipalities, communes, etc.). There are at least two drawbacks of 

administrative definition of cities. First, the administrative definition of cities is largely used for 

political purposes and varies widely across countries. Second, this definition usually excludes 

close suburbs and do not consider economic integration of the population. To overcome these 

shortcomings, an alternative approach which defines cities as functional urban areas has been 

adopted. Recent studies have shown how these alternative definitions lead to opposing results.     

For example, Eeckhout [14] used the US data for all census defined places (including 

cities, towns, and villages) and found that lognormal distribution offers a better fit to the data. 

While, Rozenfeld, Rybski, Gabaix and Makse [37] applied a bottom-up approach of 

constructing area clusters from high resolution data on population density in the US. These area 

clusters are independent from administrative boundaries. They conclude that the size distribution 

of area clusters with at least 13,000 inhabitants closely follows Zipf’s law9. In the similar vein, 

Jiang and Jia [36] introduced the concept of ‘natural city’ where they define cities based on 

connectivity of roads and populations rather than administratively defined boundaries. The urban 

agglomerations are demarcated by clustering street nodes, including intersections and ends. They 

find that Zipf’s law holds quite well for all natural cities of the US.  

Some multi-country studies have examined Zipf’s law for functionally defined or natural 

cities. For former definition, the studies have used the functional urban areas data that stems 

 

9 For upper-tail of the US cities, Berry and Okulicz-Kozaryn [19] find that the fit to Zipf’s law improves when the 
upper-tail cities are defined as economic areas using commutation data.   
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from a collaboration of the European Commission (EC) and the Organization for Economic Co-

operation and Development (OECD) [111]. EC-OECD defined functional urban areas are 

identified by partitioning the earth surface into 1km2 grid cells. Using satellite images, high and 

low density cells are identified where a cell is classified as high density if it has a population 

density of greater than 1,500 inhabitants. Populated clusters are made by joining high density 

cells which share at least one border. Low density cells are also added in a populated cluster if 

these low density cells are encircled by high density cells included in the cluster. A populated 

cluster is designated as urban centre if it has greater than 50,000 inhabitants. As a final step, 

commuting flows data is used to add local administrative units (municipalities) into an urban 

centre. If more than 15% workers from a local administrative unit work in urban centre, than this 

unit is also added to urban centre. Addition of contiguous local administrative units makes up a 

larger urban zone, while addition of non-contiguous local administrative units, with 15% workers 

working in urban centre, makes up a polycentric larger urban zone. Based on this approach, 

Schmidheiny and Suedekum [111] use data  of 692 functional urban areas of 31 European 

countries and find that the size distribution of these areas does not follow Zipf’s law when these 

areas are consider as one group. They argue that the largest European cities are too small to 

follow Zipf’s law. Contrary, Veneri [112] examine the Zipf’s law for 29 OECD countries and 

find that Zipf’s law holds for the cities within each individual country except the three sample 

countries (i.e., Mexico, Poland and Spain). Zipf’s law also holds when cities are aggregated at 

continent level or at the whole OECD level. He emphasizes that Zipf’s law is universal (page-

89).  

For natural cities, Jiang, Yin and Liu [110] identify 30,000 natural cities around the 

World using night time imagery data of 1992, 2001 and 2010 and find that  Zipf’s law exactly 

holds for all cities. Zipf’s law remains valid at the continental level except the Africa. One major 

concern with this study is that it rejects Zipf’s law for several countries when it is estimated at 

country-level despite the fact that the system of cities is more coherent [113] at country-level due 

to free within country movements.  

From this discussion, it seems that one major cause of conflicting empirical evidence on 

Zipf’s law is the extreme heterogeneity in the samples of cities that have been used to perform 

the tests. The doubt lies in the quality of the city definitions and the delineations used to measure 

city size. More empirical work is needed to settle the issue of city definition and is most 

promising area for future research. In this context, future research may consider different city 

definitions within a country/region for comparison. Similarly, multi-country studies can use city 

data with consistently defined cities across countries for comparative purposes. Another concern 

with above studies is that a very high truncation point (50,000 inhabitants) has been used to 

define a functional area. Again the question arises whether Zipf’s law applies if lower size 

functional areas are included into the sample.     

4. Emerging areas in city size distribution research  
Several new areas have emerged in Zipf’s law and city size distribution research. We 

collected and classified the published studies and found four major areas in this regard. First are 

the studies that examine Zipf’s law for the systems of cities at sub-national or supranational 

levels. Second group examines the size distribution of lower-tail cities. Third are the studies 

which suggest alternative forms of Zipf’s law. Finally, the fourth group links the Zipf’s law with 

the coherence property of the urban system. Following sub-sections review the studies in each of 

these four areas. 
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4.1 Zipf’s law at sub-national or supranational levels   
Virtually, the debate on Zipf’s law has revolved around the size distribution of cities at 

country-level. However, a number of recent contributions have examined the Zipf’s law at sub-

national (i.e., province, state etc.) or supranational (i.e., OECD, EU etc.) levels. In addition, some 

studies have examined Zipf’s law for the total urban populations of provinces or states within a 

single country or for the total populations of the World countries.    

At sub-national levels, a few recent studies have examined Zipf’s law for city size 

distribution within a province, state or any other sub-regional classification. For instance, in an 

important study Giesen and Südekum [65] examined the size distribution of all German cities as 

well as the size distribution of cities within German regions. Building on the theory developed by 

Gabaix [13] that Zipf’s law follows from a stochastic urban growth process, they show that if 

urban growth follows random growth process then the city size distribution both at national- and 

regional-levels tend to follow the Zipf’s law. They also show that any random sample drawn 

from the sample of all cities also obeys Zipf’s law if urban growth is random. Similarly, 

Subbarayan [114] used the city data of Tamilnadu state of India from 1901 to 2001 and found 

that overall Zipf’s law holds with a value of Zipf’s exponent of 1.1424 for cities inhabited by a 

population of 10,000 and above, with a value of 1.0623 for cities of population of 5000 and 

above, and with a value of 0.9725 for all cities. For another Indian state Andhra Pradesh, Kumar 

and Subbarayan [115] found that city size distribution follows Zipf’s law with a coefficient of 

1.002 in the year 2001. Contrary, Ye and Xie [49] examined the city size distributions for 

Chinese urban system as a whole and for eight sub-regions (east, central-south, north, northeast, 

northwest, and southwest). In contrast to the studies on German and Indian sub-regions, they 

found that although Zipf’s law clearly captures the main trends of the urban system in China as a 

whole, however, there are dramatic variations when Zipf’s law is applied to sub-regions. They 

attribute this sub-regional variance in city-size distribution to differences in socioeconomic 

environment and urban developmental strategies in sub-regions. Similarly, Ziqin [50] examined 

the Zipf’s law for each of the 26 provinces of China using data from 1990 to 2010. Similar to Ye 

and Xie [49], he documents complicated city size distribution at province level; the city size 

distribution in some provinces is more even (α > 1), in some provinces exactly obeys Zipf’ law 

(α = 1), in some provinces is more uneven (α < 1), and in some provinces has primate 

characteristics.  

At supranational levels, Luckstead and Devadoss [116] rejected the Zipf’s law for the 

size distribution of world’s largest 600 cities. They attribute this finding to a lower cross-country 

mobility of population. On the other hand, Jiang, Yin and Liu [110] examined the Zipf’s law in a 

global setting considering about 30,000 natural cities 10  around the world. In contrast to 

Luckstead and Devadoss [116], they found that Zipf’s law holds remarkably well for all cities at 

global level. Similarly, two other studies have used the data of functional urban areas (FUA) 

from multi-countries and report different results. For instance, Veneri [112] examined Zipf’s law 

for 29 OECD countries considering different sample compositions. Specifically, Zipf’s law holds 

for the cities within each individual country except the three sample countries including Mexico, 

Poland and Spain. Zipf’s law also holds when cities are aggregated at continent level or at the 

whole OECD level. He emphasizes that Zipf’s law is universal (page-89). On the contrary, 

Schmidheiny and Suedekum [111] analyzed the 692 functional urban areas of 31 European 

 

10 Jiang, Yin and Liu [110] identify natural cities using satellite night imagery data.  
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countries and observe that the size distribution of these urban areas as a group do not follow 

Zipf’s law. They conclude that largest European cities are too small to follow Zipf’s law.   

Some studies have measured population size at a level other than the city to examine 

Zipf’s law. For instance, Rose [117] examined the Zipf and Gibrat’s laws for countries and found 

that similar to cities, the population distribution across countries also follows these two laws. In 

another study, González-Val and Sanso-Navarro [118] reassessed the findings of Rose [117] 

through Gibrat’s law. They also found evidence (although weaker than Rose [117]) that the 

growth process of countries is similar to that of cities.   

Another strand of research has examined Zipf’s law for the sizes of states or provinces 

within a country. In this context, Soo [119] explored the Zipf and Gibrat’s laws for the size 

distribution of US states. He observed that lognormal distribution offers a better fit to state sizes 

rather than the Pareto distribution, though he could not reject Pareto distribution statistically. He 

also rejects Gibrat’s law because small states grew faster than the large states. In another study, 

Soo [120] examined the both laws for provinces of Brazil, China and India. He found complex 

evidence; the size distribution of Chinese provinces conforms to Zipf’s law, the size distribution 

of Indian states do not conforms to Zipf’s law, while he was unable to reject statistically any of 

the Pareto or lognormal distribution for Brazilian states. He also finds that Gibrat’s law holds for 

Brazilian states. He argues that different characteristics of three countries have led to different 

state size distributions in three countries. 

From this discussion, it is hard to establish that Zipf’s law is universal for cities at sub-

national or supranational levels. However, these are emerging areas in Zipf’s law and city size 

distribution research and it is too early to make a conclusion and more empirical research is 

needed by considering sub-national or supranational samples.  

4.2 The size distribution of lower-tail cities  
In contrast to the long tradition of size distribution of upper-tail cities, recently some 

scholars have specifically considered the size distribution of lower-tail cities. Again, the Pareto 

(reverse) and lognormal distributions remain two controversial candidates for the size 

distribution of lower-tail cities. For example, Reed (2001, 2002) first observed an inverse power 

law in the lower-tail of city size distribution using the data of smallest 5,000 settlements of the 

US in 1998. Building on this work, a number of recent empirical studies have found that the 

lower-tail cities also follow a Pareto distribution but in a reverse direction. In this respect, 

Devadoss and Luckstead [121] analyzed a sample of US small cities and supported the reverse 

Pareto. In another study, Devadoss, Luckstead, Danforth and Akhundjanov [122] found similar 

evidence for small Indian cities.  

Similarly, other studies have examined Gibrat’s law of proportionate growth for small 

cities. Based on the theoretical model of Gabaix [13], these studies predict that if lower-tail cities 

obey a Pareto distribution, then these cities must also obey the Gibrat’s law. In the similar vein,  

Devadoss and Luckstead [123] used the data of lower-tail small US cities for the census years of 

2000 and 2010 and found that the growth process of these small cities follows Gibrat's law.  

For lognormal distribution, Calderín-Ojeda [97] examined the size distribution of French 

settlements (communes) from 1962 to 2012 and found that upper-tail cities follow a Pareto 

distribution while lognormal distribution offers a better fit to untruncated settlements data of 

medium and small cities.  

Like the size distribution of upper-tail cities, the Pareto and lognormal distributions are 

most likely candidates for the size distribution of lower-tail cities. It is also an emerging area for 

future empirical research.    
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4.3 Alternate Zipf’s laws  
Some studies suggest that the estimation of rank-size rule specified in Eq. (2) provides an 

approximation of the Zipf’s law and acceptance or rejection of Zipf’s law should not depend on 

the condition of Zipf’s exponent to be statistically equal to one. Zipf’s law still can hold if rank-

size rule is only partially verified. These studies suggest that the focus should not be on to accept 

or reject the Zipf’s law, but be on how well Zipf’s law fits to the empirical city size distribution 

[106]. Building on this concept, recent contributions have introduced different forms of Zipf’s 

law depending on how well it fits to the actual city size data. 

For example, Perline [124] introduce three forms of Zipf’s law: strong inverse power law 

(SIPL), weak inverse power law (WIPL) and false inverse power law (FIPL). SIPL refers to a 

situation where the power law exactly fits to the sample data for all ranges of the variable of 

interest. WIPL refers to a situation where the sample data fit a distribution that has an 

approximate inverse power form only in some upper range of values. Finally FIPL refers to a 

situation where a highly truncated sample from an exponential-type, especially from the 

lognormal, distribution can closely mimic a power law.  

Benguigui and Blumenfeld-Lieberthal [10] suggest to study the city size distribution in 

three classes: class 1, class 2 and class 3. Class 1 refers to a situation where Zipf’s exponent is 

exactly equal to one and size distribution follows a linear Zipf’s law. Class 2 refers to a situation 

when Zipf’s exponent is greater than one with a parabolic shape. Similarly, Class 3 refers to a 

situation where Zipf’s exponent is less than one, also with a parabolic shape. The upper-tail cities 

have a parabolic shape in class 2, while they might have a power law shape in class 3 though it is 

a tail of lognormal distribution. 

Chen [125] argue that city size distribution observes an evolutional urban process and 

different forms of Zipf’s model are needed at different stages of urbanisation. He identifies that 

there are one parameter, two parameters and three parameters models. If the size distribution of a 

set of cities does not obey one parameter model, then the two parameter model can fit it well, and 

if the size distribution does not obey two parameter model then the three parameter model can fit 

it well. He defines these models as follows. 

P(r) =
P1

r
          𝐸𝑞. (8) 

Here, P(r) refers to the size of a city. r is the rank of a city (r = 1, 2, 3, . . .) when the size is used 

to rank cities. This is one parameter model with the only parameter P1 called proportional 

coefficient and represents the size of the largest city. This model is pure form of Zipf’s law with 

Zipf’s exponent equal to one, and it is same as the one introduced above in Section 3.  

The pure form of Zipf’s law can be generalized as two parameter model as below.  

P(r) = P1r−q          𝐸𝑞. (9) 

Here, q is a scaling exponent. This model contains two parameters: the proportionality 

coefficient (P1) and the scaling exponent (q).  This model allows a Zipf’s coefficient different 

from one.  

Three parameter model is as follows: 

P(r) = P1−k(r + k)−q          𝐸𝑞. (10) 

Here k is a scale-translational parameter of city rank, and P1-k is a parameter that shows the size 

of the (1−k)th city that is defined in the possible world rather than the real world. This model can 

fit well to more even size distribution without leading cities in the top level of urban hierarchy.  
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4.4 The coherence property of the urban system  
The controversy in the empirical evidence can also be explained in terms of the 

coherence property of the urban system. To observe strict power laws (i.e., Zipf’s law), a system 

of objects should be coherent [113]. A system of cities does not obey true power law behavior 

because it is either incomplete or inconsistent with the conditions under which one might expect 

power laws to emerge. Power laws can only be applied to a group of cities which are integrated 

institutionally (i.e., common rules, common culture, common language, etc.) and economically 

and have co-evolved over time. The group of cities, which historically has observed an integrated 

evolution, converges to an organic economic unit. Consequently, the size distribution of cities 

becomes internally consistent for the group as a whole and obeys statistical properties of power 

laws. For example, the urban system of the United States is more coherent at the national-level as 

compared to the urban systems in each state. On the other hand, the urban system in the 

European Union is less coherent at union-level as compared to the urban systems in individual 

European countries. Underlying reason is that historically the US urban system is integrated and 

has coevolved over long time period at national level, while the urban system in the European 

Union is more integrated and has coevolved at individual country-level.    

From this perspective, the question arises whether the rejection of Zipf’s law hypothesis 

for some urban systems is due to the coherence property. In this respect, Arshad, Hu and Ashraf 

[126] examined the Zipf’s law and the coherence property of the urban system for Pakistani 

cities. The authors find that Zipf’s law is rejected at national-level, while it is more likely to be 

held for the city size distribution at province-level (i.e., for each of the four provinces of the 

country). They argue that the results are driven by the level of coherence of the urban system; the 

urban systems within Pakistani provinces are more coherent in terms of common language, 

common culture and common rules as compared to the urban system at national-level. To date, 

little attention has been paid to the coherence property in Zipf’s law and city size distribution 

research and is an interesting area for future research. 

5. Conclusion  
In this paper, we provide a systematic review of the existing literature on Zipf’s law and 

city size distribution. The review includes 114 studies published from 2000 to 2017.  

Our qualitative review discovers several stylized facts. Existing empirical evidence 

suggests that Zipf’s law is not always observable even for the upper-tail cities of a 

country/region. This finding is opposite to the conventional wisdom which suggests that Zipf’s 

law for at least upper-tail cities is universal. However, we further find that existing empirical 

evidence is not robust. The hypothesis of Zipf’s law is too often rejected when the data of all 

cities is considered, and in this case the alternative distributions have been suggested. Contrary, 

the hypothesis is more likely to be accepted due to improvement in empirical methods and city 

definitions. These findings suggest that the debate is still far from to be conclusive.  

We identify several potential areas for future research. First, future studies may use bias 

corrected empirical methods and better definition of cities to examine Zipf’s law. Second, 

recently several alternative distributions have been suggested for cities. Future research may 

endeavour to provide theoretical foundations to these distributions. In addition, more empirical 

research is also needed for their widespread acceptance. Third, we identify several emerging 

areas in Zipf’s law and city size distribution research which need further consideration. These 

areas include the size distribution of lower-tail cities, the size distribution of cities in sub-
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national regions, the alternative forms of Zipf’s law and the coherence property of the urban 

system.  
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