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Abstract: Lithium-ion (Li-ion) batteries are widely used in electric vehicles (EVs) because of their 
high energy density, low self-discharge, and superior performance. Despite this, Li-ion batteries’ 
performance and reliability become critical as they lose their capacity with increasing charge and 
discharging cycles. Moreover, Li-ion batteries are subject to aging in EVs due to load variations in 
discharge. Monitoring the battery cycle life at various discharge rates would enable the battery 
management system (BMS) to implement control parameters to resolve the aging issue. In this 
paper, a battery lifetime degradation model is proposed at an accelerated current rate (C-rate). 
Furthermore, an ideal lifetime discharge rate within the standard C-rate and beyond the C-rate is 
proposed. The consequence of discharging at an accelerated C-rate on the cycle life of the batteries 
is thoroughly investigated. Moreover, the battery degradation model is investigated with a deep 
learning algorithm-based feed-forward neural network (FNN), and a recurrent neural network 
(RNN) with long short-term memory (LSTM) layer. A comparative assessment of performance of 
the developed models is carried out and it is shown that the LSTM-RNN battery aging model has 
superior performance at accelerated C-rate compared to the traditional FNN network. 

Keywords: aging; lithium-ion; current-rate; battery management system; artificial neural network; 
recurrent neural network; long short-term memory 
 

1. Introduction 
Electric vehicles (EVs) have been rapidly replacing fossil fuel led cars over the last 

decades amid the growing environmental concern. Currently, Lithium-ion (Li-ion) 
batteries are at the center of researchers’ attention as they are widely used in EVs. This is 
attributed to their high energy density, energy efficiency, low self-discharge and long 
cycle life [1–3]. Recently, the performance and reliability of Li-ion batteries have become 
a major concern, as they lose their capacity during continuous charge–discharge cycles 
[4]. The degradation of Li-ion batteries during charge–discharge cycles, and consequently 
sudden malfunction of the battery, demands lifetime analysis to prevent accidents, 
frequent maintenance, and particularly battery replacement [5]. To ensure the safe and 
reliable operation of EV batteries, an approach based on data-driven cycle life/lifetime 
research is necessary to study the battery state of health (SOH) over repeated charge–
discharge cycles so that the sudden failure of a battery can be predicted by a battery 
management system (BMS). 

Accelerated C-rate in charging and discharging are considered major factors in the 
rapid degradation of Li-ion batteries [6]. Although the standard charge rate can be 
maintained, operating load fluctuations in EVs usually accelerate aging. Thus, in EVs’ 
application, performance analysis of Li-ion batteries at accelerated discharge rate focuses 
on performance boosting, gradual aging and maintaining an optimum performance at 
moderate discharge rates without major decay in performance. The degree of degradation 
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of batteries is determined over the capacity fade at separate discharge rates in their cycle 
life. In this paper, the lifetime of the battery is estimated at both within and outside 
standard C-rates of 0.9C, 1.3C, and 1.6C to investigate the degree of degradation in a 
battery’s lifetime at accelerated discharge rates. Therefore, we propose the adoption of a 
discharge model in the BMS that could reduce charge consumption time at gradual aging. 
In addition, a discharge model within the C-rate could pave the way for battery second 
life applications.  

The state of charge (SOC) is expressed in mathematical term as,  𝑆𝑂𝐶 =  𝑄஺𝑄஻ 𝑥100 (1)

where 𝑄஺  is available capacity compared to its nominal capacity, rated 𝑄஻  by the 
manufacturer. The degree of degradation of Li-ion batteries is estimated on the basis of 
capacity fade over lifetime. 

SOC is the most critical parameter of the BMS in EVs for stability and safety [7]. 
Coulomb counting has previously been employed to mathematically estimate the SOC, 
but monitoring and memorizing data is deemed ineffective and time consuming in real-
time SOC estimation due to the degree of inaccuracy in experimental data [8]. Hence, 
accurate estimation of battery data collected from the cycle life test is considered to be a 
major challenge as the degree of degradation varies with the number of cycles. Moreover, 
the non-linearity of battery test data impacts on accuracy in SOC estimation [9–11]. The 
modeling of battery safety data still requires major improvement due to the load 
sensitivity in EVs. Several data-driven SOC estimation approaches have been pursued 
previously [12–14]. Deep learning is the most utilized approach when it comes to 
modeling non-linear data of a volatile nature [15–19]. This is due to reliance on its ability 
to generalize different patterns of data. Thus, an artificial neural network (ANN) is 
considered the most suitable approach for developing a suitable battery degradation 
model for lifetime at accelerated discharge rates.  

A multi-input—single-output (MISO) control is implemented to account for current 
and time in addition to the voltage in the output of the model, and this would lead to more 
accurate modeling of the battery lifetime data at accelerated rates. A feed-forward 
network is the most straightforward class of neural networks and thus the FNN is 
preferred as a common model [20]. However, the feed-forward training is not trusted in 
case of long ranges of data due to the lack of feedback. Thus, the recurrent neural network 
(RNN) is better suited to model battery cycle life data due to its feedback structure and is 
used in this work. The number of hidden layers of the degradation model is selected based 
on the least accurate observation in mean absolute error (MAE) and root mean square 
error (RMSE). 

Several researchers [21,22] have recently utilized deep learning to create a data-
driven strategy that predicts the Li-ion battery cycle life at an accelerated C-rate. However, 
there is a lack of research on proposing an ideal discharge rate for EVs. The key 
contributions of this paper include the following:  
• A battery degradation model for EVs has been developed both within and without 

the standard C-rate. The consequences of the accelerated discharge rates are 
thoroughly investigated throughout battery lifetime with the comparative model of 
FNN and LSTM-RNN networks, where the LSTM-RNN degradation model is seen 
to have surpassed the common FNN degradation model.  

• The comparative assessment of energy storage with two distinct neural network 
classes reduces ambiguity surrounding the prediction of SOC or SOH.  

• The degree of the degradation at the accelerated C-rate is evaluated under 3 different 
discharge rates: 09C, 1.3, 1.6C. 

• This work has discovered the battery second life prospect by maintaining the 
discharge rates within the standard C-rate. 



Batteries 2023, 9, 93 3 of 17 
 

• The proposed data-driven approach can be utilized in non-linear applications, since 
the proposed data-driven approach is capable of investigating energy storage with a 
high degree of accuracy.  

2. Battery Degradation Model Structure 
2.1. FNN Architecture  

An artificial neural network (ANN) is comprised of input layers, hidden layers, and 
output layers. In time series prediction, feed-forward networks are typically utilized to 
test the accuracy of the lifetime degradation model in estimating SOC at various discharge 
rates. [23]. The estimation of SOC in a battery degradation model is dependent on the 
input and output parameters, as a data-driven approach is performed. The SOC is 
typically calculated using Coulomb counting equations, but this method is unreliable 
because the data are prone to inaccuracy [24]. In data-driven approaches, the FNN 
network’s input parameters are characterized as time, current, and voltage, and the 
output parameter for SOC prediction is capacity. 

An FNN network learns the battery behavior from the input and output parameters. 
In this model, the capacity is the scalar element, and time, current, and voltage of the 
battery serve as vector of inputs to the FNN. In the mathematical form, the vectors of input 
is expressed as 𝜑௙= [𝑇௙ , 𝐼௙ ,𝑉௙ሿ where 𝑇௙ , 𝐼௙ , 𝑎𝑛𝑑 𝑉௙ represent time, current and voltage at 
time step of 𝑓. Capacity is represented by 𝜑௢ = 𝑆𝑂𝐶௙.  

Figure 1 illustrates how input vector parameters are fetched into the input layer to 
estimate 𝑆𝑂𝐶௙. The architecture of the FNN model is given in Figure 1, where respectively, 
time, current, and voltage are inputs, and the capacity is the output.  

 
Figure 1. FNN lifetime battery degradation prediction model. The input battery data are detonated 
by 𝜑௙= [𝑇௙ , 𝐼௙ ,𝑉௙ሿ, where 𝑇௙ , 𝐼௙ , and 𝑉௙  represent the time, current and the voltage at time step 𝑓. The 
estimated 𝜑௢ = 𝑆𝑂𝐶௙ is the output of the FNN at each time step 𝑓. 
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The construction of a FNN network for the purpose of SOC estimation is shown in 
Figure 1, and this network can be represented as a matrix-based hybrid function.  𝑤௝,௜௟  is 
the notation that will be used to detonate the weighted connection that exists between 
neuron 𝑗 in layer 𝑙 − 1 and neuron 𝑖 in layer 𝑙, where 𝑏௟௜ and 𝑘௜௟ିଵ are the neuron’s bias 
and activation function in layer 𝑙. The activation function is determined by the following 
calculation [25]:  𝑘௜௟(𝑓) = σ ෍ 𝑤௝,௜௟௜ 𝑘௜௟ିଵ(𝑓) + 𝑏௟௜ (2)

where 𝑘௜௟(𝑡) = 𝑠𝑜𝑐(𝑓) at layer 𝑙. 𝑠𝑜𝑐(𝑓) calculated by the network at the time step of 𝑓. 
Rectified linear unit (ReLu) nonlinearity is utilized in the network for smooth training 
process. ReLu function is calculated as, 𝜎 = max (0, 𝑘) (3)

The prediction of cycle life involves a vast quantity of data and thus reducing training 
time is important to minimize computing costs. To reduce the amount of training time, 
the number of layers was set to “2” and the number of hidden layer neurons was set to 
“8”. 

2.2. RNN Architecture  
Recurrent neural networks (RNNs) constitute a unique subset of artificial neural 

networks, particularly because of the feedback relationship between the input and output 
hidden layers. In case the output variables depend on the input parameters, feedback 
enables predictions of the output from its past values The cycle life test involves long and 
large amounts of data, where reliable predictions with traditional FNN networks remain 
unsettled. In the battery life degradation data, the output ‘capacity’ is dependent on the 
input parameters such as current, time and voltage. Since feedback systems are used to 
compare input and output parameters; they enhance the performance of time series data. 
Hence, RNN will improve the modeling precision in cycle life predictions at an 
accelerated C-rate compared to the FNN network. However, in case of long-range time 
series data, the general RNN performs poorly due to the gradient descent nature of the 
backpropagation [26–30]. As a result, due to large batches of data being involved in the 
cycle life tests data, inaccurate estimation of battery’s lifetime could be encountered. The 
long short-term memory (LSTM) layer, which can record both short-term and long-term 
dependencies, is widely used in the RNN to address this issue [31]. Figure 2 shows the 
overall architecture of the LSTM layer, where 𝑈௙ , 𝑓௙ , 𝑐௙ , and 𝑜௙  are the input, forget, 
memory cell, and output gates, respectively.  
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Figure 2. LSTM cell structure in RNN degradation network. Where Ψ௙, and ℎ௙ିଵ are the input layer 
state at current time step 𝑓, and hidden layer state at past time step 𝑓 − 1. 𝑈௙,𝑓௙, 𝑐௙, 𝑂௙ and ℎ௙ are 
input, forget, memory cell, and output gate. 

The input and output variables of the network are described as  𝑈௙ = 𝜎(𝑊ஏ୳Ψ௙ + 𝑊௛௨ℎ௙ିଵ+𝑏௨) 𝑓௙ = 𝜎(𝑊ஏ௙Ψ௙ + 𝑊௛௙ℎ௙ିଵ + 𝑏௙) 𝑐௙ = 𝑈௙𝑡𝑎𝑛ℎ(𝑊ஏୡΨ௙ + 𝑊௛௖ℎ௙ିଵ + 𝑏௖ + 𝑓௙𝑐௙ିଵ) 𝑜௙ = 𝜎(𝑊ஏ୭Ψ௙ + 𝑊௛௢ℎ௙ିଵ + 𝑏௢) ℎ௙ = 𝑜௙𝑡𝑎𝑛ℎ஼௙ 

(4)

where 𝜎 is the sigmoid function, ℎ௢  is the hidden state, and 𝑈௙ ,𝑓௙ , 𝑐௙ , 𝑂௙  and ℎ௙ are 
input, forget, memory cell, and output gate. ‘σ’ is the sigmoid function. The weights W 
are used to determine each gate’s weight in the network, where 𝑊ஏ୭denotes all mutations 
that occur between the input and output gates, while the 𝑊௛௨ denotes the weights of the 
hidden states. The bias (b) is propagated to all gates to fit data to its maximum state 
compared to the output.  

2.3. Training Process  
Training an ANN network requires a good training algorithm, learning rate, and 

error criterion. The accuracy of the resulting model depends heavily on the algorithm used 
in the optimization stage. Using a suitable algorithm, one can achieve superior training 
outcomes. The Adam algorithm approach [31–33] is used to create a model of lifetime 
deterioration under accelerated discharge conditions because of its usefulness in 
addressing nonlinear issues. The learning rate is yet another factor that impacts the 
efficiency of the model validation performance. Training will take longer at low learning 
rates and failing to converge at high learning rates is possible. To prevent a drop in 
performance after training has ended, the initial gradient values (β) are adjusted based on 
both the size of the data set and the initial learning rate, α = 10ିଷ, in this case.  

Accurately modeling battery data in an accelerated deterioration model is complex 
and time-consuming due to data size and range. The network uses the hyperparameter 
optimization HPO deep learning framework [34]. HPO’s hyperparameter tuning allows 
the weights to be adjusted until convergence is achieved. HPO eliminates the time-
consuming process of setting training parameters. 

A training epoch period consists of a forward pass and a backward pass. When the 
input is fetched through the hidden layers to the output layer, the forward pass begins, 
and backward pass concludes when 𝑠𝑜𝑐௙  is estimated at time step 𝑓 . 𝑤க indicates 
network training epoch parameters. Random variables initialize weights and biases. 
Weights and biases are modified at the forward pass until the required 𝑠𝑜𝑐(𝑓)  is 
achieved. Because of its ability to automatically update weights and biases, the Adam 
algorithm is implemented in the network. Below is a description of the hybrid function:  𝑚க = 𝛽ଵ𝑚கିଵ𝛻ℒ(𝑤கିଵ)   𝑟க = 𝛽ଶ𝑚கିଵ𝛻ℒ(𝑤கିଵ)ଶ 𝑚ఌ͠ = 𝑚ఌ/(1 − 𝛽ଵఌ) 𝑟͠ఌ = 𝑟ఌ/(1 − 𝛽ଶఌ) 𝑤ఌ = 𝑤ఌିଵ − 𝛼 𝑚͠ఌ𝑟͠ − 𝑓 

(5)

To achieve full convergence in the model, the learning rate is optimized at varying 
rates [35–38]. A higher learning rate has a multiplier effect on training velocity. In the 
training process learning rate, (α) has been tuned between 10ିଷ and 10ି଼, and gradient 
decay factors 𝛽஺  and 𝛽஻  have been tuned, respectively, between 0.8 and 0.99. When 
training approaches and learning rate (α) hits a maximum of 10ିଷ, the initial learning 
rate, number of units, number of LSTM layers, and number of hidden layers are the main 
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parameters tuned in the model. The Adam algorithm, used to improve the model, helps 
to determine the average weight of gradients.  

The loss function of the proposed ANN model is calculated as, 

 ℒ = ଵே ෍ ൫SOC௙ − SOC௙∗൯ଶே௙ୀଵ  (6)

where N is the size of sample data, 𝑆𝑂𝐶௙  is the estimated 𝑆𝑂𝐶 with ANN network, and 𝑆𝑂𝐶௙∗ is the experimental data. On the grounds of the MAE, MSE, and RMSE error metrics, 
training and validation performance is assessed. The model’s regression is represented by 
RMSE, while the model’s average performance is represented by MAE. The performance 
error metrics of the model are expressed mathematically as,  MSE = ଵே ෍ ൫SOC௙ − SOC௙∗൯ଶே௙ୀଵ   (7)

RMSE = ඨଵே ෍ ൫SOC௙ − SOC௙∗൯ଶே௙ୀଵ   (8)

MAE = ଵே ෍ ൫หSOC௙ − SOC௙∗ห൯ே௙ୀଵ   (9)

The training strategies have been carried out offline because of the hefty 
computational and operational cost, and time consumption in cycle life tests.  

3. Methodology 
A Li-ion batteries cycle life test was performed on the constant current and discharge 

mode for 500 cycles to observe the trend of degradation. Battery cells were tested at 3 
separate discharge rates to analyze capacity fade at accelerated C-rates throughout their 
cycle life. For the experiment, C-rates 0.9 C, 1.3 C, and 1.6 C were selected for use to 
investigate the cycle life of Li-ion batteries within and outside the standard C- rate (2.2 A). 
Manually, the SOC of the battery is estimated with the voltage, which represents the 
capacity reading. For the cycle life test, the maximum voltage is limited to 4.2 V, and 
minimum voltage limited to 2.75 V. Discharge C-rate is considered double of the charging 
rate, maintaining the energy efficiency factor. Batteries are rested for 20 min before being 
charged to their maximum voltage of 4.2 V and are rested for another 20 min before being 
discharged to their lowest voltage of 2.75 V, for 500 cycles, as shown in Figure 3. Due to 
the tendency to overheat, Li-ion batteries are rested for 20 min in between charge–
discharge cycles. Battery test results are imported into MATLAB for modeling with the 
deep learning algorithm to accurately forecast the lifetime and the degradation trend of 
the batteries at various operating conditions.  

The model’s input variables are selected to be time, current, and voltage, and the 
output variable is capacity. However, when capacity fade is analyzed with respect to cycle 
life, input parameter considered to be cycle number, and the output is discharge capacity. 
Among the input parameters, time indicates data record frequency, current polarity and 
suggests the charge/discharge cycle, and voltage indicates SOC. Data retrieved from the 
battery tests were divided into training data (60%), testing data (20%), and validation data 
(20%). A significant amount of data was allotted for training so that the model may learn 
effectively and make predictions with accuracy. The validation performance, measured 
by MAE and RMSE, and the number of hidden layers of the neural network model are 
selected with the least RMSE. The validation of both charge and discharge cycles at 
various C-rates is performed using the model with the lowest MAE and RMSE values. A 
battery degradation model has been developed with the selected hidden layers for lifetime 
predictions at an accelerated discharge rate.  

Cycle test data were then modeled with the LSTM-RNN network to further validate 
the error performance. The LSTM-RNN model employed the Adam algorithm and a 
sigmoid model function. Hyperparameter of the model has been tuned between 10ିଷ 
and 10ି଼ learning rates for the cycle drives. The number of LSTM layers in the hidden 
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layer as well as the number of hidden layers, iterations and initialized epochs is selected 
in accordance with the developed FNN model. Data are distributed in the model as 60% 
for the training, and 40% for the test and validation. In the established LSTM-RNN lifetime 
degradation model network, the minimum batch size of data is 10 and the drop rate is 
0.003.  

 
Figure 3. Flowchart of the battery cycle life test for 500 cycles. In this configuration, one cycle consists 
of charging the battery to its highest voltage of 4.2 V and then discharging it to its minimum value 
of 2.75 V. 

3.1. Battery Specification 
Cycle life test was applied on the A18650 model of Li-ion battery manufactured by 

Hongli. The specification of the Li-ion battery is shown in Table 1, whereas the nominal 
capacity is 2200 mAh, the maximum voltage is 4.2 V, the minimum voltage is 2.5 V, and 
the standard C-rate is 1C-2.2 A.  
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Table 1. Battery specification of A18650 model of Hongli Li-ion battery. 

Battery Parameter Specification  
Cell Voltage 3.7 V 

Nominal Capacity 2200 mAh 
Max Voltage 4.2 V 
Min Voltage 2.5 V 

Energy 8.14 Wh 

3.2. Cycle Life Test Bench  
The cycle life of Li-ion batteries was tested using Neware (BTS4000) battery testing 

equipment, which has 8 channels and can test 8 battery cells at once. The BTS4000 allows 
for the maximum battery cell to be tested within a 5 V range at a maximum load of 6 A. 
Table 2 shows the specifications of the BTS4000. The battery experiment was carried out 
in compliance with scientific safety criteria, as shown in Figure 4. A host computer, 
Neware (BTS4000), a safety perimeter, an air conditioner, and the internet comprised the 
battery test bench. Using Team Viewer, battery characteristics such as SOC and SOH were 
monitored in real time during the cycle life test. The cycle life test was performed at 
ambient temperature (25 ± 2 °C). 

Table 2. Neware battery tester BTS4000 equipment specification. 

Cycling Builder NEWARE BTS4000 
Cycling tester rating 5 V/6 A 

Test Channels 0–8 
Accuracy ≥1% 

Sample frequency 10 Hz 

 
Figure 4. Test bench for battery cell testing comprising a host computer, Neware (BTS4000), TCP/IP 
PORT, an air conditioner, and the internet. 

4. Results and Discussions  
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4.1. Battery Degradation Process  
In this subsection the degradation and performance of the Li-ion batteries are 

discussed both within and outside the standard C-rate. Cycle life tests were performed on 
the batteries at 0.9C, 1.3C and 1.6C to develop a battery degradation model at an 
accelerated discharge rate. 

At 0.9C, capacity fading was steady and the battery functioned well during its entire 
500 cycles without suffering a significant loss of performance, and the gradual aging of 
Li-ion batteries can be seen within the standard C-rate as shown in Figure 5. As the 
charge–discharge cycles approached, the rate of the capacity of the Li-ion battery that was 
being discharged at the standard (C-rate) somewhat decreased. Furthermore, Li-ion 
batteries only had a 15% capacity reduction after 500 cycles, which was impressive. 
According to the degradation process at 0.9C, the lithium-ion battery provided roughly 
150 cycles above 80% capacity, and the remaining cycles were significantly above 75% of 
capacity. The capacity fading trend indicates that the battery has a long cycle life within a 
regular C-rate and is aging relatively steadily.  

 
Figure 5. The battery degradation process at 0.9 C-rate for 500 cycles, where degradation is shown 
every 50 cycles. 

Since the Li-ion performed only 50 cycles above the 80% capacity, and capacity fading 
escalated with the increase in cycle counts, as shown in Figure 6, accelerated deterioration 
of the Li-ion battery can be observed at 1.3 C-rate. As a result, exceeding the C-rate limit 
causes a significant performance reduction in Li-ion batteries and has an impact on overall 
cycle life, which is evident in the battery’s deterioration process. Fast discharging is only 
effective for 50 cycles before rapidly losing its efficiency. This is because Li-ion capacity 
fading is stable for the first 50 cycles before accelerating with increasing cycle counts. 
Compared to its initial capacity at the end of 500 cycles, a Li-ion battery could retain less 
than 40% of its capacity, which is a massive collapse in performance. Therefore, fast 
charging has consequences as it accelerates the aging of a battery. 
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Figure 6. The battery degradation process at 1.3 C-rate for 500 cycles, where degradation is 
displayed every 50 cycles. 

At 1.6 C, Li-ion batteries deteriorate rapidly; they lose their performance after less 
than 25 cycles, and they completely degenerate after 250 cycles, as shown in Figure 7. Fast 
discharge at 1.6 C has reduced the lifetime of Li-ion batteries to 200 cycles, which has 
serious performance implications. As capacity had plummeted to 35% of its initial 
capacity after 200 cycles, hence, the battery was degraded rapidly. Less than 40% of the 
capacity is considered unusable in most battery applications. Therefore, the quick 
discharging of a battery impacts its performance and induces a shorter lifespan.  

 
Figure 7. The battery degradation process at 1.6 C-rate for 500 cycles, where degradation is shown 
every 50 cycles. 
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4.2. Comparison of Battery Degradation Model 
A Li-ion battery performs well throughout the 500 cycles, with no significant 

performance reduction, and capacity fade is stable at 0.9 C. Discharging above the C-rate 
limit has a significant impact on battery performance, and it diminishes battery lifetime 
as can be seen in Figure 8. Considering that capacity fade increased with increasing cycle 
counts, only 50 cycles delivered optimum battery performance, discharging at 1.3 C has 
accelerated battery aging and reduced its performance. In contrast, fast discharge at 1.6 C 
causes the battery to fully degrade after 250 cycles, since it can no longer continue to 
discharge. As a result, it has been discovered that rapid discharge accelerates the battery’s 
aging or causes capacity to fades, with results displayed in Table 3.  

Therefore, exceeding the C-rate limit will greatly decrease Li-ion battery 
performance, and shorten the battery’s cycle life. In Table 3, it can be observed how 
quickly discharge reduces battery life. Therefore, ideal discharge model is proposed at 0.9 
C, within the C-rate, which also allows battery second life performance. On the contrary, 
the fast-discharging model is proposed at 1.3 C at the expense of accelerated capacity fade. 

 
Figure 8. Comparison of battery degradation model performance with experimental and simulated 
data for individual battery capacity fades at 0.9 C, 1.3 C, and 1.6 C. 

Table 3. The degree of capacity fade at 0.9 C, 1.3 C, and 1.6 C for every 50 cycles throughout its 
lifetime. 

Cycle Number Capacity Fade (%)  
 0.9C 1.3C 1.6C 

50 4.08 1.98 6.25 
100 4.94 4.33 20.78 
150 8.46 11.34 35.59 
200 10.43 14.25 60.87 
250 10.57 22.51 72.23 
300 11.38 27.12 - 
350 13.39 32.84 - 
400 13.49 36.82 - 
450 14.07 41.31 - 
500 15.14 45.05 - 
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4.3. Validation with FNN  
Large amounts of data are involved in a battery’s lifetime prediction; therefore, it is 

vital to develop a common model that precisely models any batch size of batteries data, 
so that lengthy training processes can be avoided. Selection of the number of hidden 
layers, MAE and RMSE are taken into consideration. Since MAE and RMSE are negligible, 
the test performance is excellent at the hidden layers ranging from (3–10), as shown in 
Table 4 and Figure 9. It can be seen that different numbers of hidden layers affect the 
accuracy of modeling, with the number of hidden layers impacting on the training and 
learning period. Thus, the fluctuation in performance is correlated with the number of 
hidden layers. Despite the fluctuation of simulation results, the model chosen has the 
lowest MAE and RMSE, so that the suggested FNN model may accurately model a variety 
of data sets. According to simulation results, the number of hidden layers “8” results in 
the lowest MAE and RMSE. Hence, the model with the best least-errors performance have 
been selected to model the batteries’ cycle life data.  

 
Figure 9. Selection of the permanent hidden layer with the FNN network based on the least-error 
values MAE (%), MSE (%) and RMSE (%) at hidden layers ranged from (3–10). 

Table 4. The MAE, MSE, and RMSE values with the hidden layers ranged between (3–10). 

N. H.Layers MAE MSE RMSE 
3 2.26 × 10−8 1.43 × 10−8 1.92 × 10−4 
4 1.21 × 10−6 3.12 × 10−4 1.76 × 10−4 
5 1.64 × 10−7 1.45 × 10−5 3.84 × 10−3 
6 1.54 × 10−9 4.51 × 10−8 2.12 × 10−4 
7 1.67 × 10−8 9.92 × 10−8 3.15 × 10−4 
8 1.31 × 10−9 8.17 × 10−9 9.04 × 10−5 
9 5.14 × 10−9 2.77 × 10−6 1.01 × 10−3 

10 4.98 × 10−9 4.91 × 10−9 1.67 × 10−3 
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The effectiveness of the constructed model network is assessed at batteries’ lifetime 
data at different discharge rates. In Table 5 and Figure 10; it can be noticed that modeling 
performances at various discharge rates demonstrates how established models can 
precisely model batteries’ data, despite variations in discharge rate. At an accelerated 
discharge rate, the MAE and RMSE are insignificant. Additionally, data modeling can 
achieve its maximum accuracy at slower charge rates. However, as charge rates increase, 
the accuracy of the model has minor decline in performance.  

Table 5. FNN degradation model performance based on MAE, MSE, and RMSE values at various 
discharge rates: 0.9C, 1.3C, and 1.6C. 

C-Rate MAE MSE RMSE  
0.9C  2.12 × 10−4 3.17 × 10−4 1.78 × 10−2 
1.3C 1.12 × 10−4 1.62 × 10−4 1.27 × 10−2 
1.6C  4.49 × 10−5 1.04 × 10−4 1.02 × 10−2 

 
Figure 10. The MAE (%), MSE (%), and RMSE (%) values, achieved with the FNN degradation model 
at three different accelerated discharging rates: 0.9C, 1.3C, and 1.6C. 

4.4. Validation with RNN 
Lifetime cycle tests data are modeled with the LSTM-RNN model, and the 

performance of the RNN model is shown in Table 6 and Figure 11. The performance trend 
of the model shows that the developed LSTM-RNN degradation model performs well at 
the accelerated C-rate, and that the error performance of the model is adequate at an 
accelerated C-rate. The model effectiveness is determined on the basis of MAE and RMSE 
values. Since the model performance improves with the increase in C-rate, namely, 0.9C, 
1.3C and 1.6C, the Li-ion lifetime degradation LSTM-RNN Model is hence the most 
superior model in predicting cycle life of battery at an accelerated C-rate. The performance 
of the LSTM-RNN model is superior due its feedback mechanism, which allows 
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comparisons with its past SOC estimated values. Moreover, the LSTM layer combats the 
long short-term dependencies in the RNN network, thus achieving superior performance 
compared to the FNN network. 

Table 6. RNN degradation model performance based on MAE, MSE, and RMSE values at various 
discharge rates: 0.9C, 1.3C, and 1.6C. 

C-Rate MAE MSE RMSE 
0.9C 2.44 × 10−4 2.02 × 10−4 1.42 × 10−2 
1.3C 7.03 × 10−5 1.88 × 10−4 1.37 × 10−2 
1.6C 5.27 × 10−5 6.16 × 10−5 7.85 × 10−3 

 
Figure 11. The performance of the RNN degradation model based on the MAE (%), MSE (%), and 
RMSE (%) values at 3 separate accelerated discharge rates: 0.9C, 1.3C, and 1.6C. 

4.5. Comparison of FNN and RNN Battery Degradation Model 
LSTM-RNN is the proposed model for the battery lifetime prediction, as the error 

performance is superior to the traditional FNN model. The LSTM model will present a 
high degree of accuracy in the estimation of the SOC and the lifetime prediction of any 
battery as shown in Figure 12. 
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Figure 12. Comparison of the performance of RNN and FNN degradation models at 3 separate 
accelerated discharge rates: 0.9C, 1.3C, and 1.6C on the basis of MAE (%), MSE (%), and RMSE (%) 
values. 

5. Conclusions 
The fundamental contribution of this paper are an Li-ion battery degradation model 

at accelerated discharge rates, and an ideal discharge model for the electric vehicles 
proposed to be adopted in the battery management system (BMS). Battery degradation 
trends within and beyond the standard C-rate have been investigated at discharge rates 
of 0.9 C, 1.3 C and 1.6 C. At accelerated discharge rates, the lifetime of the Li-ion batteries 
has been investigated, and it has been shown that accelerated discharge rates escalate the 
capacity fades and that cycling above 1.3C shortens the battery lifetime. Moreover, 
gradual aging within the normal C-rate prompts the battery second life applications.  

Furthermore, accurate SOC estimation is crucial for lifetime prediction and BMS. 
Through rigorous trials and observation of model’s error performance, using methods 
such as MAE and RMSE, a common model for cycle life at accelerated C-rate has been 
developed. Moreover, the developed model has been evaluated on the basis of two 
distinct classes of ANN, namely FNN and LSTM-RNN networks. The model has been 
chosen based on the least-error metrics MAE and RMSE in order to obtain the desired 
error ranges for cycle life battery data at accelerated discharge rates. Because of its 
superior modeling performance, the LSTM-RNN network has been proposed for the 
battery cycle life degradation over the FNN. Finally, the accuracy of the RNN model in 
the estimation of SOC, as investigated at separate discharge rates, is excellent, as the error 
at accurate discharge rates is insignificant.  
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Abbreviations 
ANN Artificial neural network 
BMS Battery management system 
C-rate Current rate 
EV Electric vehicle 
FNN Feed forward neural network  
Li-ion Lithium-ion 
LSTM Long short-term memory 
MAE Mean absolute error 
MSE Mean squared error 
RMSE Root mean squared error 
RNN Recurrent neural network 
SOC State of charge 
SOH State of health 
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