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Abstract: Pyrolysis process has been considered to be an efficient approach for valorization of
lignocellulosic biomass into bio-oil and value-added chemicals. Bio-oil refers to biomass pyrolysis
liquid, which contains alkanes, aromatic compounds, phenol derivatives, and small amounts of
ketone, ester, ether, amine, and alcohol. Lignocellulosic biomass is a renewable and sustainable
energy resource for carbon that is readily available in the environment. This review article provides
an outline of the pyrolysis process including pretreatment of biomass, pyrolysis mechanism, and
process products upgrading. The pretreatment processes for biomass are reviewed including physical
and chemical processes. In addition, the gaps in research and recommendations for improving
the pretreatment processes are highlighted. Furthermore, the effect of feedstock characterization,
operating parameters, and types of biomass on the performance of the pyrolysis process are explained.
Recent progress in the identification of the mechanism of the pyrolysis process is addressed with
some recommendations for future work. In addition, the article critically provides insight into process
upgrading via several approaches specifically using catalytic upgrading. In spite of the current
catalytic achievements of catalytic pyrolysis for providing high-quality bio-oil, the production yield
has simultaneously dropped. This article explains the current drawbacks of catalytic approaches
while suggesting alternative methodologies that could possibly improve the deoxygenation of bio-oil
while maintaining high production yield.
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1. Introduction

The total world energy consumption is increasing at a steep rate due to global industrialization,
and it is expected to reach 28% by 2040. Currently, fossil fuels are considered to be the main source of
energy which release toxic and greenhouse gases, particulates, and pollutants leading to significant
environmental impacts. Under the European Union (EU) 2030 energy framework and climate actions,
a 27% increase in the share of renewable fuels and 40% reduction in greenhouse gases are targeted by
2030 [1]. Accordingly, to meet the rising energy demand while showing concern for the environmental
aspects, alternative sustainable and environmentally benign fuels should be developed. In this regard,
research on novel approaches for renewable engineered fuels with low emission and high heating
value is crucial. Furthermore, it is essential to consider relevant ethical consideration by excluding any
feedstocks and compounds used for the food industry, i.e., edible vegetable oils and fresh crops [2,3].
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The source of carbon in biomass results from the photosynthesis process as part of the plant growing
cycle where carbon dioxide is consumed. Biomass is considered to be the largest available carbon
source that is renewable and sustainable for biofuels production. Biomass is abundant, renewable,
and inexpensive [4], and it supplies about 14% of the world’s yearly energy consumption. Biomass
refers to organic materials that are produced from plants, animals, and other living organisms, i.e.,
microorganisms [5].

Biomass valorization into biofuels and value-added chemicals has been achieved via different
routes. On the one hand, for instance, vegetable oils are used to produce biodiesel, green diesel, and
value-added chemicals through several reactions including transesterification [6], esterification [7],
hydrogenation, hydrolysis, etc. Furthermore, sugary plants have been used to produce bioethanol via
the fermentation process. On the other hand, biomass has been directly converted into biofuels via
thermochemical processes including pyrolysis, gasification, liquefaction, etc. [8–11]. Generally, biomass
is categorized based on the feedstock into three categories namely first, second, and third generations.
First-generation biomass refers to the edible and virgin biomass that can be used in food industries
such as vegetable oils and fresh crops. The competition between energy and the food industry for
first-generation biomass has led to food insecurity concerns. Accordingly, several constraints have
been developed to prevent using first-generation feedstock as an energy resource [12,13]. As a result,
second-generation feedstock of biomass has been defined as non-edible plant resources and waste
biomass including waste food, waste vegetable oils, lignocellulosic biomass, etc. Research on valorizing
second-generation feedstock has been widely reported in the last few years to produce biodiesel,
bioethanol, biogas, bio-oil, etc. Finally, third-generation feedstock has been recently reported as the
algal and microorganism’s feedstock. The main advantage of the third-generation feedstock is the rapid
growth rate, the requirement of a small area to grow, and the easily controlled growth conditions [14].
A simplified schematic for the conversion routes of biomass is presented in Figure 1.
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Figure 1. A simplified schematic illustration of two main biofuel production pathways (adapted
from [15]).

Thermochemical conversion technology produces a wide range of products including gaseous,
condensable vapours and solids. The condensable vapours of the process are mainly obtained as
bio-oil, where they can be upgraded to biofuels and value-added chemicals. Unlike biological processes
that can convert only limited components of the biomass, thermochemical processes are capable of
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converting all the carbon in the feedstock [16]. Open air combustion has been considered to be the
oldest technology used for biomass valorization for heating benefits. This technology is still the
dominant process for heating from biomass in numerous parts of the world. Since then, several
thermochemical technologies have been developed to overcome the disadvantages and limitation of
open-air combustion. The main development in thermochemical technology is the aim to produce
different biofuels and value-added chemicals from biomass. Charcoal was the first reported biofuel
produced from wood, which was considered to be the spark for the current progress in thermochemical
technologies. As compared with petroleum coal, charcoal has higher oxygen content which reduces
the required excess air for combustion. Furthermore, most of the carbons in the biomass are bounded
to oxygen or hydrogen (organic carbon), which make them more volatile in relation to elementary
carbon. Hence, the conversion of biomass volatile compounds can be achieved between 200 and 600 ◦C
and above 800 ◦C for non-volatile compounds [17].

Recently, several technologies have been reported for thermochemical valorization of biomass
including torrefaction, hydrothermal liquefaction, pyrolysis, and gasification which can readily convert
biomass into bio-oil, syngas, heat, and charcoal. Torrefaction has been developed as a pretreatment
process for biomass to improve its fuel and physicochemical properties. The process is carried out
between 200 and 300 ◦C with a slow heating rate lower than 50 ◦C /min. The main advantages of the
torrefaction process are that it reduces the moisture content, hydrophobicity, and volatile matter of
biomass. During torrefaction, hydrophobicity is reduced due to the carboxylic groups’ degradation. It
also improves the heating values and grindability of biomass [18]. Hydrothermal liquefaction is defined
as the process of valorizing biomass into solid, liquid, and gaseous products in sub- and supercritical
water, solvents, and catalysts. The process operates between 250 and 380 ◦C and between 4 and 230 bar.
The main product produced from hydrothermal liquefaction is bio-oil which is similar to petroleum
crude oil with a high mixture of oxygenated compounds. The quality of bio-oil is characterized by
viscosity, H/C and O/C ratios, as well as density and heating values. Several biofuels and chemicals can
be extracted from bio-oil based on the implemented downstream process. Furthermore, coliquefaction
of different types of biomass has been recently reported to increase the yield of bio-oil [19].

Pyrolysis is the process of thermal decomposition of biomass in the absence of oxygen to produce
bio-oil, char, and gaseous product. It is considered to be a promising approach for biomass valorization
in a short period of time yielding up to 78 wt.% of bio-oil (based on dry biomass). The pyrolysis
process operates between 400–650 ◦C. According to the product preferences, the process could be
classified into slow and fast pyrolysis in terms of the heating rate. On the one hand, slow pyrolysis is
the process that favors producing solid biochar and the process performs up to a few hours. On the
other hand, fast pyrolysis is the process for enhancing the production of bio-oil (condensable vapours)
and the process operates at a very high heating rate reaching the process temperature in a few seconds.
Furthermore, fast pyrolysis uses a maximum particle size of feedstock of 2 mm [5]. Finally, gasification
is a process where biomass is converted at a relatively high temperature (<700 ◦C) with incomplete
combustion in a controlled oxygen/steam environment. The process results in syngas (main product),
condensable vapours, and char. Syngas or synthesis gas, is a mixture that is comprised of carbon
monoxide, carbon dioxide, and hydrogen. Compared with conventional incineration (combustion),
gasification is a more efficient process for electricity generation because syngas can be easily utilized
for electricity by using gas engines, gas turbines, or fuel cells. Moreover, the gasification process is also
superior to biological methods as it can convert all types of biomass unlike fermentation. In summary,
the main advantages of gasification are the conversion of the entire carbon content in the biomass, and
production of valuable fuels, i.e., hydrogen, bio-oil, and lower CO2 emission [20].

This article presents a comprehensive review of the pyrolysis of lignocellulosic biomass with a
specified focus on recent developments in the pretreatment processes and provides detailed information
and procedures for up-to-date pretreatment processes. The article covers a detailed review of the
product characterization and fractionation. Several techniques for bio-oil fractionation are reviewed in
this article. The article provides an outline of bio-oil upgrading processes with a focus on recently
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reported catalytic upgrading procedures. Finally, the article describes the challenges and highlights
the research gaps for future work in the field of pyrolysis of biomass.

2. Lignocellulosic Biomass

Almost all types of biomass can be used as raw material for pyrolysis to produce bio-oil [21].
Cellulose, hemicellulose, and lignin are the three main components of lignocellulosic biomass [22,23].
In addition to these three main components, lignocellulose biomass also contains extractives (tannins,
resins, and fatty acids) and inorganic salts [24]. Lignocellulosic biomass can originate from agricultural
crops, forests, and industrial waste materials [25], which are attractive mostly due to the low cost
of these raw materials. Cellulose is the most important component of biomass because of its large
percentage of biomass, and it contains long linear chains of β-(1, 4)-glycosidically linked D-glucose
units [26]. Hemicellulose is a complex polysaccharide that takes place in association with cellulose
in the cell wall and presents as a connecting element between cellulose and lignin [24]. Lignin is the
third component of lignocellulose biomass, which occurs through the plant cell wall and is mainly
accumulated in the middle lamella and the primary cell wall. It is a complex three-dimensional
amorphous natural polymer and its degradation is different from the degradation of cellulose due
to its complicated structure as it is composed of many benzene rings. However, all of these three
main components of biomass are determined as the elements of carbon, hydrogen, and oxygen
and high energy content can be relieved by the pyrolysis process [23,24,26]. Figure 2 illustrates a
three-dimensional view of lignin in the plant cell.
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Figure 2. Graphical illustration of lignin, cellulose, and hemicellulose in the plant cell (adapted
from [27]).

Lignin is considered to be the main waste stream from several biochemical processes which
aim to specifically separate the cellulose and hemicellulose including bioethanol production and the
pulp industry. Lignin is also considered to be a rich source of aromatic compounds, polymers, and
chemical products [28]. The polymerization of p-coumaryl, coniferyl, and synapyl alcohols has led to
the formation of lignin. Hence, the main units representing the lignin structure are p-hydroxyphenyl
propane (p-H), guaiacyl (G), and syringyl (S), as presented in Figure 3. The vast majority of lignin
bonds are represented by 4-O-β bonds. The lignin composition is different based on the feedstock, i.e.,
softwood is mainly composed of guaiacyl (G) units with very few units of p-hydroxyphenyl, whereas
hardwood species are rich with guaiacyl (G) and syringyl (S).
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3. Biomass Pyrolysis

The pyrolysis products result from the primary decomposition of biomass followed by secondary
reactions of condensable products into low molecular weight gases and char [30]. In general, large
hydrocarbon molecules of biomass material are broken into smaller hydrocarbons. Bio-oil refers to
biomass pyrolysis liquid, which contains alkanes, aromatic compounds, phenol derivatives, and small
amounts of ketone, ester, ether, amine, and alcohol. The chemical compositions of bio-oil are defined
by several factors including the type of biomass, process parameters (temperature, heating rate, and
residence time), as well as condensation process (condensing technique and cooling rate). However,
the pyrolysis process requires accurate control of temperature and short residence time (less than
3 s) to achieve a high yield of bio-oil [31]. Depending on the rate of applied heat, and the preferred
types of the product (gas, solid, and liquid), pyrolysis can be classified into three different variations,
i.e., fast, intermediate, and slow pyrolysis. The mode and the operating conditions of pyrolysis can
affect the relative proportions of the gas, liquid, and solid products [32]. The fast pyrolysis process
can be achieved at a high temperature in which biomass is fast heated in the absence of oxygen by
introducing an inert gas to the reaction and at a high temperature of 400–600 ◦C; the feedstock reaches
the peak temperature before the decomposition process takes place [33]. This process requires that the
feedstock is prepared as small particle sizes for a rapid char removal design. Particle size is defined as
the average diameter, in microns, of solid materials such as biomass. Slow pyrolysis produces some
gas and solid charcoal and uses a low heating rate, with a long vapour residence time and typically a
lower temperature than when fast pyrolysis is applied. The target product for slow pyrolysis is often
char [32]. An intermediate pyrolysis process can be conducted at temperatures between 500 and 650 ◦C
in a fixed bed pyrolysis reactor.

The fast pyrolysis of biomass is the commonly preferred method because of the fast rate of reaction
and higher yields of liquid products. In the last ten years, numerous researches have studied the
fast pyrolysis process focusing on reducing the water and oxygen contents, acidity, and viscosity
of bio-oil, through different upgrading methods. In addition, further development was achieved
by optimizing the reaction conditions, and the improvement of accurate models that correspond
to the kinetics of biomass thermal degradation for the production of bio-oil. Many authors have
investigated the composition and distribution of three main products (liquid, solid, and gas) of biomass
pyrolysis produced from different types of biomass with different operating parameters and different
reactor configurations. Temperature is the most important parameter to be considered in the pyrolysis
process as it directly affects the production of bio-oil. At higher temperatures, the char yield decreases
significantly. This happens because of the primary decomposition of biomass at high temperatures
and the formation of char is by secondary thermal decomposition [33,34].
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4. Biomass Pretreatment

The pretreatment of biomass is the method that eases the pathways of the conversion of biomass
into valuable products. It enhances the process selectivity for certain products as it makes the biomass
polymers more accessible by opening up the polymer fibers to enhance the conversion of cellulose,
hemicellulose, and lignin [35]. Figure 4 presents a simple schematic for the pretreatment process.
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4.1. Physical Pretreatment

Feedstock particle size is an important parameter during the bio-oil production process as it affects
yield and properties of the produced bio-oil. Small particle sizes are preferred in the fast pyrolysis
process due to uniform heat transfer within the particles, whereas poor heat transfer in larger particles
leads to low average particle temperature and as a result an expected reduction in liquid yield [37,38].
The impact of woody biomass particle size on the pyrolysis process have been studied by many
researchers in the literature [39,40]. Larger particle size increases the heat resistance distance from
particle surface to its center which prevents the pyrolysis reaction from being completed by slowing
down the heat transfer to the biomass [41]. Shen et al. [42] studied the effect of particle size on bio-oil
yield in a fluidized bed reactor and observed an increase in bio-oil yield of 12–14 wt.% with a reduction
of the particle size from 1.5 mm to 0.3 mm.

One of the major problems with biomass pyrolysis is the low density of the feedstock, which
can influence the pyrolysis products’ yields and compositions. The low density of biomass can be
improved through a densification technique to increase the density of the biomass for the pyrolysis
process. The densification of wood has resulted in higher bio-oil yields [43]. Furthermore, it could
be considered to be a valuable method that reduces the moisture content of biomass, and therefore
improves the composition of the bio-oil [44]. The most common techniques for biomass densification
include pelleting, briquetting, and the use of a screw extruder [45].

Dry torrefaction (DT) is a thermal biomass pretreatment process in which, depending on the
applied temperature, the DT can be performed at three different modes including light, mild, and
severe, depending on the applied temperature. Light torrefaction occurs at a temperature of ~200 ◦C,
mild torrefaction occurs at a temperature of ~250 ◦C, and severe torrefaction occurs at a temperature
of ~290 ◦C, mainly happens for degradation of hemicellulose, cellulose, and lignin, respectively [46].
Torrefaction improves the biomass structure, and therefore produces better quality bio-oil [47].

4.2. Chemical Pretreatment

Chemical pretreatment has been used to improve the properties of the pyrolysis products by
removing the undesirable inorganic materials of biomass. Different chemical treatments have been
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developed which include acid and alkali pretreatment, hydrothermal pretreatment, ammonia fiber
expansion, and steam explosion. Carbonates, phosphates, sulphates, and chlorides are the most
common impurities that are found in the biomass [48], which influence the composition of the pyrolysis
products. The presence of metals in the biomass, such as potassium, sodium, calcium, and magnesium
can affect the production of bio-oil produced in the pyrolysis processes. Most studies have reported
that the presence of metal enhances the ash production, as well as the destabilization of the bio-oil and
corrosion of the pyrolysis reactor [49,50].

Acid pretreatments have been performed with mineral acids or organic acids and diluted acids, i.e.,
sulphuric or chloric acid [51]. It has been reported that an acid treatment removes the hemicellulosic
sugars by producing hydroxyl acids. One of the drawbacks associated with acid pretreatment is the
production of gypsum (CaSO4•2H2O) which is composed of calcium sulfate dihydrate. However, acid
pretreatment results in lower ash content and improved bio-oil properties [48].

Alkaline solutions such as NaOH, Ca(OH)2, and NH4OH with high concentrations at low
temperature have been used to improve the biomass structure and to partially remove hemicellulose
and lignin from biomass. NaOH and KOH are the most widely used as alkaline solutions for the alkaline
pretreatment method. Alkali pretreatment performed at a lower temperature has been reported to
improve the biomass structure by breaking the ester and glycosidic linkages in the lignin structure [52].

Wet torrefaction (WT) pretreatment is defined as a biomass treatment with hot-compressed water
or subcritical water at a mild temperature range of 180–260 ◦C and the pressure of 47 bar. During
this process, high pressure water enters the biomass and hydrates cellulose, solubilizes, and removes
the hemicellulose and a minor amount of lignin. Hence, it can be concluded that WT pretreatment
improves the bio-oil quality by reducing the amount of water produced by hemicellulose in the
pyrolysis process. The liquid from this processes is rich in phenolic compounds, furfurals, hexoses,
and other sugars [53,54]. Steam explosion has been developed for wood pretreatment [55]. The
process is described by feeding the wood chips into a vessel at 285 ◦C and 35 bar for 2 min, where
the pressure increases up to 70 bar in 5 s. This process provides better accessible feedstock for the
secondary conversion process. Figure 5 illustrates a comparison between non-treated and steam
exploded biomass.
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Ammonia fiber expansion (AFE) has been reported to be an effective pretreatment technique
to improve the biomass structure where the biomass is exposed to ammonia at a high temperature
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(80–150 ◦C) and pressure (200–400 psi) [57]. AFE is a physical (pressure and temperature) and chemical
(NH3) process, which is performed in a specific reactor equipped with a high temperature and pressure
controller and in flow of liquid ammonia. A ratio of 1:1 or 1:2 of ammonia to biomass is mixed together
for 10–60 min in a closed reactor and heated to the required temperature and pressure [58].

Biological pretreatment is one of the most efficient pretreatment methods as it is performed
under ambient temperature and pressure and no energy or chemicals are used. In this method,
microorganisms and bacteria are used for the biomass pretreatments, which degrade the main linkages
between lignin and cellulose or lignin and hemicellulose [59–61]. In Table 1, the advantages and
disadvantages of different pretreatment methods of lignocellulosic biomass are presented. One of the
advantages of mechanical pretreatment is that a large volume of biomass can be handled. However,
higher energy consumption remains as one of the drawbacks of this method. In addition, high sugar
yield can be obtained by acid treatment, however, the cost of the acid is one of the disadvantages of
this method. Ammonia fiber expansion (AFE) is an efficient method for agro-biomass pretreatment for
high sugar yield, however, recycling of ammonia is required.

Over the last few decades, ionic liquids (ILs) have emerged as promising nonconventional solvents
for lignocellulosic biomass pretreatment by solubilizing, disorganizing or fractioning lignocellulose
and increasing cellulose enzymatic digestibility. They are organic salts, liquid at temperatures below
100 ◦C, non-volatile, non-flammable, with high thermal and chemical stability. Imidazolium-based ILs
are widely used for the pretreatment of various lignocellulosic biomasses. Common lignocellulose
pretreatments with ILs are carried out at temperatures ranging from 80 ◦C to 160 ◦C and only a
few studies have reported the use of ILs at lower temperature (below 80 ◦C) [10,13,62]. It is worth
mentioning that there is a lack of information in the literature for pretreatment of biomass using ionic
liquid prior to pyrolysis.

Table 1. Advantages and disadvantages of different pretreatment methods of lignocellulosic biomass
(adapted from [63–65]).

Pretreatment Advantages Disadvantages

Mechanical

• Simple operation
• Handle large volumes of biomass
• No use of chemicals
• Very little inhibitors generated

• Low sugar yield
• High energy consumption
• Requires an additional

pretreatment step

Dilute acid
• Dissolution of hemicelluloses
• High sugar yield

• High costs of acids and need
for neutralization

• Corrosive resistant equipment
is required

• Formation of inhibitors

AFE

• Effective for agricultural biomass
• High sugar yield
• Low formation of inhibitors

• Recycling of ammonia is needed
• Hemicelluloses are not hydrolyzed

Steam explosion
• No corrosion equipment required
• Suitable for hardwood

• Formation of inhibitors
• Requires washing of the treated

biomass or conditioning of the
hydrolysate to remove inhibitors

Biological • Degraded lignin • Low energy

5. Pyrolysis Mechanism

Understanding the reaction mechanisms of the biomass pyrolysis process would enable the process
development and reactor design to move from initial research towards the commercial stage. Biomass
has a complicated compositional structure, which makes the mechanistic study of the pyrolysis process
very challenging. Hence the pyrolysis behaviour is mostly studied based on three main components of



Processes 2020, 8, 799 9 of 31

biomass, i.e., cellulose, hemicellulose, and lignin [66]. Recently, developed analytical technologies, such
as Py-GC–MS [67,68] have been employed for pyrolysis research. However, this method was not capable
of providing detailed information on pyrolysis mechanisms. During the pyrolysis process, numerous
reactions take place, i.e., dehydration, depolymerization, decarboxylation, and isomerization. The
primary reactions include char formation, depolymerization, and fragmentation [69]. Char formation
occurs by condensation of the benzene ring during the pyrolysis process, whereas the depolymerization
reaction occurs by cracking bonds between the monomers [70]. Figure 6 presents the overall pathways
in the mechanism of pyrolysis.
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5.1. Composition of Lignocellulosic Biomass

The woody biomass is classified into two groups including hardwood and softwood. Softwood
generally contains higher lignin content (26–34%) than hardwood (23–30%). Thus, the chemical
structures are different, i.e., softwood lignin consists of guaiacyl unit, whereas the hardwood lignin is
composed of guaiacyl and syringyl units. Typical lignocellulosic biomass contains around 40–50 wt.%
cellulose, 20–40 wt.% hemicellulose, and 10–40 wt.% lignin and the content of each component varies
with the type of biomass [71]. Figure 7 presents the percentage contents of main components of
lignocellulosic biomass in softwood and hardwood. Table 2 demonstrates the main components of
lignocellulosic biomass contents in different species.
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Table 2. Typical component analysis of some plant biomass samples (adapted from [73,74]).

Lignocellulosic Material Lignin (%) Hemicellulose (%) Cellulose (%)

Sugar cane bagasse 20 25 42
Sweet sorghum 21 27 45

Hardwood 18–25 24–40 40–55
Softwood 25–35 25–35 45–50
Corn cobs 15 35 45

Corn Stover 19 26 38
Rice straw 18 24 32.1
Nut shells 30–40 25–30 25–30

Newspaper 18–30 25–40 40–55
Grasses 10–30 25–50 25–40

Wheat straw 16–21 26–32 29–35
Banana waste 14 14.8 13.2

Bagasse 23 27 46

5.2. Cellulose Pyrolysis

Cellulose is the most abundant biopolymer, a linear macromolecular polysaccharide that is
composed of a long chain of glucose units linked by β−1,4-glycosidic bonds (Figure 8), and contains
several inter-molecular hydrogens. The glycosidic bonds linking the glucose units in cellulose are not
strong and cleave under high temperature such as the pyrolysis process [4]. The main products of
pyrolysis of cellulose are acids, alcohols, anhydrosugars, char, and gases. However, the cleavage of
β−1, 4-glycosidic bonds contributes largely to the formation of furans and laevoglucose [75].
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The pyrolytic decomposition of cellulose can be described in two routes, as presented in Figure 9.
The first route, kA, is performed at a low temperature and heating rate, and involves dehydration of
cellulose to yield an “anhydrocellulose” or (“active cellulose”); the second route, kB, is performed at a
higher temperature and heating rate, and results in the depolymerization of cellulose to yield primarily
laevoglucose, with minor amounts of other anhydromonosaccacharides [76]. It has been established
that low temperature affects the initial process of decomposition and results in a reduction in the
degree of polymerization and the formation of “anhydrocellulose” or “active cellulose” However, at a
high temperature and high heating rates, decomposition of cellulose is expressed by two competitive
degradation reactions, the first essentially to char and gas, and the second essentially to tars [77].
Thus, decomposition of cellulose at a high temperature and high heating rates has become the major
decomposition route of cellulose [76].
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5.3. Hemicellulose Pyrolysis

Hemicellulose is a random, amorphous structure rich with branches, which surround the cellulose
fibers and link them together [78]. Hemicellulose is composed of various saccharides (glucose xylose,
mannose, arabinose, and galactose). The contribution of hemicellulose to thermal pyrolysis is different
from cellulose because the crystalline structure of cellulose has to be disrupted thermally to free
the carboxyl groups at a certain temperature, whereas the hemicellulose chains are amorphous and
disrupted at a lower temperature [16,79]. The degradation of hemicellulose mainly happens at a low
temperature and the major weight loss occurs at 220–315 ◦C with higher CO2 and char yields [80–82].
However, the maximum weight loss has been observed at 310 ◦C [23]. A study on the mechanism of
hemicellulose reported that the formation of main products occurs via decomposition of three types
of structural units in hemicellulose [83]. Huang et al. [84] studied the monosaccharide xylan. They
reported that a major weight loss of xylan occurred at 220–315 ◦C with a wide variety of products. The
decomposition of hemicellulose during pyrolysis is presented in Figure 10.
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5.4. Lignin Pyrolysis

Lignin is a natural polymer that is composed of phenyl propane units connected through (C-C)
bonds and it represents about 20–30 wt.% of wood content. It is considered to be a major by-product of
the pulp and paper industry and the bioethanol production process, hence, it represents a potential
aromatic hydrocarbon feedstock for biofuels production. As a result of the complexity of lignin
polymer, several studies have been reported for pyrolysis of lignin model compounds as an initial
step prior to lignin pyrolysis. The studies have reported string intermolecular bonds between lignin
compounds that require harsh conditions to break [86]. A schematic of the predicted repeating unit of
lignin is presented in Figure 11.
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Figure 11. Lignin proposed by Adler (1977) (adapted from [87]).

Various methods of lignin separation have been established and each method modified, to
some degree, the chemical structure of naturally occurring lignin. According to the first complete
lignin structure presented in Figure 11, lignin is known as a highly branched natural polymer,
where its physical and chemical properties are affected by its structure and functional groups [88].
Thus, depending on the method of extraction and biomass species, the amount and the position
of functional groups can vary on the aromatic rings in different lignin. Studies have indicate that
almost all kinds of obtained structural units in lignin degradation are formed by oxidation of coniferyl
alcohol, synapyl alcohol, and p-coumaryl alcohol. The bonds and links between phenyl propene
units are presented in Figure 12. The structures of hardwood and softwood lignins are presented in
Figures 13 and 14, respectively.
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Figure 14. Softwood lignin (adapted from [90]).

Lignin is conventionally named based on the method of its separation from lignocellulosic biomass.
Due to strong chemical and physical bonds between lignin and other polysaccharides of the cell wall,
separation of lignin without any damage to its structure is almost impossible [91]. Both kraft and
organosolv lignin are produced via the pulping process [92]. Organosolv lignin is produced from the
treatment of woody materials in organic solvents [93]. Some organosolv processes are commercially
established, i.e., in the Alcell process, a mixture of ethanol and water is used as an organic solvent
and must be able to dissolve the lignin completely. Organosolv lignin is produced when extracted
wood is suspended in 60 vol.% ethanol with 5 wt.% sulphuric acid, and then reacted at 200 ◦C in a
microwave reactor for 55 min [94]. Commercial lignin (TCI Europe) is produced by soda delignification
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followed by acidification with sulphuric acid using large amounts of sodium hydroxide and sodium
sulphide [95]. Klason lignin is obtained by a two-step hydrolysis treatment of the extracted wood with
concentrated (72%) and diluted (3%) sulphuric acid [96].

Unlike the commercial lignins, the laboratory lignins are those that have been produced in the
laboratory for the purpose of lignin research studies. Milled wood lignin (MWL) is finely milled
wood, which is isolated with dioxane from ball-milled wood after extensive extraction of extractive
components. In this method of separation, only minor changes occur in the structure of lignin [97].
Acidolysis lignin is extracted from plant tissues by a mild acid hydrolysis. Cellulolytic enzyme lignin
(CEL) is obtained from MWL after treatment with a commercially available cellulose-hemicellulose
mixture to remove carbohydrate impurities. Enzymatic mild acidolysis lignin (EMAL) is obtained from
refined CEL processes, cleaving lignin carbohydrate linkages using a mild acidolysis, while leaving
ether bonds within the lignin structure intact [98]. Recent developments in modification of lignin
use green solvents as activators for the fabrication of advanced materials such as active platforms
for biosensors, biocomposite, and pro-ecological abrasive materials [99]. The use of lignin for the
synthesis of new polymeric materials is the most promising alternative to the monomers derived from
crude oil for synthesis of polymers. In Figure 15, the overall process diagram of lignin valorization on
biopolymer production is presented.
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6. Pyrolysis Products

The most valuable product of pyrolysis is the volatile product, which after the condensation
process, is converted to a liquid fraction of the pyrolysis process, known as bio-oil. This bio-oil is a
complex mix of hundreds of organic compounds, containing alcohols, ketones, aldehydes, phenols,
and oligomers [101]. In addition, the pyrolysis process produces a solid by-product, which is called ash.
Heavy metals can be present in the solid product of the pyrolysis process that was added to the biomass
during collecting and processing of the raw materials. The characterization of bio-oil is essential for
defining reactor design parameters, defining kinetic models, upgrading, and commercialization [101].
The distribution of the product of pyrolysis depends on the design of the pyrolysis reactor, as well as
the physical and chemical characterization of the raw materials and operating parameters. In Figure 16,
the reaction pathway of the pyrolysis process is presented.
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6.1. Bio-Oil

The produced bio-oil from the pyrolysis process is yellowish to brownish liquid accompanied
with a pungent odor. Bio-oil is considered to be a complex mixture of compounds with very limited
application as crude bio-oil because of its poor properties. Crude bio-oil could only be used as a
fuel for boilers, but not for engines due to its low heating value, water content, and acidity. The
physicochemical properties of the crude bio-oil produced from woody biomass is summarized in
Table 3.

Table 3. Physicochemical properties of bio-oil produced from woody bio-mass [102].

Physical Property Typical Value

Moisture content 25%
pH 2.5
Elemental analysis
C 56%
H 6%
O 38%
N 0–0.1%
HHV (Higher heating values) as produced 17 MJ/kg
Viscosity (40 ◦C and 25% water) 40–100 mPa s
Solids (char) 0.1%
Vacuum distillation residue up to 50%

The biomass type and the operating conditions of pyrolysis significantly affect the chemical
composition of the produced bio-oil. Generally, water content represents 15–35% of the bio-oil weight.
The existence of water is inevitable as per the moisture in the feedstock and specific reactions, i.e.,
dehydration, that occurs during the thermal decomposition of biomass [103]. Water content in bio-oil
is considered to be a disadvantage as it lowers the heating value and enhances phase separation. It also
contributes by lowering the pH of the bio-oil. Both water content and oxygen are the main reasons for
the low heating value (LHV) of bio-oil [104,105].

Bio-oil characterization could not be applied for the crude product as it combines hundreds
of different species and compounds. Hence, several downstream processes for crude bio-oil have
been reported including distillation, emulsification, adsorption, and solvent extraction. From the
separation processes, solvent extraction has been proven to be an efficient method for separation of
chemical organic families from crude bio-oil [106]. Different types of solvents have been reported
including methanol, butanone, dichloromethane, hexane, diethyl-ether, acetone, ethyl acetate, etc.
Furthermore, a mixture of solvents has been reported as an efficient method for fractionation of various
compounds from bio-oil which have been characterized using gas chromatography mass spectrometry
(GC-MS) [107]. The basic principle applied in solvent extraction is the polarity of the solvents and the
extracted compounds. The main advantage of solvent extraction is the separation of similar chemical
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compounds under the same chemical family together using a specific solvent [9]. The composition
of bio-oil has been identified based on the grouping method of certain extracted chemical families.
More than 10 chemical families have been fractionated from bio-oil including aromatics, ketones,
phenolics, sugars, ethers, alcohols, esters, furans, etc. [9]. It has also been reported that most of the
bio-oil extracted compounds are oxygenated with high polarity and high solubility in water [108].
Bio-oil composition depends on numerous variables including biomass type, heating rate, particle size
of feedstock, and residence time. Particle size is a noteworthy parameter that affects the composition
where small particle size enhances the uniform heat transfer within the particles, and hence results in
high bio-oil yield [38].

Bio-oil yield increases as the pyrolysis temperature is increased up to a certain maximum
temperature, after which the yield drops as the temperature is further increased [109]. However, it has
been reported that higher cellulose content in the feedstock enhances the yields of bio-oil [110]. Thus,
the bio-oil yield can be influenced by parameters such as type of biomass and operating conditions.
The most common feedstock that have been found to produce bio-oil from pyrolysis and hydrothermal
processes were rice husk [111], cotton stalk [112], oil palm, and palm kernel shell [77]. In Table 4,
various types of biomass with their respective produced bio-oil yield are compared. As stated, the
type of biomass has a significant effect in the pyrolysis process and bio-oil production. Different
types of feedstocks have different moisture contents, ash contents, higher heating values (HHV), and
elemental compositions (N, O, S, H, C). In Table 5, elemental compositions of different types of biomass
are compared.

Table 4. Various types of biomass with their respective produced bio-oil yield.

Biomass Type Type of Reactor T (◦C) Bio-Oil Yield wt.% Reference

Sugarcane bagasse Fluidized bed 500 74.0 [113]
Sawdust Fluidized bed 500 76.0 [113]

Banana rachis Fluidized bed 500 28.0 [113]
Corncob Fluidized bed 550 56.8 [114]

Rice husks Fluidized bed 450 60.0 [114]
Cedar wood Quartz glass tube reactor 550 46.8 [115]

Poplar Spouted bed 455 69.0 [116]
Rice husk Spouted bed reactor 450 70.0 [117]

Palm kernel shell (PKS) Iconel batch 390 38.5 [118]
Empty fruit bunch (EFB), Iconel batch 390 37.4 [118]

Palm mesocarp fiber (PMF) Iconel batch 390 34.3 [118]
Sweet sorghum bagasse Fluidized bed 500 43.5 [119]
Blue-green algae blooms Fixed bed 500 55.0 [120]

Corncob Fluidized bed 550 56.8 [121]
Cotton Stalk Fluidized bed 510 55.0 [122]

Table 5. Elemental compositions (N, O, S, H, C) different types of biomass.

Biomass Type C (wt.%) H (wt.%) N (wt.%) S (wt.%) O (wt.%) Ash (wt.%) HHV (MJ/kg) Reference

Sugarcane
bagasse 45.5 6.0 45.2 - 0.15 3.2 18.7 [123]

Coconut shell 50.2 5.7 43.4 - - 0.71 20.5 [123]
Cotton stalk 47.1 4.6 1.2 - 42.1 5.1 17.4 [124]
Sunflower 50.5 5.9 1.3 0.1 34.9 6.9 20.3 [125]

Energy grass 48.3 5.5 0.6 0.1 41.5 3.8 19.1 [125]
Wood waste 49.7 6.0 1.7 0.0 41.0 1.5 18.6 [125]

Corncob 49.0 5.4 0.4 - 44.6 1.0 17.0 [126]
Tea waste 48.6 5.5 0.5 - 39.5 1.4 17.1 [126]

6.2. Biochar

The solid product of the pyrolysis process is biochar, which is the highly carbonaceous material and
the carbon content is between 65–90% [127]. The characterization of biochar is defined by the type of
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biomass and the operating conditions of the pyrolysis process, which affect the carbon content of biochar.
In recent years, there has been a great attraction to biochar in a number of environmental applications.
One of the potential applications of biochar is its use as a C and N source in soil amendment [128,129]
to improve the fertility of the soil and enhance the agricultural production. However, biochar has
unique properties to remove pollutants from soil, water, and gas [130]. These unique properties include,
for example, high adsorption capacity, high specific surface area, microporosity, and ion exchange
capacity [130]. Biochar can be used as a contaminant remover (adsorbent) to remove the toxic pollutants
from affected waters or soils. These abilities are based on a porous structure, oxygen functional groups,
and a large surface area of biochar [131]. The presence of oxygen containing functional groups on the
surface of the biochar helps in the reduction of heavy metal such as lead, nickel, cadmium, and copper
in contaminated soils [132]. It has been reported that higher biochar yield was formed by pyrolysis of
biomass with higher lignin content [133]. Furthermore, slow pyrolysis is more favored for biochar
production. Biochar has high resistance to microbial decomposition. Hence it has high stability for
long periods of time (1000 to 10,000 years), which helps in carbon sequestration [134,135]. Furthermore,
a novel advanced application of biochar, attracting considerable interest in recent years, is the novel
materials for supercapacitor electrodes [136]. Batteries and capacitors are known as energy storage
systems. The unique features of supercapacitors which include high power, environment-friendly
(organic electrodes), and long cycle life have attracted significant attention from researchers for
improving the performance of supercapacitors over the last few years [137].

6.3. Pyrolytic Gas

The main gases produced in the pyrolysis of biomass are a mixture of H2, hydrocarbon gases
(C1–C4), CO2, CO, and H2S [138]. The pyrolytic gases can be classified into three categories including
incombustible gases (H2O and CO2), combustible gasses (CO and CH4), and N-containing gases
(NH3 and HCN). A lower pyrolysis temperature results in lower yield of gases, whereas with an
increase in temperature, the biomass undergoes further secondary reactions to form pyrolytic gases [66].
In addition, the use of zeolite catalyst for pyrolysis at 500 ◦C, increases the pyrolysis gas yield [139].
As revealed from the literature, the formation of CO2 mainly originates from decomposition reactions
of carbonyl and carboxyl groups in biomass pyrolysis reaction, whereas the formation of CO mainly
results from breaking of C-O-C and C=O bonds [140]. However, H2 mainly results from breaking of
C-H groups and aromatics. However, CO and CO2 are dominant gaseous products at low temperatures
and CH4 is a dominant product at high temperatures due to lignin depolarization reactions [141,142].

7. Upgrading

Water, acids, and aldehydes that exist in bio-oil are the main reasons for the poor quality of bio-oil
resulting in low heating value, instability, and high corrosiveness of bio-oil [143]. The quality of the
bio-oil can be improved by the elimination of water, acid, and unstable components [143]. Accordingly,
several physical and chemical technologies have been developed for bio-oil upgrading. In general,
the upgrading of the pyrolysis bio-oil can be achieved in three different methods including physical,
chemical, and catalytic methods. Supercritical fluids (hot vapour filtration), solvent extraction, and
emulsification are three forms of physical upgrading methods. Catalytic upgrading pathways include
zeolite cracking, hydrodeoxygenation (HDO), and steam reforming, whereas the chemical upgrading
mainly involves the esterification method. Figure 17 illustrates techniques for bio-oil upgradation [144].
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Hot vapour filtration is one of the most common methods for bio-oil upgradation, where the
vapour is treated with steam before condensation. As stated in the literature, a considerable amount of
char can be removed by hot vapour filtration as compared with conventional cyclone separators [144].
Furthermore, solvent extraction is another method of physical upgradation, whereby bio-oil is treated
with polar solvents such as methanol to alter the viscosity and improve the storage stability. Valuable
chemicals can be extracted by this method and one of the advantages of this method is cost-effective
separation [9].

One of the recent techniques to upgrade the bio-oil is to produce an emulsion with other fuel
sources such as diesel or biodiesel with the aid of surfactants as emulsifying agents. As stated in the
literature, the fuel properties of the emulsified fuels were improved and more stable emulsion was
obtained [102,145]. Various properties such as viscosity, corrosively, and water content were improved
as compared with original bio-oil [146]. Different studies have also found that the emulsification of
bio-oil with diesel improved fuel properties such as reduced viscosity and increased heating value [147].
One of the disadvantages of this method was the cost of surfactants and the high energy consumption
for this process [148].

The hydrodeoxygenation (HDO) technique removes oxygen to produce deoxygenated products
under high pressure (35–170 bar) of hydrogen stream with a catalyst. It reduces the oxygen content of
many kinds of oxygenated groups, such as acids, aldehydes, esters, ketones, and phenols. Many studies
have conducted the HDO technique using different catalysts such as cobalt molybdate, Pt/SiO2/Al2O3,
vanadium nitride, and Ru [149], and have investigated the mechanism and kinetics of HDO reactions
based on model compounds that are found in bio-oil such as aromatics. Since the bio-oil contains
about 30 wt.% aromatic compounds, the vast majority of the researches have focused on HDO of
these compounds. Nevertheless, due to the complex composition of bio-oil, it was difficult to define
the reaction pathway for this method. However, reactions such as dehydration, decarboxylation,
hydrogenation, hydrogenolysis, and hydrocracking are considered to be possible reactions that occur
during the HDO method. The high cost of operation including high pressure and hydrogen efficiency
remain as the drawback of the HDO method [150,151].

Steam reforming is the process where the hydrocarbons of the bio-oil are converted into syngas
in the presence of steam at high temperature. This method is considered to be a source of clean and
renewable hydrogen production along with bio-oil upgrading [152]. The carbon and oxygen of the
bio-oil are removed in the form of CO2 or CO [153]. Production of hydrogen is a significant advantage
for steam reforming among various upgrading methods.

Organic acids of unprocessed bio-oil can be converted into their corresponding esters by catalytic
esterification to improve the quality of the bio-oil. The conducted studies on bio-oil esterification
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reported char removal by this method of upgrading. In recent years, the use of solid acid catalysts
to convert organic acids such as formic acid, propionic acid, and acetic acid into esters has increased
dramatically. The resulted bio-oil after esterification leads to improved fuel properties of bio-oil [151].
However, separation of the alcohols used in the esterification is one of the problems associated with
this method of upgrading.

Catalytic Upgrading

In recent years, catalytic pyrolysis has received significant interest for the advantages of operating
at atmospheric pressure and without any hydrogen feed. In the catalytic pyrolysis, a catalyst can be
used directly in the pyrolysis process to remove oxygen in forms of oxygenates compounds [154].
Figure 18 illustrates the general catalytic pyrolysis pathway.
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The use of a catalyst can be achieved by two different routes. The catalyst for pyrolysis process
can be co-fed with feedstock in the rector and added to the pyrolysis system (in situ configuration).
The other route is that the catalyst can be loaded in the outlet of the reactor before the condenser to
upgrade the pyrolysis volatile gas (ex situ configuration), as presented in Figure 19. The aim of both
methods is to convert the oxygenated compounds to stable products [156]. The resulted vapour of the
pyrolysis process undergoes further cracking inside the available pores of the catalyst. A comparison
between in situ and ex situ catalytic fast pyrolysis (CFP) indicates that the ex situ configuration is an
effective way to avoid catalyst poisoning and the catalyst is located at the outlet of the reactor which
can be easily separated [70]. On the one hand, in the ex situ configuration, the produced vapour, first,
leaves the reactor, and then the catalytic reactions take place [157]. On the other hand, in the in situ
configuration, the catalyst is mixed directly with feedstock and functions as a catalyst and heat transfer
object. However, the in situ configuration is more flexible as compared with the ex situ configuration,
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which is more complex, and a higher operational cost such as the addition of reactor which is associated
with this design. In general, the single reactor design of in situ pyrolysis results in lower operating and
capital costs [158].
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The residence time for the in situ configuration is about 1–2 s, whereas it is longer for the ex situ
configuration which can lead to secondary cracking reactions and loss of condensable products [70].
However, the residence time defines the main difference between the two configurations. In the in situ
configuration, the catalyst is in direct contact with the vapour, whereas in the ex situ configuration, the
vapour thermally cracked before contacting the catalyst [159]. In addition, the direct contact of the
catalyst with the vapour in the in situ configuration minimizes the re-polymerization of the primary
products. One of the problems associated with the in situ design is the separation of the catalyst
from biochar after completion of the pyrolysis process. Nevertheless, in both of the in situ and ex
situ catalytic fast pyrolysis, the aim is to achieve a high-quality liquid with low oxygen content and
both methods have presented promising results in terms of product quality, i.e., lower acidity, higher
energy content, and product stability [160]. A comparative study for the effect of the in situ and ex situ
processes on the amount of reduced oxygen in the bio-oil has resulted in the removal of more oxygen
by the ex situ configuration [161].

To study the effect of the catalyst on product distribution, the reaction pathway of catalytic
pyrolysis of woody biomass has been investigated. The mechanistic pathway for catalytic pyrolysis
of cellulose has been studied in the literature and the results have shown that cellulose was mainly
converted to anhydrosugars and other light compounds such as acetal, gas, char, and coke [162,163].
The CFP of lignin has shown low liquid and gas yields and a high char product. As stated, initially,
lignin decomposed to oxygenate compounds such as phenol via the cleavage of β–O–4, α–O–4
linkage, and other C-C and C-O bonds, and then the re-polymerization of lignin occurred to form
char. The production of aromatics occurred via a series of reactions which included dehydration,
decarboxylation, decarbonylation, and oligomerization [164]. Many researchers have studied the
hemicellulose catalytic pyrolysis pathway according to xylan decomposition because this compound is
the most abundant compound in cellulose. The main compounds of catalytic pyrolysis of hemicellulose
are furan compounds [165]. Figure 20 illustrates the generic reaction pathway of catalytic pyrolysis of
three main components of woody biomass [165].
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The type of catalyst and its structure influence the product yield and composition. Product
selectivity is another important feature of catalytic pyrolysis, which can be achieved by selection of an
appropriate catalyst, pore size, and active sites [166]. Several catalysts have been researched and studied
in the literature. Solid acid catalysts such as zeolites, silica-alumina, and silicalite have been studied in
the literature extensively because of their ability to perform a wide variety of different reactions such as
dehydration, decarboxylation, decarbonylation, isomerization, cracking, and aromatization reactions
in the conversion of biomass to fuel and chemicals [167]. Zeolite solid acid catalysts have received
considerable interest due to their acidity and ability to produce aromatic compounds [163,168,169].
Many researchers used zeolite, especially ZSM-5, to produce aromatics and, as stated in the literature,
numerous studies modified the zeolite to improve the catalyst performance, and therefore increased
the aromatic yield and reduced coke formation [165]. Some studies observed that the existence of a
high number of acid active sites enhanced the secondary reactions which lead to the production of
more coke and a lower yield of aromatics. In other words, the yield of aromatics increased at a lower
ratio of Si/Al. Zeolite catalysts include ZSM-5, beta zeolite, Y zeolite, MCM-41, CM-22, SAPO-34, and
mordenite [170]. Zeolite catalysts have a wide range of pore size, shape, and acidity. The effect of pore
size of the zeolite catalyst has been studied and the results showed that larger pore sizes enhanced the
coke formation. The highest aromatic yields were obtained from medium pore sizes, in the range of
0.52–0.59 nm [171]. Several studies investigated the modification of zeolite catalyst with metals such
as Ga, Mo, Co, Ni, Fe, Zn, Pd, and Pt [28] to enhance the production of aromatics. A summary of
the catalysts reported in the literature for catalytic pyrolysis are as follows: HZSM-5, Mo/HZSM-5
364, Mo-Cu/HZSM-5, Cu/HZSM-5 [172]; Ru/Al2O3 [173]; Co/HZSM-5, Ni-HZSM-5, Mo/HZSM-5,
Pd/HZSM-5, Ga/HZSM-5, Fe/HZSM-5, Zn,Al/HZSM-5, Zn,La/HZSM-5, La/HZSM-5, CuO/HZSM-5,
ZnO/HZSM-5, CuO/ZnO/ZSM-5, Ag/HZSM-5, Na/HZSM-5, Ce/HZSM-5 [174]; CuZ:NiZ-1 [175];
0.5%Fe/ZSM-5, 1%Fe/ZSM-5, 2%Fe/ZSM-5, 4%Fe/ZSM-5, 8%Fe/ZSM-5 [176]; and Co–MoS2/Al2O3,
Ni–MoS2/Al2O3, Pd/C, Ru/TiO2, GaHZSM-5, H–Y, MgAPO-36, SAPO-11, SAPO-5 [167].

8. Conclusions and Perspective

The valorization of lignocellulosic biomass via pyrolysis has been proven to be an efficient solution
for the production of biofuels and value-added chemicals. Numerous studies have reported on
experimental pyrolysis, kinetic studies, process simulation, and bio-oil characterization to realize the
precise mechanism of pyrolysis. However, many challenges still need to be addressed including the
difficulties in providing a systematic approach for biomass pretreatment. In spite of the achievements
in studying the mechanisms for pyrolysis, defining an accurate mechanism for the pyrolysis process is
still a challenge.
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The physical pretreatment of lignocellulosic biomass has been comprehensively reviewed including
particle size reduction, densification, and torrefaction. In addition, chemical pretreatment processes
including acidic, alkaline, hydrothermal, steam explosion, and wet torrefaction have been highlighted.
However, it should be noted that the literature lacks any application of ionic liquids pretreatment for
biomass prior to pyrolysis, which might have favoured the impact of the efficiency of the process.

One of the main challenges of the pyrolysis process is the quality of the produced bio-oil, which
generally has high oxygen and water content and could make crude bio-oil unsuitable for direct
fueling in the existing engines. The development of a suitable upgrading method for oxygen and water
removal would lead production of high-quality bio-oil to compete with the petroleum fuels. This
article has reviewed several upgrading technologies for bio-oil including supercritical fluids, solvent
extraction, emulsification, hydrodeoxygenation, steam reforming, and catalytic approaches. The main
challenge in most of the upgrading technologies is the inconsistency of the bio-oil yield. Thus, the
key is to economically optimize the process to produce high-quality bio-oil with an acceptable yield.
The removal process of oxygen using the in situ catalytic approach has been considered to be an
efficient technology for bio-oil upgradation via dehydration with zeolite catalyst, i.e., ZSM-5. In fact,
dehydration enhances the coke formation and produces a lower yield of high-quality bio-oil. However,
decarboxylation would be a promising upgradation approach that keeps the high yield of good quality
bio-oil. The key for successful decarboxylation is the pre-upgrading of volatiles to inhibit the coke
formation, and hence increase the bio-oil yield.

Research on upgrading the bio-oil product while maintaining high yield should be considered
for future work. Alternative catalysts for zeolites including basic metal oxides, i.e., MgO and CaO
should be extensively studied for deoxygenation of bio-oil. More efforts should address inorganic salt
additives in the feedstock and carbon-based catalysts that could enhance the selectivity of the process
and produce phenolic rich bio-oil. Catalytic co-pyrolysis could be considered to be an ideal solution
that would enhance the deoxygenation reaction with a simultaneous high yield of bio-oil.

Finally, it is worth mentioning that the integration of pretreatment techniques with the catalytic
pyrolysis would enhance the conversion of low-density oxygenated biomass into high-quality aliphatic
and aromatic hydrocarbons. The process optimization techniques should be extensively applied in the
pyrolysis process to minimize the process variables energy consumptions, i.e., temperature, pressure,
catalyst loading, reactor configuration, particle size of biomass, while maintaining high-quality bio-oil
and high yield of bio-oil.
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