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Abstract

Recent experimental and analytical evidence indicates
that direct drive robots become very practical and eco-
nomical at miniature and microscopic scales, so it 1s 1n-
teresting to understand quantitatively the properties of
direct drive robots under scaling transformations. This
leads to a study of how screws and their dual co-screws
behave under the group of similarity transforms. This
group is the group of isometries together with dilations.
Several different representations are found on the space
of screws and complementary representations are found
on the dual space of co-screws. From the electromag-
netic theory of the force and torque on a magnet in a
magnetic field, we derive the scaling properties of the
electromagnetic wrench. Hence, these results can be di-
rectly applied to the scaling of direct drive motors [1].
We conclude by proposing a scale-invariant measure for
direct drive actuator performance.

1 Introduction

Understanding scaling properties of direct drive actua-
tors is extremely important for robot miniaturization.
As we design robots at increasingly smaller scales; we
are repeatedly confronted with problems such as, how
much power would a given robot require, if it were built
at a smaller scale? Or, given the choice between two
actuator designs, say two already built and their prop-
erties known at one scale, can we decide which would
be superior at another scale? In general, scaling proper-
ties depend on assumptions about what factors we hold
constant across scales. One approach considers the spe-
cific torque [3][6] determined when we fix an operating
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temperature, obtain a maximum operating torque, and
divide by actuator mass. That approach is sensible be-
cause one of the primary design constraints is heat dissi-
pation, but this paper reports a complimentary view of
actuator scaling, in which assume that scaling a physical
object like a motor is a pure dilation that preserves all
the dimensional proportions of the object and its con-
stituent parts but leaves the material density properties,
such as magnetic remenance and resistivity intact; such
a scaling would amount to building the same device out
of the same materials, but at a different scale. !

The existence of multi-axis direct drive actuators like
the Spherical Pointing Motor [2], Lorentz Force Levita-
tion devices [7], and Sawyer and other Linear Motors
[9][10], requires that we utilize more general concepts
than the scalar variables such as torque and motor con-
stant that are conventionally applied to single-axis mo-
tors, so we analyze the scaling properties in terms of
the group of proper rigid body motions SE(3). For us a
screw will be an element of the Lie algebra se(3), in some
other work these elements are called motors or twists the
name screw being reserved for elements of the projective
space formed from the Lie algebra. The importance of
the Lie algebra elements i1s that they represent gener-
alized velocities. They are six component vectors, the
first three components of which are the angular velocity
of the rigid motion and the last three are a linear veloc-
ity characteristic of the motion. We call the dual of the
Lie algebra se*(3), the space of co-screws. These co-
screws are linear functionals on the screws. Generalized
momentum and generalized forces are co-screws. The
generalized force vectors are combinations of forces and

1Thinking about what to leave invariant across scales often
leads to confusion, for example it is easy to fall into an infinite set
of choices by reasoning from Ohm’s Law. Consider that doubling
the dimensions doubles the length and radius of wire, which halves
its resistance, so the voltage is half if the current is the same, but
shouldn’t the current be quadrupled because the cross-section of
wire is four times larger? Then, should we change the voltage or
change the resistance? We can put down this apparent paradox
by considering only the effects of a pure dilation, because the
properties of interest such as the motor constant Kj; and mass
m can be shown, up to a first order, to be independent of wire
diameter.
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torques usually called wrenches. In defiance of the more
common notation we will write wrenches with the first
three components giving the torque about the origin and
the second three the force on the body. The reason for
this change is that we can now write the evaluation of a
co-screw on a screw as a simple matrix multiplication.
For example, if the wrench:

v=(z)

acts on a rigid body which is moving with velocity screw:

()

then the power exerted is given by:

Wis=7.w+F. v

See [11] for a more detailed account.

The scaling properties of screws and other representa-
tions of SE(3) have hardly been considered. The no-
table exception is Donelan and Gibson’s work [4] on the
classification of screw systems up to scale invariance.
We follow their treatment closely introducing the group
of similarity transformations of IR?, denoted Sim(3).
These transformations preserve the scalar product of a
pair of vectors in IR® but only up to multiplication by
a positive scale factor. Although not a symmetry group
of any physical device, a knowledge of the action of this
group is important when considering design issues.

2 The Group
Transforms

of Similarity

The group of similarities of IR3 can be generated by
translations, rotations and dilations about the origin.
The action of the group Sim (3) on a point x in [R3 can
be written as:

M :x+—— R(sx)+t

where R is a rotation matrix, t a translation vector and
s the scale factor, that is a real number greater that
zero.

2

An element M of the group can thus be written as a

4 x 4 matrix:
sR ¢
u=(7 1)

The Lie algebra of this group is seven dimensional, ele-
ments can be written as 4 X 4 matrices, this time of the

form:-
o3+ Q v
o= ()

where € is an anti-symmetric 3 X 3 matrix, v a 3 vector
and ¢ a real number. If we think of the group element

as the exponential of the Lie algebra element; M = X

a pure dilation about the origin would have, s = €.

Now the adjoint action of the group on its Lie algebra
can be written as the conjugation:

Ad(MYX = MXM™?
Using the block matrix form above this becomes:

Ad(M)X = <013+RQRT at—RQRTt—i—sRv)

0 0

If we write the Lie algebra element as a 7 x 1 vector:
w

X=|vwv

o

the operator Ad(M) can be written as a 7 x 7 matrix:

R 0 0
AdM)= [ TR srR —¢
0 0 1

where T is the 3 X 3 anti-symmetric matrix which sat-
isfies; T'v = t x v for any vector v. We can think of the
screws as forming a six dimensional subspace in this Lie
algebra, that is we identify the screws with Lie algebra
elements of the form:

It is easy to see that this subspace is invariant under
the action of the similarity group. We obtain a six di-
mensional representation of the similarity group on the

space Of SCIrews:
, (R 0
S=\1rrR sr)®

So the effect of a dilation about the origin on a screw
sT = (w?,vT) will be to change it to; (s')! =
(wT' svT), where s is the scale factor of the dilation.
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This representation is exactly the representation of the
group on the six dimensional angular velocity—velocity
vectors. To see this recall that the linear velocity of a
point x, in IR® attached to a rigid body moving with

instantaneous screw; s? = (w?, vT) is given by:

X=—wXX+V
see for example [12]. Under an arbitrary similarity:
X — R(sx)+t

we expect the velocity to change to; R(sx), the transla-
tion part disappears because the velocity 1s essentially
given by the difference of successive position vectors.
Now if the angular and linear velocity changes accord-
ing to:

w— Rw, and vi— sRv+tx Rw

as in the adjoint representation, then we get the correct
transformation properties for the velocities of point in

IR?.

This is not the only possible representation of the group
of similarities on the six dimensional space of screws.
For example, screws are also used to represent lines in
space. The Plucker coordinates of a line through two
points x and y are given by:

= (53)
XXy

The first three components here give a vector in the
direction of the line while the second triple give the mo-
ment of the line about the origin. The relevant repre-
sentation here is the antisymmetric square of the 4 x 4
representation; A%. Using the 4 x 4 representation to
find the action on points we see that:

ANM:x—yr— sR(x—y)
and
ANM:xxyr— s"R(x xy)+sR(x—y)xt

Hence we can write the 6 x 6 matrix for A2M as:

2 _ sR 0
A= (sTR 52R)

Recall that, for SE(3) the adjoint representation and
the antisymmetric square of the 4 x 4 representation
are the same. In fact there are lot of inequivalent six
dimensional representations of the similarity group. It
is straightforward to see that for any n the following
matrix gives a representation of Sim(3)

s"R 0
Fn(M): (5”TR 5n+1R)

So we have that:

Ad(M)|p=0 = To(M), and  A*M =Ty (M)

Notice that, although all these are different six dimen-
sional representations they give the same action on the
projective space IPIR®. Since multiplying the homoge-
neous coordinates by an overall factor of s” has no ef-
fect. This means that the results of Donelan and Gibson
apply to all of them.

Now we find the action of the similarity group on the
dual space of co-screws. That is the wrenches. The
pairing of a velocity screw with a wrench is not neces-
sarily invariant with respect to scaling. The pairing of

a co-screw MT = (j7, pT) with a screw is given by:

Mis=j w+p-v

Although we no longer expect this to be invariant as it
is for rigid transformation, we do expect it to scale as
some power of of the scale factor s. This is because this
pairing gives physical quantities like energy and power,
depending on what co-screw we use, and we expect these
physical quantities to scale as s”. Note that, we can
think of this as defining a number of one dimensional
representations of Sim(3). We can write these represen-
tations as:
an(M)=s"

So for example, we expect the mass of an object to
transform according to the «g representation.

This means that we expect the co-screws to transform
according to representations I'}, which satisfy:

L0, =TIT: = Is @ apan

m (1)
As a result, we get a sequence of inequivalent represen-
tations of the similarity group on the co-screws, given

by the matrices:

* s"tR s"TR
n+1(M) = ( 0 SnR )
For example, take a wrench WT = (7 F7), where

F is the total force acting on a rigid body and 7 the
torque about the origin. The pairing of this with a
velocity screw gives the power being expended. Now,
for dimensional reasons we expect the power to scale as
55, since the units of power are [mass|[length]?[time] =3
and we expect the mass to scale as s3 and the length as
s. Hence, the representation obeyed by the wrenches is:

5 4
;[ s°R s"TR
W_<0 54R)W

that is I'f. The effect of a pure dilation about the origin
is given by the matrix:

" 2L 0
FS(S) = ( 03 54[3)
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so that; WI' = (s°77, s*F7). In future we will use sub-
script s to denote a quantity subject to a pure dilation.

This however, takes no account of how the wrench is
produced. Suppose the wrench were produced by the
action of gravity. Such a weight wrench would have the

form:
— x k
W= ( mgr )
—mgk
where m is the mass of the rigid body, ¢ acceleration due
to gravity, r the position vector of the center of mass

and k the unit vector in the upward direction. Now if
we scale the size of the body by s this will change to:

W, = (—54mgr X k)

—s3mgk

That is, the weight wrench transforms according to the
I'} representation. The discrepancy in the exponent of s
1s accounted for by the fact that that we have implicitly
assumed that size of the planet earth was not scaled,
that is we assumed ¢ was constant. This was reasonable
since the point of these scaling relations is usually to
see the effect of building a device at a different scale
here on earth. If we were to insist that the size of the
planet should be scaled along with the rigid body under
consideration then we would use the relation:

mM@

F=0—0

for the magnitude of the force. We would then recover
the the scaling relation:

5 4
;[ s°R s"TR
W_<0 54R)W

There 1s another geometrical six dimensional represen-
tation of Sim(3), this is the fourfold antisymmetric
power of the standard representation, however a small
calculation shows that:

AM =T* (M)

Finally here, we note the following relations among the
tensor products of the representations we have found:

am®FZ:F*

and man

am @, = Fm+na

In the following we look at the scaling relation for the
wrench caused by the magnetic field of current flowing
in a coil of wire acting on a permanent magnet. That
is a direct dive motor. In this case it is not easy to see
what implicit assumptions are being made.

3 Electro-Magnetism

Suppose we have a permanent magnet sitting in an ex-
ternal magnetic field with flux density B. The field pro-
duces a force an torque on the magnet, the total wrench
acting on the magnet due to the field can be written:

_(T)_(frx(JxB))

W = -

F [IxB

where the integrations are over a virtual current dis-
tribution J, representing the magnet (see [8]). Now, in
trying to determine the scaling properties of these quan-
tities we don’t need to use very sophisticated model of
the interaction between magnet and the current in the
wires. A first approximation will do since we expect the
higher approximations to have the same scaling proper-

ties. Hence, we may represent the torque on the magnet
by the simple formula:

T=puxB

where g is the magnetic moment of the magnet and B
is the flux due to the coil. We can assume that the
magnetic moment of the magnet i1s proportional to the
volume of the magnet. Hence, if the scaling does not
affect the material properties of the magnet only it’s

size, then p scales as s2.

It is important that we model the wire as having some
thickness. However to first order we can ignore this
thickness assuming the diameter of the wire is small
compared to the size of the motor. The finite thickness
of the wire will give rise to second order effects. So we
approximate the magnetic flux due to the coils as the

integral:
decxa
I
]{ |af?

where a is a vector directed from the source point to
the field point. The integration is over all source points
that is along all the wires. Scaling the coils give the new

flux: d
B, :]s&]{w :5_1]3[5/[

47 s3|al?

here I, is the new current in the wire.

Ho
B=—
4T

Combining these relations we arrive at an expression for
the torque at the new scale:

Ts = pg, X By = s x sTIBI /T = s*71/1,

The results of the last section tell us that the force must
scale as s if the torque scales as s2, that is, this wrench



4 CONCLUSION

transforms according to the I'; representation. For a
pure dilation we have:

o fTs Y 2T . 215
= ()= (o=

0
5}3) WI, /1

4 Conclusion

Suppose we have a direct drive robot which can gener-
ate just enough force and torque to lift its links with no
payload. If we scale down this machine, that is dilate
with a scale factor s < 1, then the force and torque
required to lift the links reduces rapidly. The torque,
for example scales as s*, this is because the wrench re-
quired to lift the links is a weight wrench obeying the
representation I';. The wrenches generated by the di-
rect drive motors obey the representation I'; and hence
reduce less rapidly. The result is that scaling down the
robot will yield more useful torque and force.

A common way to compare motors 1s the torque con-
stant K7, which is the amount of torque developed per
unit current. Even for a single axis motor this is not re-
ally a constant but depends on the position of the rotor,
see [1]. For the multi-axis machines we want to consider
we would have a torque constant for each axis which we
can combine with a force constant K for each axis.
The force constant being the force developed per unit
current. The combination is a wrench:

= (xr)

which we could call the wrench constant of the device.
From equation (2) we see that the wrench constant
scales as ', since for a pure dilation we have:

_ SzKT
ICS o ( SKF )

Another commonly quoted characteristic of motors is
the motor constant. The power consumed by the motor
is proportional to the square of the torque. The motor
constant is the constant of proportionality. Notice that
the motor constant can be written as; Ky = KT/\/Z
where Z is the resistance of the motor windings. Now
when we scale the motor the length of the wire in the
windings increases as s and the area of the wire scales
as s2. So if the resistivity of the wire remains the same,
the resistance of the windings will scale as s='. We
can introduce the solenoid constant Kg = KF/\/Z, and
combine the two to produce a wrench:

= ()

5

This wrench scales according to the F;/z representation,
a pure dilation gives:

55/2KM
M, = (53/2KS )

Next we look again at the power, as mentioned in section
1 the power is given by the matrix product WT's. When
we look at the power exerted by the motor the wrench
we must use is the electromagnetic one obeying the I';
representation, the screw is a velocity screw and hence
transforms according to the I'g representation. So us-
ing formula (1) we can see that the output power of the
motor scales as s2. Using the same argument we can see
that the power required to lift the weight of the robot’s
links scales as s*, since we must use a weight wrench
here to compute the power. The input power is given
by I?Z, where I is the current and Z the resistance. We
cannot make much progress with this relation without
some model of the electrical circuit for the motor. How-
ever, if we revert to the one axis case we can write the
current in terms of the torque and torque constant:

r 2
Py, = - Z
(]XT)

Hence, we see that the input power scales as s2. The

efficiency of the motor, that is the output power divided

by the input power then scales as s1.

Notice that none of the above constants is invariant
across scales (see Figure 2). Such an invariant would
be useful when comparing devices of widely differing
sizes.

For a single axis motor we can produce a scale invariant
measure by dividing the motor constant by a power of
the mass:

Q = Ky /m”, so that Q, = s°/?s73Q
Choosing n = 5/6 ensures that @, = @, that is, @ is

scale invariant.

The scatter plot in Figure 1 compares direct drive ac-
tuators across scales using a modified version of our @
variable that takes into account the difference in actu-
ator workspace. Our design task is to build a robot
finger or leg with 90 degrees of motion per joint. Some
actuators have less than 90 degree workspaces, so we
normalize their mass by a factor of s, Here

Ky

- (smm)5/6
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The Motor Universe

Motor Const (Nm/Sqrt(Watt))

1 0.248 FJ Alum Wire (proposed)
2 0.230 239 mm Inland A
3 0.224 180 mm Inland B
4 0.224239 mm Inland B Q=O 25
10.000 5 0.213 180 mm Inland C
6 0.200 Humanoid (proposed)
7 0.195F]
8 0.176 239 mm Inland C
9 0.172 180 mm Inland A
10 0.137 127 mm Inland G
11 0.127 127 mm Inland F
12 0.133 127 mm Inland E
13 0.133 127 mm Inland D
14 0.134 127 mm Inland C 10
15 0.128 127 mm Inland B 3 M
L 000 16  0.106 127 mm Inland A ]?1?
17 0.105 Clifton JDH-2250-BX-1C 1~ 4
18  0.088 small FJ 9 s .
19 0.089 2.5 Buttolo o
20 0.087 Inland QT-1221A 13 Q:() 01
21 0.083 Maxon RE035-071 16 33 .
22 0.083 Reliance 1843622004-B » )
23 0.083 Maxon RE025-055-37
24 0.081 Clifton AS-780D-515
0.077 Maxon EC-040-070-49
0.076 Reliance 1843622004-A
0.072 1.8 sm Buttolo
-100 0.069 Maxon 2260-880
0.067 1.8 dm Buttolo
0.067 1.8 ff Buttolo
0.061 LL 195190-032
0.056 Maxon EC-032-060-31
0.053 MicroMo GNM 7085
0.052 NSK RSO608FN002
0.048 MicroMo 2444SBL1
0.047 Radio Shack AWG 30
0.044 BEI RA60-10-001
0.042 3.5 Buttolo
010 0.044 Radio Shack AWG 26
0.041 Radio Shack AWG 22
0.040 BEI RA68-12-001
0.031 5.25 Buttolo
0.031 BEI RA55-22-000
0.031 Globe 403A159
0.026 BEI RA16-06-000
0.025 Maxon 2260-815
0.025 BEI RA29-11-002
0.016 Globe 403A185
001

0.1

Mass (kg)

10.0

Figure 1: The graph plots 48 commercial and experimental direct drive actuators across a range of sizes from

a few grams up to 26Kg on a log-log scale. The vertical

axis denotes motor constant and the graph shows the

well-known property that larger motors have larger motor constants. The diagonal lines plot constant contours
of our proposed quality measure @ (see text), by which the actuators are ordered.

where
$m = max(1, 2w/7)

and w is the actuator’s workspace in radians.

Some manufacturers (e.g. BEI and Inland) offer only

devices that do not include
structural housing and bearings necessary in any given
application. We estimate that in general one must scale
the mass of an unframed motor by a factor of 2 in order

“unframed” motors, i.e.

to build the actuator into a realistic application. Our
experimental actuators include all the mass of the robot
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link needed to connect one joint to another.

The devices listed are all commercial actuators except
the ones with the names “FJ” and “Humanoid” which
are based on measurements from experimental devices
built in our lab. The “FJ” is built and tested and the
“FJ Alum Wire” is what we project to achieve once we
obtain aluminum wire. Strictly speaking, the “Radio
Shack” actuators were actually torque measurements
using commercial prefabricated air-core inductors and
a 3/8" x 3/4” cylinder of NdFeB material. The table
shows the well known fact that motor constant Kjs 1n-
creases with increased mass, i.e. bigger motors have
bigger motor constants. But suppose we want to know,
given an actuator technology, what would happen if
we built the same device smaller or larger. The scale-
independent parameter () allows us to compare, for ex-
ample, the large 26 Kg NSK motor with with 30 gm
disk drive motor analyzed by Buttolo et al. [3]. Fig-
ure 1 illustrates this ) function in comparison with a
variety of commercial actuators, including the Inland
motors analyzed in [6] and our experimental actuators

[13]]14].
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4 CONCLUSION

| Quantity | Symbol | Units | Scaling Property | Mass Relation |
Resistance Z Q Zs=17]s O(m~=1/3)
Colil current 1 Amps I independent of [
Magnet current I Amps Ims = sl O(ml/?’)
Magnetic torque T Nm Ty =sirl /1 O(mz/?’fs/[)
Torque Constant K Nm/Amp Kps = s°Krp O(m2/3)
Motor Constant Ky Nm/v/Watt Kuys = s3 Ky O(m5/6)
Magnetic force F N Fy=sFI /1 O(ml/?’fs/[)
Force Constant Kg N/Amp Kpy, = sKp O(ml/?’)
Solenoid Constant Kg N/ Watt Kgs = s3Kg O(ml/z)
Required Power W Watts W, =W O(m)
Efficiency E dimensionless E,=FE/s O(m~=1/3)
Motor quality Q Nm//Watt/(Kg)>/° Qs =Q O(1)

Figure 2: This table summarizes some important scaling properties of familiar scalar properties of direct drive

actuators that follow from the main results in this paper.



