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Abstract - Recently, due to increase in production demand in nuclear and oil & gas industries, requirement to 

migrate towards larger pipe sizes for future developments have become essential. However, it is interesting to note 

that almost all the research on two phase gas-liquid flow in vertical pipe upflow is based on small diameter pipes (D 

≤ 100mm) and the experimental work on the two phase gas-liquid flow in large diameter (D > 100mm) vertical pipe 

is scarce. Under the above circumstances, the application of modelling tools/correlations based on small diameter 

pipes in predicting flow behvaiour (flow pattern, void fraction, and pressure gradient) poses severe challenges in 

term of accuracy. The results presented in this paper is motivated by the need to introduce the research work done to 

the industries where the data pertaining to large diameter vertical pipe is scarce and there is a lack of understanding 

of two phase gas-liquid flow behaviour in large diameter (D > 100mm) vertical pipes. 

 

The unique aspect of the results presented here is that the experimental data has been generated for a 254mm inner 

diameter vertical pipe that forms an excellent basis for the assessment of modelling tools/correlations. The paper 

presents results of (i) a systematic investigation of the flow patterns in large diameter vertical pipes and identify the 

transition between subsequent flow patterns, (ii) compare it directly with existing large (150mm) and small diameter 

data (28mm & 32mm) under same air-water superficial velocities range, (iii) exemplify that existing available 

empirical correlations/models/codes are significantly in error when applied to large diameter vertical pipe for 

predictions and (iv) lastly, assesses the predictive capability of a well known commercial multiphase flow simulator.  

 

Keywords: Large Diameter, Small Diameter, Air-Water, Flow Patterns, Vertical Pipe, Void Fraction, Flow regime 

transitions and OLGA.  
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I. Introduction 

The two phase gas-liquid flow in pipes can adopt various physical configurations knows as flow 

patterns. These flow patterns strongly influence the key design characteristics (e.g. void fraction and 

pressure drop) of two phase system; hence it is important for the designer to be able to predict the 

flow pattern correctly. Such two phase gas-liquid flows are widely encountered in many industrial 

applications e.g. in nuclear and oil & gas etc. In these industries, the accurate predictions of flow 

patterns are extremely important for the optimum design of the systems. Thus the aim of almost all 

the multiphase flow research has been with the prediction of flow patterns so that the accurate 

theories for the flow mechanisms can be developed and the basic flow parameters (void fraction and 

pressure drop) in these flow patterns can be established.  

 

Recently due to increase in production demand in above industries, requirement to migrate towards 

larger pipe sizes for future developments have become essential. In this context, two phase flow in 

the large diameter (D > 100mm) vertical pipe has become a subject of great interest specially in 

nuclear and in oil & gas industry, as for former, interest lies in the safety requirements (Khartabil 

and Spinks, 1995; Ohnuki and Akimoto, 2000; Shoukri et al., 2000; Schlegel et al., 2009) while for 

the later the concern is economics (Pickering et al., 2001). Here it is emphasized that the pipe 

diameter, D ≤ 100mm is considered as small diameter pipe while diameter, 100 < D ≤ 200mm are 

usually quoted as intermediate sizes and diameter, D > 200mm are taken as large diameter pipe. It is 

quite interesting to note that although vast research exist on two phase vertical pipe upflow, it is 

based on small diameter pipes (D < 100mm) and the experimental work on predicting the two phase 

flow behaviour in pipe diameter, D > 100mm is scarce. Moreover, some previous research works 

suggests that the flow behaviour of two phase flow in larger diameter vertical pipes is likely to be 

different from small diameter pipes, e.g. Slug flow, an alternate flow of liquid slugs and large bullet 



 

* Dr. Shazia Farman Ali 
Faculty of Chemical & Process Engineering 
NED University of Engineering & Technology, PK   3 
 

shaped smooth and elongated Taylor gas bubble does not exist for large diameter vertical pipes 

(Cheng et al., 1998; Ohnuki and Akimoto, 2000; Shoukri et al., 2000; Pickering et al., 2001 and 

Omebere-Iyari, 2007). This notion introduces the uncertainty behind the predictive accuracy of the 

existing correlations and modelling tools. As most of computational codes are based on flow regime 

dependent constitutive equations, conditions derived from the small diameter pipes research may 

not be valid for large diameter vertical pipes posing severe challenges in terms of accuracy. As the 

experimental data obtained from conventional small diameter pipe with different flow mechanisms 

cannot be used for developing modelling tools for large diameter pipes, therefore new experimental 

data must be generated, old correlation/ constitutive equations should be validated and new relations 

should be modeled that will include the flow pattern (or diameter) influence on gas-liquid flow 

structure.  

Flow pattern & its classifications 

For the vertical upward flows in circular conduits, four (4) typical flow patterns (Figure 1) may be 

distinguished namely; bubbly, slug, churn and annular flows (Hewitt and Roberts, 1969; Taitel et 

al., 1980; Mishima and Ishii, 1984). Briefly: (i) In Bubbly flow, the gas is dispersed in the 

continuous liquid phase. Various researchers (Taitel et al., 1980; McQuillan and Whalley, 1985; 

Barnea and Brauner, 1986) have further classified this flow as dispersed bubbly, where the gas 

phase is dispersed as small discrete bubbles in continuous liquid phase and low liquid input bubbly 

(or non-dispersed bubbly or bubbly) that occurs at low liquid superficial velocities only, where gas 

bubble of various sizes exists with some occasional coalescence in the core (Taitel et al., 1980). It is 

to be noted that some researchers (Mishima and Ishii, 1984; Weisman and Kang, 1981) do not 

delineate any exact distinction between the two types and categorize both under same bubbly flow. 

(ii) Slug flow: As the gas superficial velocity is increased from bubbly flow, the gas bubbles begin 

to coalesce to form long smooth bubble with front having cap/bullet shape. This bubble is referred 

as Taylor bubble and is of equivalent cross section as that of the tube, being separated from the wall 
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by a thin liquid film. The two consecutive Taylor bubbles are separated by a liquid slug that is 

usually aerated with gas bubbles that are shed from the tail of the leading Taylor bubble. (iii) Churn 

flow: As the gas superficial velocity is increased in slug flow, the Taylor bubble becomes more 

distorted at gas-liquid interface. The distorted bubble travels in churning motion giving rise to 

irregular shaped portions of gas and liquid. This flow is also called froth flow/ churn-turbulent flow/ 

intermittent flow/ pulsating annular flow (Brauner & Barnea, 1986; Weisman and Kang, 1981). 

Some researchers (Mao & Dukler, 1993) do not consider this flow as a separate flow and treat this 

flow under the slug flow. (iv) Annular flow: In this flow, the gas phase exists in the core while 

liquid exists as film around the periphery of the conduit and as the entrainment (drops) in the core. 

There are two variation of this flow (Hewitt, 1982) namely, Wispy annular - where entrained liquid 

is present as relatively large drops and liquid film contains gas bubbles and Annular mist in which 

gas occupies the centre of the core with liquid drops sizes not large and some liquid flowing along 

the periphery.  

Review of other large diameter vertical upflow work 

Although many studies have contributed to the topic of the large diameter vertical pipes (Hills, 

1976; Shipley, 1984; Hills, 1992; Hirao etal.,1986; Ohnuki and Akimoto, 1996; Hasanein et al., 

1997; Cheng et al., 1998; Ohnuki and Akimoto, 2000; Shoukri et al.,2000; Prasser et al., 2002; Sun 

et al., 2002; Oddie et al., 2003; Hibiki and Ishii, 2003; Shen et al., 2005; Prasser et al., 2005; 

Omebere-Iyari et al., 2007; Omebere-Iyari et al., 2008; Schlegel et al., 2009; Lucas et al., 2010 and 

Shen et al., 2012) majority of the work performed was restricted to pipe diameter of intermediate 

sizes (D ≤ 200mm) because this was considered to be an optimum choice from cost analysis point 

of view. Only few studies have been conducted for very large diameter sizes (300 < D < 500mm) 

(Shipley, 1984; Ohnuki et al., 1996; Hasanein et al., 1997 and Yoneda et al., 2002). In case of these 

later higher diameters, the work is been confined to very small length-to-diameter ratio (Shipley, 



 

* Dr. Shazia Farman Ali 
Faculty of Chemical & Process Engineering 
NED University of Engineering & Technology, PK   5 
 

1984; (z/D)air-water = 12.34, Ohnuki et al., 1996; (z/D)air-water = 4.16, and Hasanein et al., 1997; 

(z/D)steam-water = 7.87), hence the two phase flow is still evolving or developing, which may not 

depict the true two phase flow behaviour in a longer length vertical pipe. In most of the above 

works with exception of (Cheng et al., 1998; Prasser et al., 2002; Omebere-Iyari et al., 2007; 

Omebere-Iyari et al., 2008 and Schlegel et al., 2009), the major multiphase flow parameter i.e. flow 

patterns was studied by flow visualization only and hence can be subjective (Hills, 1976; Shoukri et 

al.,2000; Ohnuki and Akimoto, 2000; Oddie et al., 2003; Shen et al., 2005 and Shen et al., 2012). 

Additionally, in some of other large diameter work, flow patterns were vaguely dealt or completely 

ignored (Shipley, 1984; Van der Welle, 1985; Clark and Flemmer, 1986; Hirao etal.,1986) while in 

others the objective of study was determination of local flow structure i.e. local void phase and 

velocity distributions (Ohnuki and Akimoto, 2000; Shoukri et al.,2000; Prasser et al., 2005; Shen et 

al., 2005; Prasser, 2007; Prasser et al., 2007; Shen et al., 2010 and Schlegel et al., 2010 and Lucas 

et al., 2010), hence any comparison performed with smaller diameter pipes was limited to these 

parameter only. Moreover it was noticed that, some results for large diameter vertical pipes differed 

even for same pipe diameter, e.g. Shoukri et al. (2000) found that the Taitel et al. (1980) flow 

regime map was found to predict their experimental flow patterns transitions satisfactorily while 

other quoted that it does not (Omebere-Iyari et al., 2007; Omebere-Iyari et al., 2008). A number of 

work e.g. Hasanein et al. (1997), Yoneda et al. (2002), Prasser et al. (2007) and Omebere-Iyari et 

al. (2008) have specific nuclear application of boiling water reactors as they used steam-water as 

working fluid. Furthermore, in just few studies (Ohnuki and Akimoto, 2000; Shoukri et al., 2000 ; 

Omebere-Iyari et al., 2007; Omebere-Iyari et al., 2008 and Schlegel et al., 2009) the results were 

presented on the flow pattern maps. In the work of Omebere-Iyari et al. (2007), the flow patterns 

were deduced for nitrogen-naphtha under high pressure facility, hence it is restricted in its 

applicability to petroleum industry only, while in Omebere-Iyari et al. (2008) work, steam-water 

results were presented with very limited data (few data points only!) especially in the region of 
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transition from bubbly to churn flow regime. Ohnuki and Akimoto (2000) flow pattern 

identification is based on visualization hence may carry some doubt while Schlegel et al. (2009) 

data can only be used for qualitative comparison as no information about operating conditions (air-

water superficial velocities) are given with flow pattern identification performed by use of neural 

network. Overall, while the above review shows significant systematic information on the two-

phase flow in large diameter vertical pipes, no previous work performed comparison with smaller 

diameter pipes with same working fluid under similar air-water superficial velocity range. For this 

reason comparison between small and large diameter is presented here in this paper so that 

comparison is more meaningful and straightforward.  

 

From above brief survey it is obvious that it’s a necessity to constantly increase / update the 

database of multiphase flow in pipes due to its empirical nature. Moreover, it is also observed that 

while ample work exist between 100mm to 200mm and few above 300 to 500mm currently no work 

is reported between 200mm and 300mm. This motivation has resulted in generating the 

experimental data in a large diameter (Di = 254mm) research facility at Cranfield University, unique 

of its kind in UK and is the largest diameter vertical upflow setup in use in academia. The facility 

currently employs air-water as the working fluid because it’s easier to build and operate the setup 

when using air-water than other working fluids that may require special handling with more 

complicated systems. Additionally, vast air-water two phase flow literature is available, in which 

case, the current use of air-water as test fluids can lead to more representative results for 

comparison. However, the large diameter riser facility is built with enough flexibility so that various 

parametric effects could be studied in future by modifying the setup as well as working fluids. 

 

In this paper, the data generated for large diameter facility is used perform (i) a systematic 

investigation of the flow patterns in large diameter vertical pipes and identify the transition between 
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subsequent flow patterns, (ii) compare it directly with existing large (150mm) and small diameter 

data (28mm & 32mm) under similar air-water superficial velocities range, (iii) exemplify that 

existing available empirical correlations/models/codes are significantly in error when applied to 

large diameter vertical pipe for predictions and (iv) lastly, present a comparison of experimental and 

simulated results showing the predictive capability of a well known commercial multiphase flow 

simulator.  

 

II. Experimental Setup 

Figure 2 shows the large diameter facility comprising of an air compressor system, water pumping 

system, horizontal flowline, vertical circular test section, upper plenum consisting of 

overhead/return tank, downcomer and a return line to sump. The overall height of the vertical 

circular test section is 12.2m and horizontal flowline is of 36m length, both consisting of inner 

diameter of 254mm schedule-40 stainless steel pipe sections. The horizontal flowline has one clear 

perspex section installed at approximately 2m before the base of the vertical circular test section. 

This transparent section helps in visual observation of the air-water flow exiting the flowline and 

entering in the circular test section. The vertical riser section has four (4) clear perspex sections 

installed at different heights for viewing the air-water flow. The water is supplied to the flowline-

vertical test section from the single phase loop by a sump pump (P3). The water flow rate is 

regulated via a valve (VW4) and a bypass valve (VW2) and measured by Bailey Fischer & Porter 

XM-2000 series electromagnetic flow meter with an experimental accuracy of ±0.5% with 

minimum and maximum range of 5 to 200 m3/hr. After leaving the flow meter, water flows into a 

piping PVC network with the different elevations from the ground and then enters into a 36m long, 

254mm inner diameter horizontal schedule-40 stainless steel flowline at the ground level. The air to 

the facility is supplied from buffer tank to minimize the pressure pulsations from the compressor 
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and is measured by two Fischer-Rosemount MassProbar flow meters (FT302 & FT305) with an 

experimental accuracy of ±1.3% with minimum and maximum ranges of 79 to 4250Sm3/hr and 6 to 

100Sm3/hr. The flow to meters is controlled (by control valves FIC301 & FIC302) through DeltaV 

digital automation system. Air after metering is delivered to large diameter facility via 50.8mm pipe 

either to the vertical test section base (VA1) or at the inlet to horizontal flowline (VA5). The two 

phases i.e. water entering into the flowline and air entering either in flowline (through VA5) or in 

the vertical pipe base (through VA1) mixes and then flows upward into the circular test section. For 

the results reported here, later air entrance option i.e. air entering through vertical pipe base 

(through VA1) is used, while former results could be find elsewhere (Ali and Yeung, 2008a). The 

vertical circular test section contains three special high pressure clear perspex sections of 1m in 

length installed approximately at 5m, 8m and 10m heights for identifying the air-water flow 

patterns along the height by the high-speed video camera. A short clear perspex section is also 

installed at approx. 3m height, just above the air injectors and is used to observe the air injector 

effect. The air flow from the circular test section is vented to the atmosphere in the upper plenum 

while water flows into the overhead tank and then to the PVC pipe downcomer. The downcomer 

offers a flow path either to the sump or return to the circular test section base. In experimental data 

reported here only former flow path was used. The signals from the instrumentation installed at 

various locations in the loop were logged through dedicated LABVIEW software (Qazi & Yeung, 

2006).  

 

The whole horizontal flowline - vertical circular pipe facility is equipped with flow meters, 

temperature probes, pressure transducers, differential pressure cell and a water manometer. From air 

and water flow meters readings, air and water superficial velocities were calculated. The time-

dependent pressure signal measurements were performed by flush mounted DRUCK PMP-1400 

pressure transducers with the measurement range of 0-2 barg with an accuracy of ±0.15% in full 
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scale near the entrance (base) to vertical test section and at its exit. Another pressure transducer 

model no. 249 from RS components with the range of 0-6 barg and accuracy ±0.25% in full scale is 

installed near the exit of the horizontal flowline section before the riser base to monitor the 

behaviour of incoming two phase flow in the riser base. Three temperature probes were used to 

detect inlet temperatures of air and water at their respective entrances for accurate estimates of flow. 

Two DRUCK PMP-4110 differential pressure cells having 0-700mbard range and nominal accuracy 

of 0.04% in full scale along with a water manometer were mounted in the circular test section to 

deduce the void fraction at the height of 5, 8 and 10m respectively.  

 

All the pressure sensors are installed close to clear perspex sections so that simultaneous signal 

acquisition and videoing can take place. The pressure transducers installed at the entrance (in the 

base) and near the exit of the vertical test section were used to measure the average pressure drop in 

the test section while the two differential pressure cells and a water manometer were used to deduce 

the sectional volume average void fraction at different heights along the vertical test section. The 

differential pressure (D/P) method determines volume average void fraction and is well known for 

its simplicity, low cost and ruggedness. Many previous researches (Hills, 1976; Tutu, 1984; Matsui, 

1984; Anunziato and Girardi, 1984; Matsui, 1986; Ohnuki and Akimoto, 1996) have used this 

method for void fraction measurements in vertical two phase flows or have cross-calibrated their 

advanced sensors (impedance, conductivity and wire mesh sensor) against this method (Ma et al., 

1991; Fordham et al.,1999; Ohnuki and Akimoto, 2000; Shoukri et al., 2000; Cheng et al., 2002; 

Schlegel et al., 2009). For the purposes of present research work, it was assumed that the 

differential pressure equals to hydrostatic pressure plus frictional loss and frictional loss could be 

represented by a correlation. To validate the above assumption, frictional loss was subtracted from 

measured pressure drop. The frictional loss was determined from the well known correlation of 

Lombardi and Carsana (1992) that was selected due to its wide parameter range and specifically 
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developed for vertical flows. The Figure 3 shows that the effect of frictional loss is negligible 

(within 4% of total) under the given water-air superficial velocities, validating the assumption that 

the predicted friction loss component was smaller to the extent that it does not influence the total 

pressure drop that was dominated by hydrostatic component (~ 96%). From deduced volume 

average void fraction, the probability mass function plots (hereafter referred as probability plots) 

were constructed to discriminate the air-water two phase flow patterns. Employing probability 

functions for flow pattern analysis has been documented by a numerous previous researchers and 

the theory could be referred from them (Jones and Zuber, 1975; Vince and Lahey, 1982; Tutu, 

1984; Anunziato and Girardi, 1984; Matsui, 1986; Anunziato and Girardi, 1987; Costigan and 

Whalley, 1997; Cheng et al., 1998; Cheng et al., 2002; Omebere-Iyari et al., 2007; Omebere-Iyari 

et al., 2008; Blaney and Yeung, 2008 and Schlegel et al.,2009).  

 

III. Results & Discussion 

During the above adiabatic air-water flow experimental campaign, both air and water superficial 

velocities were varied from ja = 0.09m/s - 2.23m/s and jw = 0.18m/s to 1.1m/s respectively. The 

flow pattern identification results presented in this paper are taken at (z/D)air-water ≈ 32. The volume 

average void fraction calculated from this height at various air-water superficial velocities was 

found to be similar as that of (z/D)air-water ≈ 20 and (z/D)air-water = 39 indicating that the flow was 

fully developed before it reached z/D ≈ 20. This results also agrees well with other large diameter 

results presented by Omebere-Iyari et al. (2007), Omebere-Iyari et al. (2008)  and Schlegel et al. 

(2009) that found a fully developed flow at (z/D)nitrogen-naphtha = 15.58,  (z/D = 7.7)steam-water and 

(z/D)air-water = 16 respectively.  
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For the results reported here, water flowing path is through horizontal flowline, vertical circular test 

section, overhead tank, downcomer and return to sump while air entered in the vertical pipe base 

(through VA1) mixes with water and then flows upward into the circular test section and is vented 

to the atmosphere in the upper plenum. The water temperature during whole experimental campaign 

was monitored between 19 - 24ºC; this includes the repeatability runs performed. The existing set-

up design did not allow for the experiments in annular and dispersed bubbly flow regime due to 

undesirable vibrations of upper plenum. 

.  

A. Flow patterns in D = 254mm vertical pipe 

A simplified classification is employed to avoid any subjectivity by considering the flow patterns in 

large diameter vertical pipe air-water upflow to be consisting of following: Dispersed bubbly flow, 

Bubbly flow, Agitated / Clustered bubbly flow and Churn/Froth flow. This classification is done 

intentionally as we planned to clear out the above delineation more clearly in ahead section. The 

Figure 4 shows the sketches of the flow patterns along with the associated volume average void 

fraction probability plots.  

 

Dispersed bubbly flow appeared in few experimental runs at high water and low air superficial 

velocities (ja = 0.06 - 0.1m/s and jw > 0.68m/s) only and was the consequence of low air fraction 

present as small discrete spherical bubbles, uniformly distributed in continuous water phase. The 

void fraction probability plot of this flow indicated a thin distinct single peak at low void fraction 

(see Figures 4a). This peak is different than indicated by typical bubbly flow (Jones and Zuber, 

1974; Barnea et al., 1980; Tutu, 1984; Matsui, 1984; Anunziato and Girardi, 1987; Costigan and 

Whalley, 1997; Cheng et al., 2002) because a zero void fraction measurement related with pure 

liquid is also obvious (Vince and Lahey, 1982) to clearly distinguish this flow from bubbly flow.  
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Bubbly flow was obtained under low air-water superficial velocities (ja = 0.1 - 0.3m/s and jw < 

0.6m/s) and was typically encountered when mean void fraction was greater than 0.11. This flow 

consisted of large population of various sizes bubbles with occasional coalescing of bubbles in the 

core region to form larger ones during their upward flow. The void fraction probability plot showed 

a single distinct peak (Figures 4b). However, it can be noted that this peak is different than 

indicated by dispersed bubbly flow as the single peak is broader than observed for dispersed bubbly 

flow and is also displaced from the origin. The later observation clearly indicates that in the large 

diameter vertical pipe upflow condition this type of flow is associated with low liquid input only. 

 

Agitated/ Clustered Bubbly was not observed previously in small diameter vertical pipes. This flow 

was obtained under the medium air superficial velocities (0.3 < ja ≤ 1.6m/s) and was found to be the 

most dominant flow throughout the large diameter vertical upflow experiments, prevailing in the 

same region where slug flow occurs in smaller diameter vertical upflow. The apparent distinctions 

of this flow from bubbly is (i) the difference in the mean void fraction values, (ii) some small 

bubbles flowing in the core clustering into larger ones and producing a circulatory type of rapid 

agitation motion in the vicinity and breaking up. This agitation was seen to increase with the 

increase in air superficial velocities causing smaller bubble population near the wall to move up and 

down in this agitation. It is emphasized here that this flow did not had any resemblance with 

spherical cap bubble or typical slug flow found in conventional small diameter pipes, in fact NO 

large smooth cap/bullet shaped Taylor bubble along with liquid slug were observed under this range 

of air-water superficial velocities. This observation validates the general consensus (Cheng et al., 

1998; Ohnuki and Akimoto, 2000; Shoukri et al., 2000; Pickering et al., 2001; Prasser et al., 2002; 
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Omebere-Iyari et al., 2007; Omebere-Iyari et al., 2008 and Schlegel et al., 2009) of non existence of 

slug flow in large diameter vertical upflow condition.  

 

The Figure 4c shows the void fraction probability plot of this flow pattern, a broad single peak at 

low void fraction progressively shifting toward higher void fraction with increase in air superficial 

velocity. This trend of distribution suggests that it possess positive skewness (i.e. right-tailed 

distribution). This shifting of the distribution towards higher void fraction is also accompanied by 

broadening of distribution as well as reduction in height. The broadening suggests that bubble size 

distribution was increasing by break up and reduction suggesting a further coalescence. Since more 

breakups of bubbles will result in more bubbles and hence more coalescence, therefore equilibrium 

between coalescence and breakup existed and the overall void fraction distribution shape remain 

uniform. This gradual shift of the distribution from low air superficial velocities to higher velocities 

without showing any significant changes to its shape also verifies the visual observation of the 

gradual and smooth transition from bubbly to agitated bubbly flow. The above statistical analysis 

presented further proves that no bi-modal or twin peak (at low and high void fractions) 

representing the liquid slug and Taylor bubble (as in conventional small diameter results, refer to 

Vince and Lahey, 1982; Tutu, 1984; Matsui, 1984; Costigan and Whalley, 1997; Cheng et al., 

2002) is observed under these experiments, corroborating the absence of conventional slug flow in 

large diameter vertical pipe upflow condition. 

 

Churn/froth flow was observed in these experiments at the higher air superficial velocities (ja  

1.6m/s), when the flow gradually transformed from agitated /clustered bubbly flow. Although this 

flow originated from large group of bubbles clustering and agglomeration, it was unlike the 

previous flow (agitated bubbly flow) because of its “frothy”, extremely chaotic and highly 
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oscillatory appearance. During the flow observation it was observed that within the core region 

large highly distorted frothy gaseous structures of axial lengths much greater than the diameter of 

pipe were flowing upwards in the core section of the pipe accompanied by falling and rapidly 

upward moving liquid film around the periphery. The void fraction probability plot (Figures 4d) of 

this flow exhibited a broad single peak (mean value between 0.55-0.65) with negative skewness 

(tail extending towards the left i.e. at lower void fractions) clearly unlike the positively skewed 

(right-tailed distribution) agitated bubbly flow. This long thick tail towards lower void fraction 

indicates some liquid bridging, a typical characteristic of transitional flow while the broad peak at 

the higher void fraction represents the gas structures that are long and distorted in nature.  

 

Figure 5 present the above flow patterns results on flow pattern map. In the figure, the flow 

patterns observed namely; dispersed bubbly (DB), bubbly or low liquid input bubbly (B), agitated / 

clustered bubbly (AB) and churn/froth flow (C) are shown at their respective locations. As seen in 

the figure, dispersed bubbly flow is observed at high liquid velocities only where coalescence seems 

to be suppressed by the liquid turbulence and bubbles flowed upward without any interaction with 

one another. Bubbly flow prevailed at low liquid input where bubbles though close in separation 

distance than dispersed bubbly with occasional coalescing travelled upward without any distortion 

or major secondary motion. The Figure 5 also indicates that the conventional slug flow pattern has 

vanished from the flow pattern map. Instead, agitated/ clustered bubbly prevailed in addition to 

churn/froth flow. The agitated bubbly prevailed for most of condition encountered in this work. 

Above finding of transition from bubbly to agitated bubbly flow is in line with the visual 

observation of Ohnuki and Akimoto (2000) and Omebere-Iyari et al. (2008), however they classify 

this flow pattern with other names i.e. churn bubbly and churn slug by Ohnuki and Akimoto (2000 

and churn turbulent by Omebere-Iyari et al. (2008). The figure also shows that as the air superficial 

velocity is increased the churn froth flow occurs. In churn flow, the flow was highly chaotic and 
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violent with large gaseous structures travelling in the core region and liquid film travelling upward 

and downward along the periphery of the wall. The clear distinction of churn flow from agitated 

bubbly flow was performed on the basis of (void fraction) skewness where positive skewness was 

sufficed for agitated bubbly flow and change in skewness to negative value represented transition to 

churn flow. The change is skewness represented the presence of aerated liquid slugs along with 

large distorted gas structure with liquid film at periphery moving rapidly up and down. 

 

B. Existing Flow patterns maps with large diamter vertical pipe data 

The above flow patterns and their transitions observed in large diameter vertical upflow condition 

were compared with the theoretical predictions of two well known flow pattern maps of Taitel et al. 

(1980) and Mishima and ishii (1984) derived from small diameter vertical upflow condition. The 

purpose of this comparison was to determine the validity of the existing flow pattern transition 

models against the experimental flow patterns observed. The flow pattern maps in Figure 6 and 

Figure 7 illustrates the comparison between experimental and predicted transitions. In present 

work, the dispersed bubbly flow is not only occurred at lower air superficial velocities but also at 

slightly lower water velocity than predicted by Taitel et al. (1980). In fact the predictions of Taitel 

et al. (1980) occurred at a water superficial velocity of approximately one order of magnitude 

higher than experimentally observed transitions. It is be noted here that Costigan and Whalley 

(1997) in 32mm diameter vertical upflow experiments also found this model transition boundary to 

be higher than observed in their experiments. Present observation is also consistent with the 

observation of Chen et al. (1997) that at low air superficial velocity range this transition will also be 

at lower values of liquid superficial velocity unlike the trends suggested by Taitel et al. (1980).  It is 

to be noted that Mishima and Ishii (1984) do not delineate any exact distinction between the above 

two flows (i.e. dispersed bubbly and bubbly flows), see Figure 7. It is interesting to note from the 
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experimental results (Figure 7) that for large diameter vertical pipes, bubbly flow region became 

much larger compared with conventional size pipes. Both Taitel et al. (1980) and Mishima and Ishii 

(1984) models underestimate this bubbly-to-slug transition to be occurring at lower air superficial 

velocities. However both the above transition models are closer to actual transition at higher water 

velocities only. Thus while both the above flow pattern maps predict an early transition to slug flow 

from bubbly flow, experiments results indicate that there is NO slug flow (no bimodal peak in 

probability plot) instead there is gradual transition from bubbly flow to its variation agitated bubbly 

flow where a coalescence / clustering of bubbles and their break up process is clearly visible along 

with the local random liquid film movement at the wall. This deviation of the Taitel et al. (1980) 

and Mishima and Ishii (1984) bubble-to-slug transition models is due to not taking into account of 

diameter of the pipe. An interesting observation related to bubble-to-slug transition is that both the 

Taitel et al. (1980) and Mishima and Ishii (1984) models prediction are closer to experimental 

results at higher liquid velocities only and deviates at the low liquid velocities. This finding is also 

consistent with the experimental results of Omebere-Iyari et al. (2007) for pipe size of 189mm and 

of Omebere-Iyari et al. (2008) for pipe size of 194mm for which case the Taitel et al. (1980) bubble 

to slug transition model, predicted the similar trend. These trends suggest that while constant critical 

void fraction approach (c, taitel et al. = 0.25 and c, Mishima & Ishii = 0.3 ) is able to predict closer actual 

behaviour, the approach is limited to higher water velocities only, and at lower water superficial 

velocity some other mechanism individually or combine with critical void fraction approach is 

responsible for this transition. 

 

The experimental results and the comparison of the existing slug-to-churn flow transition models of 

Taitel et al. (1980) and Mishima and Ishii (1984) are performed next. The experimental result 

indicates a gradual shift from agitated bubbly to churn flow with an increase in both water and air 

superficial velocities near the transition region. Present results in Figure 6 suggest that the trend 
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predicted by Taitel et al. (1980) is in contradiction to the experimental trends. It is to be noted that 

for smaller pipe diameters, Taitel et al. (1980) transition curve terminate at slug-to-bubble transition 

boundary, however with increase in pipe diameter the transition curves will terminate either at: (i) 

slug-to-dispersed bubbly flow (i.e. reducing the churn flow region) or (ii) slug-to-annular flow 

thereby concluding that for very large diameter pipes the transition is from slug-to-annular flow and 

churn flow vanishes completely. However, for present experimental data, Taitel et al. (1980) slug-

to-churn transition is over predicted. In comparison to above, while the general trend of current 

experimental boundary is consistent to Mishima and Ishii (1984) slug-to-churn boundary; it appears 

at significantly lower air superficial velocities (ja = 1.6m/s ) than predicted by this model (ja = 

7m/s). This means that the Mishima and Ishii (1984) model predict a higher slug-to-churn transition 

upon increase in diameter contrarily to seen with present data. It is to be noted that this 

experimental observation also corroborates the work of Ohnuki and Akimoto (2000) with 200mm 

vertical pipe experiments, where this transition occurred earlier than predicted by Mishima and Ishii 

(1984) slug-to-churn transition model. The annular transition model for both Taitel et al. (1980) and 

Mishima and Ishii (1984) could not be compared as the experiments were not performed in annular 

flow. 

 

It is clear from above discussion that both Taitel et al. (1980) and Mishima and Ishii (1984) flow 

pattern maps are inadequate for predicting the flow patterns in large diameter vertical pipe upflow 

conditions as a whole and it is only through understanding of mechanisms involved in individual 

transition that can provide an appropriate model.  

C. Comparsion of Flow patterns in vertical pipe 

While a comprehensive and quantitative comparison with other small and large diameter vertical 

pipe upflow conditions would have added a greater benefit for our researchers, it is of great regret 
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that none of the earlier large diameter (100 > D > 200) studies have conducted experiments in the 

similar operating conditions (e.g. working fluids: air-water, air-water superficial velocity range) and 

performed statistical analysis i.e. determining probability distributions functions as done in smaller 

diameter works (Jones and Zuber, 1975; Tutu, 1984; Matsui, 1984; Anunziato and Girardi, 1984; 

Matsui, 1986; Costigan and Whalley, 1997). Cheng et al., 2002) to perform a systematic 

comparison, hence their work could not be included here. However this motivated us to perform a 

comparison for both cases with current experimental data separately: 

(i) Current Large diameter vs. Previous Large diameter studies 

While previous systematic and detailed experimental works (Ohnuki and Akimoto, 2000 and 

Schlegel et al., 2009) could have provided a good comparison, both of these determine flow 

patterns by either by visualization only or do not characterizes the flow patterns according to air-

water superficial velocity range. This leaves the comparison of current work with the work of 

Cheng et al. (1998) only, performed for 150mm diameter pipe for one water superficial velocity 

only (i.e. jw = 0.64m/s with ja = 0.096 to 1.113m/s). Figure 8 presents some additional large 

diameter data for the comparison with the 150mm diameter work of Cheng et al. (1998). 

 

Figure 8(a) shows the present results at a constant water superficial velocity (jw = 0.67m/s) with 

increasing air superficial velocity (ja = 0.09 to 2.23m/s). As the air superficial velocity is increased 

at constant water superficial velocity, a number of flow patterns were observed i.e. dispersed 

bubbly, bubbly, agitated / clustered bubbly and churn flow. For same air-water superficial velocity 

(jw = 0.64m/s ja = 0.09 to 1.113m/s) range, Cheng et al. (1998) reports the flow as; uniform bubbly, 

cap bubbly and churn flow, refer to Figure 8(b). It is to be noted that Cheng et al. (1998) like many 

previous authors (Mishima and Ishii, 1984; Weisman and Kang, 1981) do not delineate the 

dispersed bubbly flow from bubbly flow. Current results at very low air superficial velocity ((ja = 
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0.09m/s) suggests the flow as dispersed bubbly because of its distinct, sharp uni-modal peak, mean 

void fraction around 0.07, lying close to origin with no visible coalescence of bubbles. However in 

current work for ja > 0.15m/s, bubbly flow existed, this flow was unlike dispersed bubbly consisting 

of various shape bubbles with sporadic coalescence in the core with mean void fraction of 0.15, 

lying almost at same location where bubbly flow was observed by Cheng et al. (1998) corroborating 

their observation. Note that the mean void fractions defined under both cases are relatively close to 

each other. Cheng et al. (1998) observed the occasional cap bubbles at mean void fraction around 

0.13 - 0.17 that increased in numbers with increase in air superficial velocity with the mean void 

fraction value of 0.24 - 0.4. In present work sustained large distorted type of bubble (unlike cap 

bubble) in the center of core was seen around the mean void fraction of 0.27 - 0.31, see Figure 8(a). 

This is because at lower mean void fraction values (0.2 - 0.25) the formed coalescent bubble cluster 

while rapidly moving upward were seen to disintegrate after travelling to a short distance. It is 

perceived that Cheng et al. (1998) cap bubbly flow is similar to the agitated /clustered bubbly flow 

in current study. This is also obvious in Figure 8(b) results of (Cheng et al., 1998), under similar 

air-water superficial velocity range (from bubbly to cap bubbly), the trend of the probability plot 

remained single peaked (Gaussian distribution) with positive skewness (right-hand tailed) 

throughout ja = 0.09 to 1.113 m/s, which according to present analysis is the case when the flow 

pattern is either bubbly and/ or agitated / clustered bubbly. Interestingly this observation validates 

the flow pattern classification presented in current work also, as both bubbly and agitated / clustered 

bubbly flow indicated positive skewness. This can be verified from Figure 8(a), where it can be 

seen that for agitated bubbly flow the probability plot remained single peaked (Gaussian 

distribution) with positive skewness. Cheng et al. (1998) designated churn flow, as the air 

superficial velocity was increased, when mean void fraction value is still low (~ 0.34), single peak 

Gaussian distribution with positive skewness, refer to Figure 8(b). Cheng et al. (1998) did not 

validate the basis of this designation of churn flow except from visual observation. This later 
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observation is contrary to current experiments, as this air-water superficial velocities range 

exhibited agitated bubbly flow, whereas it was only after air superficial of ja ≥ 1.6 m/s, oscillation in 

overall flow with highly distorted void structure travelling in the core along with short section of 

aerated liquid slug were observed. This observation is supported with the probability plot in Figure 

8(a) that indicates a shift from positive skewness to negative skewness though still the single peak. 

This change in skewness from positive to negative is sign of flow pattern change unlike stated in 

earlier work. The void fraction peak at higher void fraction with a tail extending to low void 

fractions explains the presence of distorted void structure (at high void fraction) and short aerated 

liquid slug (lower void fraction). This difference in skewness of void fraction in probability plots 

between the two works is clearly visible in Figure 8. The limited air superficial velocity range 

covered by Cheng et al. (1998) does not allow us to compare the results any further. Nevertheless, 

as seen from Figure 8, the two sets of data are generally consistent except for the discrepancy of the 

flow pattern regarded as churn flow by Cheng et al. (1998) that in fact is cap / clustered bubbly 

flow. This can be verified from the Schlegel et al. (2009) 200mm diameter data qualitatively where 

churn flow exhibited similar trend. Thus, this observation make us conclude that increase is 

diameter of pipe under vertical upflow condition offer a greater lateral flow path that provides extra 

degree of freedom to the air-water phases that complicates the flow structure. Under such cases the 

flow pattern transition from bubbly is not to conventional slug flow but to more gradual transition to 

agitated/clustered bubbly flow that finally turns into more violent and oscillating churn flow. 

 

(ii) Large diameter (254mm) vs. Small diameter (28 & 32mm) 

In this section we present some more supplementary large diameter data for the comparison with 

small diameter vertical upflow results. Such comparison of flow behvaiour in large diameter against 

small diameter vertical upflow under similar conditions has not been performed before. The results 
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reported here are for constant water superficial velocity (jw) of 0.38m/s when air superficial velocity 

(ja) was increased gradually from 0.09 to 1.74/s to obtain different flow regimes. In above air-water 

superficial velocity range, the observed flow patterns for large diameter were bubbly, agitated / 

clustered bubbly and churn flows, see Figure 9(a).  

 

It is to be noted that the above air-water superficial velocities conditions are similar to those of 

Cheng et al. (2002) and Costigan and Whalley (1997). Cheng et al. (2002) data was taken for 28mm 

diameter pipe for water-air superficial velocity ranges of jw = 0.35m/s and ja = 0.0798 - 0.5m/s 

while Costigan and Whalley (1997) also lying in similar air-water superficial velocity range were 

taken in 32mm diameter vertical pipe for water superficial velocity of 0.35m/s and air superficial 

velocities of 0.1, 0.2, 0.5, 2.0, and 4.0 m/s. The Figure 9(b) and Figure 9(c) shows the flow 

patterns identification results of both these (Cheng et al., 2002; Costigan and Whalley, 1997) small 

diameter vertical pipes data uses air-water as two phase gas-liquid test fluids, hence are more 

representative for making meaningful and reliable comparison.  

 

Cheng et al. (2002) reported four (4) flow patterns in 28mm diameter vertical upflow, namely; (i) 

discrete bubbly, (ii) clustered bubbly, (iii) cap bubbly and, (iv) slug flow, refer to Figure 9(b) . For 

similar water superficial velocity range, the flow pattern identification results of Costigan and 

Whalley (1997) indicated six (6) flow patterns in 32mm diameter vertical pipe upflow, refer to 

Figure 9(b): (i) discrete bubbly, (ii) spherical cap bubble, (iii) slug, (iv) unstable slug, (v) churn 

flow and (vi) annular flow. A satisfactory agreement exists in both small scale pipe works for the 

flow called as discrete bubbly; see Figure 9(b) and Figure 9(c) as similar narrow peak at low void 

fraction (0.08-0.14) is found in probability plots. The current results shown in Figure 9(a) of large 

diameter shows that in this region a bubbly flow (or low liquid input bubbly flow) is obtained with 

its corresponding void fraction probability plot, also exhibiting a thin distinct peak at lower void 
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fractions. Though the small scale results define this as discrete bubbly where it exist as uniformly 

distributed bubble without bubble agglomeration or coalescence, it does not show any significant 

difference in mean void fraction from the bubbly flow found in large diameter. Thus it can be 

concluded that scale effect causes a difference in the region where existing work show bubbly (or 

low liquid input bubbly flow, jw = 0.38m/s, ja = 0.09 - 0.19m/s) flow while at the similar location (jw 

= 0.35m/s, ja = 0.0798 - 0.2m/s) discrete bubbly flow was observed by (Costigan and Whalley, 

1997) and Cheng et al. (2002). This further indicates that although the discrete/ dispersed bubbly 

flow occurs for both scales of pipes, under similar gas superficial velocities, for large diameter it is 

found at higher liquid superficial velocities (jw ≥ 0.68m/s and ja = 0.06 - 0.11m/s).  Alternatively it 

can be concluded that the critical superficial liquid velocity for transition to dispersed bubbly flow 

increases with an increase in pipe diameter, hence all the regime transition models taking account of 

diameter will predict this transition more accurately. While the large diameter vertical upflow 

experimental runs in air superficial velocities range (ja = 0.09 - 0.25m/s) reports bubbly flow with 

increasing agglomeration of bubbles in the core region, the small scale pipe results of Cheng et al. 

(2002) indicates an increasingly clustered bubbly flow, see Figure 9(b) and (Costigan and Whalley, 

1997) does not report an observation for this range, see Figure 9(c). This delineation of clustered 

bubbly as a separate flow regime from cap bubbly flow complicates the description of flow patterns 

unnecessarily. It is assumed that the distinction of clustered bubbly (jw = 0.35m/s, ja = 0.132m/s) 

from cap bubbly in Cheng et al. (2002) work evolves from the fact that this work was primarily 

determining the flow regime transition hence much closer gas superficial velocity data points were 

collected whereas in (Costigan and Whalley, 1997)  work the objective was flow pattern recognition 

hence data was much sparser in the region (i.e. jw = 0.35m/s  ja = 0.1m/s for bubbly & 0.2m/s for 

cap bubbly). However, from the definition provided by former work for clustered bubbly and 

currently reported bubbly flow, it seems very likely that this discrepancy is due to semantic and the 

current bubbly flow near transition and clustered bubbly are very much similar in nature.  A good 
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agreement between both (Costigan and Whalley, 1997; Cheng et al., 2002) work is found for 

spherical cap bubbly (or cap bubbly) flow under similar velocities (jw = 0.356m/s, ja = 0.154m/s and 

jw = 0.35m/s, ja = 0.21m/s), refer to Figures 9(b) and 9(c). Note the mean void fraction for 

spherical cap bubbly (or cap bubbly flow) are almost similar in both cases (~0.2) and both indicate a 

single peak with a forward marching tail in probability plot, this tail becomes more and more 

pronounced with increase in air superficial velocity and later develops into a second peak. The 

spherical cap bubbly region seems to persist till ja ≈ 0.5m/s after which in both works (Costigan and 

Whalley, 1997; Cheng et al., 2002), Taylor bubble of slug flow was detected, see Figure 9(b) and 

9(c) where two distinct peaks in probability plots are apparent. Under the above condition, though 

the current large diameter results (jw = 0.38m/s, ja ≤ 0.25m/s) still indicates bubbly flow but with 

occasional bubble clustering / coalescence and formation of large distorted bubble in the core but 

there is no spherical cap bubble formation (mean void fraction around 0.21). With increasing air 

superficial velocity (ja > 0.25m/s) more bubbles agglomerate to form large bubble clusters of 

distorted shapes in the core region along with visible secondary motion due to coalesce and breakup 

processes. The Figure 9(a) shows the corresponding void fraction probability plots, exhibiting 

agitated bubbly, a single peak but with a much broader distribution than seen in bubbly flow 

representing the wider bubble sizes due to coalesce and breakup processes. The mean void fraction 

during this flow remained between 0.27 – 0.41. Note that during the above increase in air 

superficial velocities while the void fraction probability plots remain single peaked, the skewness of 

the distribution was also positive. The probability plots above reports the absence of conventional 

slug flow in large diameter vertical pipe upflow condition as the slug flow is not visually observed 

neither the bimodal peak associated with it in void fraction probability plots, see Figure 9(a), 

instead the void fraction probability plots of this (agitated bubbly) flow remained single peak, 

Gaussian in nature with positive skewness (right-hand tailed). In comparison to large diameter 

results, the slug flow was found in both small diameter works (Costigan and Whalley, 1997; Cheng 
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et al., 2002), refer to Figure 9(b) and Figure 9(c). The slug flow exhibits a bi-modal (twin) peaks 

in its probability plot at high and low void fractions representing the Taylor bubble and aerated 

liquid slug respectively. Although (Costigan and Whalley, 1997) identified unstable slug flow in 

32mm diameter experiments (jw = 0.35m/s  ja = 2m/s) refer to Figure 9(c), Cheng et al. (2002) did 

not observe the unstable slug flow due the limited test matrix of air-water superficial velocity range, 

refer to Figure 9(b). Thus the observation of unstable slug flow pattern appears to be unique to the 

work of (Costigan and Whalley, 1997). Note in Figure 9(c), results of (Costigan and Whalley, 

1997) still shows two distinct or bi-modal peaks (as in slug flow) but the magnitude of peak at 

lower void fraction has reduced, this is because the liquid portion is no longer dominant (as in slug 

flow) and distorted highly twisting air structures formed have longer length, high travelling velocity 

causing a break-through the liquid slug with overall flow more chaotic than typical slug flow. 

According to (Costigan and Whalley, 1997) the unstable slug name conveys the description that not 

all of the slug structure of the flow has broken down, and some individual liquid slugs may appear 

occasionally. In comparison to above smaller diameter behaviour, the large diameter vertical upflow 

experiments upon further increase in air superficial velocity (ja > 1.4m/s) at constant water 

superficial velocity (jw = 0.35m/s) indicated transition towards churn flow. This flow was 

characterized by a single thick peak at higher void fractions (mean void fraction around 0.46), with 

distribution that is shifting to negative skewness. This negative skewness indicates shift in 

distribution from right to left (left-hand tail) extending towards lower void fractions, refer to Figure 

9(a). It is to be noted that for further increase in air superficial velocity (ja ≤ 2.23m/s), experimental 

results for large diameter pipes indicated similar single peak with negatively skewed probability 

distribution. Due to limited test matrix of Cheng et al. (2002), further comparison could not be done 

but (Costigan and Whalley, 1997) results clearly validates our churn flow behaviour as they too 

found churn flow to possess a negatively skewed probability distribution, refer to Figure 9(c). 

However note that in current large diameter vertical upflow work, the churn flow appears at lower 
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air superficial velocities (ja ≈ 1.6m/s) in comparison to (Costigan and Whalley, 1997) results (ja ≈ 

3.5m/s). Thus it can be concluded that while churn flow occurs for both small and large scale pipes, 

for large diameter pipe it is found at lower air superficial velocities i.e. ja ~ 1.6m/s then observed in 

small scale work of Costigan and Whalley (1997) that was found after 3m/s. Hence critical gas 

superficial velocity for transition to churn flow decreases with an increase in pipe diameter. The 

annular flow was not encountered in current work due design limitation of upper plenum of the 

setup but annular flow was detected by (Costigan and Whalley, 1997) at air superficial velocity (ja > 

8 m/s). 

 

Overall, there exists a reasonable agreement between small scale pipes and current large diameter 

results for bubbly and churn flow with the exception of their transition boundaries, the distinction 

arise in slug flow which seems to exist only for small diameter piping. In similar experimental 

conditions (i.e. under same working fluids and superficial velocity ranges) as of slug flow in small 

scale pipes, the large diameter pipe indicates agitated / clustered bubbly flow. This new flow pattern 

thus has different visual characteristics than the slug flow and is the most dominant flow in the 

experimental range extending over the range of that of conventional slug flow. Above behvaiour 

further suggests that for agitated / clustered bubbly flow, changes in the two phase flow 

characteristics (void fraction and pressure drop) are expected. Comparing the above flow scenario, 

it can be inferred that there are differences in the flow behvaiour in large and small diameter pipes 

under vertical upflow conditions due to the enlargement of flow path as agitated bubbly and 

churn/froth flow are more dominant. This means that the presence of agitated / clustered bubbly and 

its gradual transformation into more violent churn/froth flow is a consequence of extra degree of 

freedom of the two phases. This degree of freedom is small in conventional diameter pipes owing to 

small lateral flow path. Hence it can also be deduced that under above large diameter vertical 

upflow scenario, one dimensional (1D) modelling approach is not suitable as secondary flow effects 
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exist and this may affect the hydrodynamic behaviour. However, so far, no work reports about the 

effect of this secondary flow in agitated bubbly flow.  

 

D. Void fraction correlation - comparsion: 

Prediction of average void fraction in two phase flows is highly significant as it plays a fundamental 

role in characterizing the distribution of the phases within the system, especially in the 

determination of the amount of liquid phase (holdup) retained in a system. The later aspect is indeed 

a crucial issue in primary heat transport systems in nuclear reactor in case of accidents and in 

flowline-riser system in offshore oil & gas platform. The designer needs a void fraction correlation 

as a closure relation to predict the two phase flow system behaviour before designing the actual 

system and/or simulating scenario related to that system. Thus the designing and/or reliability of 

any two phase flow system is dependent upon the prudent choice of the void fraction correlation 

used. There are considerable numbers of void fraction correlations belonging to different 

multiphase flow industries but there is also a considerable difference in the predictions of these 

correlations. The volume average void fraction data forms an excellent basis for the assessment of 

the predictive capability of these voids fraction correlations. Moreover, no study has so far included 

the assessment of void fraction correlations with respect to their applicability to large diameter 

vertical pipe upflow. The assessment is also important in order to determine the implications of the 

different flow patterns occurring in the large diameter and the conventional small diameter vertical 

pipe. 

 

A large number of correlations were assessed against the experimental data of volume average void 

fraction (Ali and Yeung, 2008b), however here only results of selected correlations belonging to the 

following categories are listed: Homogenous mixture void fraction model, Separate flow model 
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(using models based on slip ratios (ja/jw), based on Lockhart and Martinelli parameter (X), based on 

mass flux (G) and based on drift flux model), and some miscellaneous correlations (few 

empirical/specific flow regime correlations which do not specifically belong to either of the above 

categories). 

 

Under the flow conditions of the current experiments, the total pressure gradient was dominated by 

hydrostatic head. This implies that in the experiments friction component was smaller to extent that 

it does not influence the total pressure gradient. For real conditions like in present analysis, the 

choice of two-phase void fraction correlation is of major significance in determining the hydrostatic 

pressure gradient. The results of the void fraction assessment presented in Figures 10 to 12  

indicates that many of the published correlations are not appropriate to characterize the void 

fraction in large diameter vertical pipes and only few have potential to perform satisfactorily. 

 

Under current experimental conditions where flow regimes encountered were dispersed bubbly, 

bubbly, agitated bubbly, and churn flow regimes, the homogenous mixture model exhibits greater 

accuracy at very low void fraction only i.e. when the flow regime was bubbly and dispersed flow 

and progressively deviates with flow regime transition due to significant interphase slip between 

gas and liquid phase, thus the predicted values show high over prediction (52.67%), refer to Figure 

10(a). It is to be noted that the model is independent of the diameter of the conduit and thus can be 

applied easily to conditions of two phase flows (of different fluid properties) as a starting point 

where dispersed bubbly or dispersed droplets (or mist flows) are likely to be encountered. 

 

In the “K” void fraction correlation category (special case of homogenous mixture model) the 

Bankoff correlations (Neal and Kazimi, 1989) seems to improve the homogenous mixture model 
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results by taking into account of radial non uniformity of void fraction and velocity difference (slip) 

between the two phases, performed satisfactorily, and should therefore be considered. From the 

comparison of the predicted values with experimental values, improvement in mean percentage 

errors (16.46%) can be seen in Figure 10(b). 

 

The void correlations based on separate flow model using slip (ja/jw) equation, mass flux (G) term 

or Lockhart-Martinelli parameter (X) showed wide variation in results. The analytical correlation of 

Chisholm (Chisholm, 1972) based on the velocity ratio (slip) and applicable to any fluid indicated 

an overall an under prediction (-28%) with largest deviation in bubbly and agitated bubbly flows 

Figure 10(c). The void fraction correlation predictions of Lockhart and Martinelli (Butterworth, 

1975) under predicted within -24% range, Figure 10(d). The model gives lower mean percentage 

error prediction for bubbly flows and increasingly deviates for higher void fractions (agitated 

bubbly, unstable slug and churn flow). 

 

Satisfactory accuracy was indicated in cases of mass flux (G) dependent void fraction correlations 

taking into account of diameter.  Guzhov et al. (Garcia, 2005) correlation defines the holdup and no 

slip ratio dependence on Froude number which in turn based upon mixture volumetric flux and pipe 

diameter. The correlation shows an overall mean error of +4%, with successful application in 

bubbly flow and a slight over prediction for other flows, see Figure 11(e). Another correlation by 

Premoli et al. (Premoli et al., 1970), also known as CISE correlation is considered to be valid for 

wide range of data and uses a slip ratio, s = f(x, G, l, g, l, g, , Ql/Qg) performed satisfactorily 

with overall mean error of performance of +10%. The correlation yields closest at intermediate void 

fraction than at low and higher void fraction, see Figure 11(f). It is to be noted that whenever 

approximate averages are required or for conditions where the flow type may not be known, 

Guzhov et al. (Garcia, 2005) and Premoli et al. (Premoli et al., 1970) void fraction correlations are 
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recommended on the basis of their simplicity and closer prediction for the experimental data 

analyzed.  

 

Overall the drift flux based void fraction correlations were more successful in predicting the closer 

results to the experimental values with predicted values within 5% for Chexal and Lellouche 

(Chexal and Lellouche, 1992), Hibiki and Ishii (Hibiki and Ishii, 2003) and Kataoka and Ishii 

(Kataoka and Ishii, 1987).  

 

The Chexal and Lellouche (Chexal and Lellouche, 1992) correlation is a versatile correlation, 

validated against large data bank (consisting of full range of pressures, 1-145bars, mass fluxes, 

0.01-5500kg/m2-s, void fractions, 0.01-0.99 and various diameters, 0.005-0.456m) and applicable to 

all orientation flows, in all flow regimes with steam-water, air-water, and refrigerant two-phase 

flows. The void fraction predictions of this correlation for large diameter are within -5%, Figure 

11(g) with an under prediction at low void fractions. Perhaps the most detailed and comprehensive 

study on drift flux modelling of large diameter pipe has been performed by Hibiki and Ishii (Hibiki 

and Ishii, 2003). Two inlet flow-regime (bubbly/cap bubbly at inlet or dispersed bubbly at inlet) 

based correlations were developed for large diameter pipe at low mixture volumetric flux. For 

higher mixture volumetric fluxes, the use of Ishii (Neal and Kazimi, 1989) and Ishii and Kataoka 

(Kataoka and Ishii, 1987) correlations are recommended. Excellent predictions with an overall 

mean error of 1.75% are obtained by these correlations in comparison to the other correlations used; 

see Figure 11(h). It is to be noted that this correlation was able to predict the dispersed bubbly and 

bubbly flow regimes very well, a feature not exhibited by many other correlations. The Kataoka and 

Ishii (Kataoka and Ishii, 1987) drift flux correlation developed for the large diameter apparatus 

under pool conditions is a function of hydraulic diameter, density ratio and viscosity number. The 

modeled equations are for cap bubbly flow only and for other flow regimes (bubbly and churn flow 
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regime), the use of Ishii drift flux model (Kataoka and Ishii, 1987) is recommended. The result of 

predicted values of void fraction vs. measured values shows a good agreement with an overall mean 

error of about 1.55%, see Figure 12(i). It is to be noted that in the above correlations Hibiki and 

Ishii (Hibiki and Ishii, 2003) and Kataoka and Ishii (Kataoka and Ishii, 1987) are specifically 

develop for large diameter application. It can further be noted that with lowest mean percent error 

Kataoka and Ishii (Kataoka and Ishii, 1987) outperforms other empirical correlations while on the 

basis of standard deviation, the figures clearly shows that the Hibiki and Ishii (Hibiki and Ishii, 

2003)  correlation performs the best. Although the drift flux correlations are found to closely predict 

the experimental data, three (3) constraints are met by them (i) expressions are flow regime 

dependent hence are not continuous and this might give rise to numerical instabilities during 

computation (ii) because the models are sensitive to prediction of flow patterns, any inappropriate 

choice of flow pattern would increase the variance of the whole model and, (iii) many of the above 

correlations are iterative in nature which inhibits their frequent use in comparison to simpler 

correlations.  

 

The empirical based void fraction correlation/pressure gradient methods of the oil industry showed 

inconsistencies excluding the Duns and Ros (Brill and Mukherjee, 1999). The Duns and Ros (Brill 

and Mukherjee, 1999) correlation is very popular in Oil industry and is specifically developed for 

gas-liquid vertical flow mixtures in wells. In current assessment some cases of bubbly flow regime 

were predicted correctly while in rest of the cases of agitated bubbly and churn-flows are all 

identified as slug flow, refer to Figure 12(j). With an overall mean error +15%, the results can be 

considered to be satisfactory in comparison to the other methods of this class. Beggs and Brill 

method of pressure gradient (Brill and Mukherjee, 1999) applicable to any inclination indicated a 

mean percent error of 21.42%. The method calculates pressure gradient but identify the flow 

regimes (segregated, transition, intermittent and distributed) first and then liquid hold up for 
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horizontal orientation which is corrected for actual pipe inclination. The method predicted the 

bubbly and some cases of agitated bubbly flow as transition flow while the cases of churn were 

identified as intermittent flow. The scatter seen in the Figure 12(k) is due to incorrect flow regime 

predictions.  

 

OLGA (OLGA, 2007) is an extensively used multiphase simulation tool of oil and gas industries 

that has been specifically developed for large diameter (189mm) risers. For evaluation of void 

fraction in the test section, the OLGAS (steady state) model was used, the values indicated are 

average void fraction in the vertical riser test section. The inlet and outlet sections of the vertical 

riser geometry were excluded (to minimize the effects of adjoining node) from the calculation of 

average void fraction. The comparison of the experimental and OLGA results clearly indicates the 

differences, the results are around +30% in mean error, see Figure 12(l). The over prediction of 

void fraction indicates a lower pressure drop prediction than true value which is quite an offset from 

designing point of view.  

 

The results of the void fraction correlation assessment presented (in Table I) indicates that many of 

the published correlations are not appropriate to characterize the void fraction in large diameter 

vertical pipes and only few have potential to perform satisfactorily within the range (30%). The 

important implication of this assessment is that two phase flow void fraction prediction should be 

based on flow pattern prediction and should include the diameter effect. The correlations taking into 

account of this fact are closer to experimental trends. It was noted that most of the correlations 

performed well in some of the flow regimes and their performance deteriorated in the other thus 

none of the correlation was able to predict all the flow regimes accurately. It was found that 

correlations that successfully predicted the agitated/ clustered bubbly and churn flows did not 

predicted the bubbly flow accurately and vice versa. This trend highlights the difference in the flow 
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structure variation behind the bubbly and rest of the intermittent flows. Thus in the conditions 

where the prevailing flow pattern of the two phase flow is known, prior to design/simulation stage, 

the selection of the appropriate void fraction prediction will be closer to the true value then the 

value of randomly selected correlation/equation. 

 

E. Experimental  results vs. Simulations: 

To further support the assertion that some of the presently used multiphase modelling tool gives 

questionable predictions of hydrodynamic parameters in large diameter vertical upflow conditions 

due to lack of experimental data, an effort was made to compare current results with a commercial 

software OLGA. The code is based on one-dimensional (1D), extended two-fluid model and is 

available as steady state processor and as the complete two-phase transient computational code with 

full functionality (Bendiksen et al., 1991). The idea behind was to explore the predictive capability 

of extensively used OLGA multiphase flow simulation tool of Oil and Gas industry.  

 

The large diameter facility was modeled as simplified horizontal flowline-vertical riser with short 

horizontal pipe at the end of the vertical rise (refer to inset in Figure 2). Use of the short horizontal 

pipe at the end of vertical pipe is to avoid numerical instability during the simulations. It was further 

assumed that the diameter of the flowline-riser is constant with standard carbon steel properties. 

Three grids were implemented however, here results of one of the grid is presented; horizontal 

flowline of 36m divided into 40 sections (0.9m) with vertical pipe or riser modelled as 13 sections 

(0.9m) and short horizontal pipe at the top as 2 sections (1.5m). The PVTsim fluid property 

simulator was used for characterizing the air-water properties with air treated as an ideal gas. As the 

experiments were conducted at ambient conditions, no heat and mass transfer between the phases 

and the environment was assumed in simulations. A minimum runtime period of 2 hours was used 
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for simulation. To ensure that proper convergence with appropriate time step has been achieved, the 

minimization of global volume error in the system was imposed. The cases discussed, uses the 

steady state pre-processor in the code for generating the initial values for transient simulations 

unless otherwise stated. OLGA version5.1 was used in this work and “Slug tracking module” was 

not used for intermittent cases as numerical stability problems were encountered when slug tracking 

option was “ON” in the simulations performed. The further details of the modelling assumptions, 

material specifications, boundary conditions and runtime conditions are given elsewhere (Ali and 

Yeung, 2010). 

 

For initial model depicted as A1 & B1 in Figure 13 and Figure 14 respectively, steady state 

average flow rates of air and water at inlet and, constant pressure at the outlet, were imposed as the 

boundary conditions. A wide range of the air-water superficial velocities was covered in 

experiments and the flow regimes encountered ranged from stable bubble flow to highly 

intermittent churn/froth flow. The parameters investigated in the simulations were flow regime, 

flowline/riser base pressure characteristics and holdup (void fraction). However, here only results of 

flowline exit and near riser base pressure are presented. The methodology used was to test some 

stable flow cases (e.g. bubbly flow normally encountered and preferred type of flow in offshore oil-

gas fields to uplift the two phase mixture) to provide confidence on the results of the code and then 

test some unstable flow cases (where the flow is unstable like slugging which results in offset of 

downstream processing facility in offshore oil-gas fields). Here, the results of only two (2) selected 

cases consisting the bubbly flow, and churn/froth flow in the vertical test section are presented 

(labeled as A & B). The later case of churn/froth flow is selected because under this condition the 

horizontal flowline (joining in vertical pipe base) was experiencing slugging flow. The two 

simulated cases in terms of superficial velocities of air and water (Case A, jw = 0.50m/s; ja = 

0.18m/s and Case B = jw = 0.32m/s; ja = 2.17m/s). Before presenting the results of the simulation a 
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brief description of the experimental flow behvaiour of the two above cases A (dispersed bubbly) & 

B (churn/froth flow) in the riser section are presented. 

 

Case A: In case A, a stable plug flow was observed in the horizontal flowline which upon 

entering the vertical riser section via 90º bend connecting flowline and vertcial riser appeared as 

puredispersed bubbly flow prevailed in the riser section. This case A is of the high liquid superficial 

velocity with dispersed bubbly flow at the inlet to the vertcial test section, whereas the flow pattern 

in the flowline was plug flow. In contrast to prevailed flow patterns above, simulated flow pattern 

by the code for this case (A1) is stratified flow in the flowline and the bubbly flow in vertcial test 

section. The bubbly flow pattern in the riser is simulated by the code in this case correctly. Figure 

13 shows the simulated flowline exit and riser base pressure prediction for this case (A1). A stable 

profile is indicated over lying on the experimental trends of a dispersed bubbly flow. The simulated 

riser base and flowline pressure (case A1) is around 0.907bar in comparison to 0.912bar in the 

experiments (case A). The results are in good agreement with the experimental results concluding 

that initial model with the assumptions of steady state average flow rates of air and water at inlet 

and, constant pressure at the outlet adequetley defined the stable flow case. 

 

Case B: As a second example case B was taken, this particular case is chosen to demonstrate the 

initial model’s ability to simulate the unstable cyclic nature of the flow as observed in the 

experimental conditions. The case is for low superficial water velocity with highest superficial air 

velocity (jw = 0.32m/s and ja = 2.17 m/s). In fact this particular flow is a continuation of slugging 

flowline that had started occurring at slightly lower air velocity but for this highest air velocity it 

appears more periodic, refer to Figure 14(a) case B. According to the horizontal flow regime map 

(Taitel et al., 1976), no slug should be present under the flow condition of the case B; however 
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slugs were formed at these low water superficial velocities. In context of current experiments their 

presence (slugs) is attributed to the upstream and downstream topology of the horizontal flowline 

i.e. the elbow connecting horizontal flowline to the vertical riser (or pipe). It postulated that this 

terrain influence allows slugs to be present for the flow conditions which normally would result in 

stratified flow. This configuration caused the accumulation of water due to slowing down of the 

water and thereby initiating slug formation in stratified flow regime. The near riser base pressure 

response (case B) of this flow regime is indicated in Figure 14(a). The figure shows the regular 

arrival of slug near the exit of the flowline with slugging changing to almost periodic sinusoidal 

type, regularly varying with minimum and maximum pressure of 0.3 to 0.6 bar and with cycle time 

of 10-12s. Notice two aspects first; the cyclic behaviour with slug build-up which corresponds to an 

increase in vertical riser section-flowline pressure due to water build-up in the vicinity; (however 

this water build-up is small) and second, there is no slug production period. During this partial 

build-up, air in the flowline is being temporarily compressed, moves in towards riser base with high 

velocity pushing the short accumulated water pool ahead in the vertical riser section. In this 

situation since the air superficial velocity is quite high compared to the water superficial velocity, 

consequently the water fall back is not enough to block the base completely for long and there is 

continuous air penetration as suggested by the constant pressure variation in the flowline. Similar 

pressure cycling behaviour is also observed by other researchers in smaller diameter horizontal 

flowline-vertical riser configuration (Schmidt et al., 1980 and Fabre et al., 1990). However the 

unique aspect of this case, in comparison to the earlier work is that liquid slug pushed up by the 

available air drive is dissipated completely or partially by the air, turning to churn/froth type of flow 

in later vertical sections. The flow appeared to be violent i.e. highly distorted bubble clusters 

travelling upward with high velocity. Finally, the churn frothy mixture sloshed out of the riser in the 

plenum with some of the liquid falling back on the upcoming flow in the riser. 
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The simulation results of case B by OLGA code predicts hydrodynamic slugging in the flowline 

and annular flow in the riser section. Thus OLGA code also indicates that slugging in flowline 

appears to occur at lower air superficial velocity than indicated by Taitel et al. (1976) flow pattern 

map. Above behaviour of the code indicates that in case of the slugging in the flowline, the code is 

completely dissipating the created liquid slug in the base vicinity making annular flow ahead in the 

later sections. Although situation does corresponds to experiment slightly but slugs formed in the 

flowline were observed to dissipate while travelling upward in the riser in experiments. This is 

because the code does not classify churn/froth flow as an individual flow (OLGA only identifies 

bubbly, slug and annular flow under vertical upflow condition), therefore the transition from slug 

flow is to annular flow. The simulated flowline exit and near riser base pressure responses (case B1) 

from the code along with the experimental results (case B) are shown in the Figure 14(a). In the 

figure, the pressure profile appears quite stable for both flowline and the riser base. The simulated 

mean pressure is around 0.208bar in comparison to mean value of 0.413bar from the experiments. It 

is to be noted that the flow during the experiments remained highly intermittent (0.186 – 0.714bar 

minimum and maximum) in comparison to simulation. This behaviour is attributed to the incorrect 

flow regime predictions in vertical riser, where the code predicts the case as annular flow.  

 

OLGA preliminary model (abbreviated as A1 or B1 in Figure 13 & Figure 14) has been applied 

and the result of the two cases; one dealing with the stable bubbly flow and other related to unstable 

churn/froth flow were presented. Based on the results of first model it is obvious that while the code 

did predict the stable flow case A satisfactorily, as there is good agreement between simulated and 

experimental values, it was unable to predict the unstable flow case B accurately. The case B 

belongs to the churn/froth flow but due to incorrect flow regime (annular flow) predictions, the code 

predicts the case as stable flow. In fact the code, globally under predicts average riser base pressure 

in the unstable flow case B. Thus the average, maximum and minimum pressures in case B is also 
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lower than actual values in experiments. This implies that the code under predicts the water 

inventory at the base. This later aspect motivated some modification to improve the model results 

for unstable flow cases. Many attempts were made in modifying the first model including the fine 

tuning of friction factors and varying the constant outlet boundary pressure however, these 

modifications did not improve the results. Thus, it was concluded that the possible option was to 

modify the boundary conditions, because during unstable flows, the boundaries of the system are 

most affected. A satisfactory alternative to this was to use the sensor time series as the boundary 

conditions. Since the upper plenum was open to atmosphere, therefore sensor response near the exit 

of the riser was used instead, while all other conditions were kept same. Admittedly, this change 

does bring the mean pressure in the simulation and the riser base slightly close to each other as a 

consequence of the head imposed (≤0.09bar). However with this change, we will still be able to 

examine/verify the riser base pressure trends. Thus if positive results are obtained, it at least 

indicates that the code is capable of capturing the dynamics of typical unstable flow phenomena in 

large diameter horizontal flowline-vertical riser system. 

 

Modified Case B: The results from the extended model for the case B are presented in Figure 

14(b). The code still incorrectly predicts the flow regimes in flowline-riser, similar to the first 

model.  However, the interesting change in the simulated results was the riser base pressure trend 

indicating the similar unstable flow behaviour with oscillations as observed in experiments (see 

Figure 14a). In comparison to the mean riser base pressure of the first model (0.208bar) and the 

experimental value (0.413bar) (also see Figure 14b), the mean riser base pressure predicted by this 

extended model is 0.272bar. This is the consequence of the head imposed. The predicted slugging 

frequency in simulation is almost similar as the experimentally observed however slugging cycle is 

underestimated by the code. This under prediction of the slugging cycle is accompanied by the 

underestimation of the slugging amplitude. Both the factors are attributed to the underestimation of 
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the liquid holdup by the code. From the figure one can notice that the simulation indicates that there 

is continuous large amount of air penetration in the riser base with stratified flow in the flowline. 

 

Both the cases (A and B) have been checked for the grid and time step independency. To ensure 

that a grid independent solution was achieved; three different grid sizes of 0.9m, 1.8m and 3.6m 

were used. Similar to above grid resolution study, a time resolution study was performed with 

various time steps. It was seen in simulations that the too large time step in the code resulted in an 

increase numerical diffusion causing large global volume error and degraded accuracy. So trials 

were performed with various time steps and finally the initial time step of 0.001s was manipulated 

from Δt/10, Δt, 10Δt in order to keep the deviation to the minimum. Table II summarizes the 

results of two cases A and B. 

 

IV. Conclusion 

An adiabatic air-water flow experiments have been performed in 254mm diameter pipe under 

vertical upflow condition for air and water superficial velocities of  ja = 0.09m/s - 2.23m/s and jw = 

0.18m/s to 1.1m/s respectively with mean void fraction ranged between 0.11 – 0.65. The flow 

patterns were also identified in above air-water superficial velocity range using visual observation 

and statistical analysis of sectional void fraction at z/D ≈ 32. Four basic flow patterns were 

characterized namely; (i) dispersed bubbly flow, (ii) bubbly flow (at low liquid input), (iii) agitated / 

clustered bubbly and, (iv) churn / froth flow and an experimental flow pattern map was developed. It 

was found that while conventional small diameter pipe and large diameter pipe exhibit similar 

dispersed bubbly, bubbly flow and churn flow, the distinction arises in slug flow which seems to 

exist only for small diameter piping. No typical slug flow (consisting of Taylor bubble & liquid slug) 

is observed in current large diameter vertical upflow experiments instead agitated/ clustered bubbly 
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prevailed in the region where a coalescence / clustering of bubbles and their break up is clearly 

visible along with the local random liquid film movement at the wall. Thus the conventional slug 

flow pattern (found is smaller diameter pipe) has vanished from the large diameter pipe under 

vertical upflow condition. Furthermore, dispersed bubbly flow and churn/ froth flow were observed 

to occur at lower water superficial velocity than in conventional small size pipe. From these results 

presented it can be inferred that this difference of flow behvaiour exhibited by large diameter pipe 

under vertical upflow condition is due to the enlargement of lateral flow path that provides extra 

degree of freedom to the two gas-liquid phases that complicates the flow structure and suppresses the 

formation of conventional bullet shaped Taylor bubble. The detailed comparison between flow 

patterns encountered in small diameter and large diameter vertical upflow condition also support 

above assertion. The comparison of the experimental results with other air-water work on large 

diameter vertical pipe indicates a close agreement. However, none of the flow pattern maps were 

able to predict the flow transitions encountered in large diameter vertical upflow condition 

satisfactory, putting a question mark to their applicability for these diameters. 

 

The twelve void fraction correlations assessment indicated that void fraction correlations should be 

flow regime dependent. The correlations taking into account of this fact are closer to experimental 

trends. None of the correlations successfully predicted all the flow regimes encountered in 

experiments. It was found that correlations that successfully predicted the agitated / clustered bubbly 

and churn flow, did not predicted the bubbly flow accurately while those predicting bubbly flow 

showed little acceptable trend for agitated bubbly but completely deviated for  churn flows. This 

trend highlights the difference in the flow structure variation behind these flows. 

 

The results from numerical model clearly indicate that the effects of boundary conditions on the 

model are substantial. Whilst stable flows have been satisfactorily modelled with steady state 
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average boundary conditions in OLGA, this practice was insufficient for determining the real 

behaviour in unstable flows in large diameter horizontal flowline-vertical riser rig. This signifies 

that the real behaviour of unstable flows was dominated by large transient variations at the 

boundary. In numerical simulation, inconsistencies were found in the prediction of flow regimes 

and liquid holdup, along with the under prediction of the riser base pressure. The OLGA was 

partially successful in qualitatively reproducing the trends and was still unable to quantitatively 

predict the unstable flows in large diameter horizontal flowline-vertical riser system. 
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Figure 1. Commonly found flow patterns in vertical gas-liquid upflow. 
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Figure 2. Schematic diagram of the large diameter facility. 
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Figure 3. Effect of frictional loss in measurements with Lombardi and Carsana (1992) correlation. 
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Figure 4. Sketches of observed air-water flow patterns with typical void fraction probability plots for 254mm 
diameter vertical pipe. 
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Figure 5. Experimental flow pattern map for 254 mm diameter vertical pipe. 

 

 

Figure 6. Flow pattern map for 254 mm diameter vertical pipe. Lines indicate the flow pattern transitions by 
Taitel et al. (1980). 
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Figure 7. Flow pattern map for 254 mm diameter vertical pipe. Lines indicate the flow pattern transitions by 

Mishima and Ishii (1984). 
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Figure 8. Air-Water flow patterns comparison between 254mm and 150mm diameter pipe under vertical 
upflow condition at constant water superficial velocity,  jw = 0.67m/s. 
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Figure 9. Air-Water flow patterns comparison between 254mm, 32mm and 28mm diameter pipes under 
vertical upflow condition  at constant water superficial velocity, jw = 0.38 m/s.  
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Figure 10. Comparison of the measured and predicted average void fraction for selected correlations. 
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Figure 11. Comparison of the measured and predicted average void fraction for selected correlations. 
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Figure 12. Comparison of the measured and predicted average void fraction for selected correlations 

 
 

 

Figure 13.  Comparison of experimental and simulated pressure time series results of Case A. 
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Figure 14.  Comparison of experimental and simulated pressure time series results of Case B: (a) Initail 
model (B1) and (b) Modified model (B2). 
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TABLE I. THE COMPARISON OF VOID FRACTION CORRELATIONS USING LARGE DIAMETER 
VERTICAL UPFLOW DATA 

Category Correlation 

 

Mean % 
Error 

Standard Deviation 
(%) 

Homogenous void fraction 
model (= ) 

HEM model 52.67 19.59 

The “=K” forms Bankoff (1960) 16.46 16.52 

Based on Lockhart and 
Martinelli parameter (X) 

Lockhart & Martinelli 
(1949) 

-24.07 9.66 

Based on slip ratio (S) 
relations. 

Chisholm (1972) -27.5 9.89 

Premoli et al. (1971) 10.11 10.54 

Guzhov et al. (1967) 3.13 16.82 

Based on drift flux model, 
mostly from Nuclear 
industry. 

Kataoka & Ishii (1987) 1.55 10.40 

Chexal & Lellouche (1992) -4.53 19.62 

Hibiki & Ishii (2003) 1.75 8.78 

Based on popular Oil & Gas 
industry. 

Duns & Ros (1963) 15.62 13.86 

Beg & Brill (1973) 21.42 50.73 

Two fluid model OLGA-S 30.26 11.51 
 

 

TABLE II. THE RESULT SUMMARY 

Case Name Exp 
Value 

(bar) 

Steady 
State 

(bar) 

Initial 
Model 

(bar) 

Extended 
Model 

(bar) 

a Δx, Δx/2, 
2Δx   

(bar) 

bΔt , Δt/10, 
10Δt  

(bar) 

Case A 0.912 0.888 0.907 - 
0.907, 
0.852, 
0.901  

0.907, 
0.909, 
0.901 

Case B 0.413 0.205 0.208 0.272 
0.272, 
0.269, 
0.265  

0.272, 
0.273, 
0.276 

 

  a Grid and b Time step independency 

 


