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Abstract: Noisy environments, changes and variations in the volume of speech, and non-face-to-face
conversations impair the user experience with hearing aids. Generally, a hearing aid amplifies
sounds so that a hearing-impaired person can listen, converse, and actively engage in daily activities.
Presently, there are some sophisticated hearing aid algorithms available that operate on numerous fre-
quency bands to not only amplify but also provide tuning and noise filtering to minimize background
distractions. One of those is the BioAid assistive hearing system, which is an open-source, freely
available downloadable app with twenty-four tuning settings. Critically, with this device, a person
suffering with hearing loss must manually alter the settings/tuning of their hearing device when
their surroundings and scene changes in order to attain a comfortable level of hearing. However,
this manual switching among multiple tuning settings is inconvenient and cumbersome since the
user is forced to switch to the state that best matches the scene every time the auditory environment
changes. The goal of this study is to eliminate this manual switching and automate the BioAid
with a scene classification algorithm so that the system automatically identifies the user-selected
preferences based on adequate training. The aim of acoustic scene classification is to recognize the
audio signature of one of the predefined scene classes that best represent the environment in which
it was recorded. BioAid, an open-source biological inspired hearing aid algorithm, is used after
conversion to Python. The proposed method consists of two main parts: classification of auditory
scenes and selection of hearing aid tuning settings based on user experiences. The DCASE2017
dataset is utilized for scene classification. Among the many classifiers that were trained and tested,
random forests have the highest accuracy of 99.7%. In the second part, clean speech audios from the
LJ speech dataset are combined with scenes, and the user is asked to listen to the resulting audios
and adjust the presets and subsets. A CSV file stores the selection of presets and subsets at which
the user can hear clearly against the scenes. Various classifiers are trained on the dataset of user
preferences. After training, clean speech audio was convolved with the scene and fed as input to
the scene classifier that predicts the scene. The predicted scene was then fed as input to the preset
classifier that predicts the user’s choice for preset and subset. The BioAid is automatically tuned
to the predicted selection. The accuracy of random forest in the prediction of presets and subsets
was 100%. This proposed approach has great potential to eliminate the tedious manual switching of
hearing assistive device parameters by allowing hearing-impaired individuals to actively participate
in daily life by automatically adjusting hearing aid settings based on the acoustic scene.

Keywords: hearing aid; DCASE; machine learning; BioAid; signal processing

1. Introduction

Hearing loss (HL) can develop from peripheral or central auditory system damage [1].
Age-related degeneration, genetic mutations, noise exposure, therapeutic drugs with toxic
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side effects, and chronic disorders induce sensorineural hearing loss [1]. Hearing obstruc-
tion means not hearing regular sound frequencies. HL affects one or both ears and can
be complete or partial. HL causes psychological and social isolation and also affects how
people interact with family and friends, making it harder to perform tasks or study [2].
Around 466 million individuals worldwide suffer from hearing impairment, with 34 million
of them being children [3]. According to [4], there are four stages of HL mild, moderate,
severe, and profound with the lowest sound perception from 25 to 40 dB, 40 to 70 dB, 71 to
90 dB, and above 91 dB, respectively.

Hearing aids (HAs) and hearing assistive devices (HADs) are devices designed to help
hearing-impaired people [5]. HAs and HADs are used to alleviate the symptoms of mild
to moderate hearing loss by amplifying sound. The “Array Process digital HA” was an
early attempt to develop a digital HA and offers a simulation for investigators to assist
in designing Digital HAs [6]. The first effort to customize an HA by [7] used a modified
simplex technique, whereas [8] used genetic algorithms to choose settings depending on
user reactions.

Noise reduction, beam-forming, feedback cancellation, and speech enhancement are
all functions of digital HAs with signal processing [9]. The most difficult challenge in HA
is addressing the issue of speech interpretation in acoustic environments. Over the last
three decades, there has been a major concentration on the topic of customizing through
adjusting system parameters [10].

Smartphones are great for implementing complex signal processing methods, such
as hearing testing and refining HA applications. Smartphones are utilized to design and
test signal processing algorithms for audiometers and HAs because its user-friendly and
growing. Pure-tone audiometry (PTA) and EarTrumpet are smartphone-based Has used by
audiologists to remotely adjust patients’ Has [11].

This study’s concept is based on the computer model given in [12] and developed
by [13] for the IOS system under the name BioAid. The BioAid algorithm is open source
and available on GitHub [14]. In this manuscript, the replica of MATLAB code for BioAid
is developed in Python. The BioAid algorithm was chosen above many other algorithms
for smartphone based HAD apps because it is a complete computer model that reflects the
biological functions of the human ear. The core model was made up of a series of equations
that simulated the responses of the stapes, the basilar membrane (BM), outer and inner hair
cells (OHCs, IHCs), the auditory nerve, and efferent activities such the acoustic reflex and
the medial olivo-cochlear (MOC) system [15].

The BioAid algorithm was developed by a team of audiologists led by Professor Ray
Meddis and computer scientists at the University of Essex, UK to produce a comprehensive
computer model with numerous tuning options. The models developed were sophisticated
and reliable enough to represent physical phenomena such as thresholds, masking, and
speech recognition basics. The filter bank has six presets with 250 Hz to 8 kHz frequen-
cies. AR, MOC, and Instantaneous compression regulate audio input and respond to
loudness changes. The AR controls low-frequency sound and activates at a 70 dB SPL [15].
Instantaneous Compression attenuates unexpected sound level rises without the use of
automated gain control (AGC) [15]. While the MOC acts as negative feedback, filtering
out any noise caused by the compression process as shown in Figure 1. This application
does not boost all audio levels with a specified frequency, which would make loud noises
more uncomfortable. BioAid combines two physiologically inspired processing algorithms
(normal and impaired hearing) from a computer model to build a HA. BioAid consists
of a filter bank, an Acoustic Reflex (AR) system, a MOC feedback system, and a basilar
membrane compression [16].
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Figure 1. Flow diagram of the MATLAB Auditory Periphery (MAP) model taken from [15].

To the best of the authors’ knowledge, there is no intelligent system that can “scan”
its surroundings and auto-adjust the HAD based on user preferences against a specific
auditory scenario. The goal of this research is to design a smart HAD based on dedicated
signal processing and machine learning. This research is an improvement on an already-in-
use HAD known as the BioAid (newer version AUD1) for patients with mild to moderate
hearing loss. The goal of this research is to enhance the capabilities of BioAid so that it
automatically determines the user’s preference based on the current auditory scene that
the user is in at the moment. The major goal of this research is to automate the smart HA
with scene categorization so that the system can learn the user’s preferences for a particular
setting. The system was trained by monitoring user preferences in relation to each scenario.

2. Literature Review

This section addresses some of the great advances in the HA industry, as well as
approaches for acoustic scene classification.

2.1. Hearing Assistive Devices

HADs help to compensate for the impairments caused by hearing loss. There are
numerous weaknesses to overcome with sensorineural hearing loss. Some sounds are
completely inaudible while other sounds can be heard because a portion of their spectra
is still audible, but may not be accurately identified since portions of their spectra (often
the high-frequency portions) are inaudible [17]. A person with sensorineural hearing loss
has a narrower range of levels between the weakest sound that can be heard and the most
intense sound that can be endured than a person with normal hearing [17]. In order to
compensate for this, hearing aids and hearing assistive devices (HADs) must enhance weak
sounds over loud noises.

Furthermore, sensorineural dysfunction impairs a person’s capacity to identify and
evaluate energy at one frequency in the presence of energy at other frequencies [17]. To
overcome these issues, different investigators have proposed HAs and HADs.

A smart HAD that provides much-needed aid with speech interpretation in noisy
surroundings was presented by [18]. The user must set the microphone array-based
equipment in front of him/her on a flat surface, such as a table. When conversations
begin, the microphone array analyzes sound from all directions, prioritizing the primary
speaker’s voice while suppressing undesired noises. Using speech algorithms, this device
automatically selects and switches between speakers. The user can fine-tune acoustic
parameters using a smartphone interface.

In [19] the authors developed a smart earplug framework combined with non-intrusive
bone conduction technology capable of enhancing speech with audio processing and
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filtering noise from audio. The design mechanism of these HADs simply absorbs sound
energy and directs it to the ear canal at increased levels. Under the suggested method,
individuals with conductive or mixed hearing loss who are unable to use air conduction
(AC) HADs may use bone conduction devices (BCDs). Additionally, the system acts as an
integrated music player, a live activity tracker, and an alert system for incoming messages
on the user’s phone. In terms of both concrete applications and simulations in real time,
the system performs well.

The structure of HAD proposed by [20,21] comprises primarily three components:
earpieces, mobile computing platform, and real-time speech-enhancement application.
Complex algorithms can be executed without straining the HAD’s processors. The com-
plex and power-consumptive binaural algorithm is used to improve user experience. The
speech-enhancement method was simplified compared to typical HADs with integrated
digital signal processing. The 400-MHz transceiver helps reduce route loss around the body
when combined with a HAD and mobile computing platform. Signal-to-noise ratios have
improved by at least 30% in some conditions, and the total system delay was 8.8 millisec-
onds. Objective and subjective results show that the recommended structure, presented
in [20] improves user experience.

In [21], the microphone of the earpiece was used to acquire the speaker’s voice, which
was then wirelessly sent to the smartphone. After the deep learning speech enhancement
application improves the speech intelligibility in real time, it then returned to the earpiece
to make sound. The results demonstrated that the average utilization of the smartphone’s
central processing unit was roughly 26%, and the signal-to-noise ratios improved by at
least 20%. The provided empirical and subjective results demonstrate that the proposed
strategy [21] produces superior noise suppression without audio distortion.

A smartphone-based context recognition system that uses sensory data to determine a
scenario and modify hearing aid parameters was presented by [22]. The model’s primary
components are two context reasoning methods (scene recognition and activity recognition).
For scene recognition, according to the Google Nearby (GN) Searching API, 500 location
points from nine classes were collected in Shenzhen. Each record in the dataset contains
the user’s longitude, latitude, manually marked type, and the location points of all nearby
places retrieved by the GN location searching interface. Neural network (NN), KNN, SVM,
C4.5, and Naïve Bayes are trained and evaluated with C4.5 achieving 88.89 % accuracy. A
mobile device with integrated sensors was used to determine the mobility state of users.
In the experiment, both acceleration and direction sensors are used to collect data from
four classes namely, walking, running, still, and riding. Decision trees (C4.5, CHAID, and
CART), SVM, and NN are trained and tested with CHAID achieving an accuracy of 73.84%
in activity recognition. After identifying the scene and activities, the smartphone sends a
Bluetooth signal to the hearing aid to initiate the amplification process.

The investigation in [23] explores the classification of “music,” “noise,” “speech with
noise,” “silence,” and “clean speech” that can be used for automatic transition between
different HAD algorithms depending on an auditory-related scene. The datasets are
extracted from multiple databases for use in training and testing. One such database is
free sound, which maintains more than 40 thousand sounds of different classes. The Noisy
Speech Database is a second database that contains both clean and noisy speech. Artificial
noise is intentionally added to clean speech to create speech with noise class for the CSTR
VCTK Corpus database. The music data are obtained from the publicly accessible Million
Song Database, which contains millions of recordings with audio features and metadata.
The LibriSpeech ASR corpus is a database containing one thousand hours of 16 kHz
clean English speech read aloud. The dataset is constructed from suitable English-read
audiobooks. The silent dataset is obtained from YouTube by downloading video/audio,
importing it into MATLAB, converting it to wav file, then clipping it for 5 s. Mel frequency
cepstral coefficient (MFCC), Mel-spectrogram, Chroma, Spectral contrast, and Tonnetz
were retrieved from the audio of the following five classes: “music,” “noise,” “speech with
noise,” “silence,” and “clean speech”. The convolution neural network (CNN) processed
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audio using these features. The system has an accuracy of 93.84%. The algorithm is efficient
and uses a small amount of memory.

A smart HAD employing a deep neural network is used to enhance three specific
sounds namely a fire alarm, a car horn, and a baby cry is presented in [24]. This is a signifi-
cant contribution to people suffering from hearing loss to avoid catastrophic occurrences.
AURIS, a portable smart space interface, was developed by the Cochlear Implant Processing
Lab (CILab) at UT-Dallas [25]. The proposed AURIS interface samples the auditory space
on a regular basis and uses a learn-versus-test phase to develop a Gaussian mixture model
for each given ambient location. The AURIS interface connects to the CRSS CCi-Mobile
research platform via an Android app to fine-tune the configuration parameters for cochlear
implant (CI) or HAD users entering the room/location. Baseline objective evaluations
were performed using 12 h of audio recordings in a range of naturalistic scenarios. At the
University of Texas at Dallas, audio was collected at Starbucks, the library, Synergy Park
North (SPN-UTDesign Studio), Chick-Fil-A, the pool tables area in the Student Union, the
Solarium Lab, the gym, the Electrical and Computer Science-North (ECSN) study area, and
the Electrical and Computer Science-South (ECSS) classroom. The performance metrics are
determined by verified wireless communication, as well as estimated acoustic environment
knowledge and more than 90% accuracy in room classification.

2.2. Scene Classification

A novel approach for acoustic scene classification (ASC) using a deep neural decision
forest (DNDF) was proposed by [26]. DNDF combines convolutional layers and a decision
forest as the final classifier. The experimental findings on the DCASE2019 and ESC-50
datasets show that the suggested DNDF approach increases ASC performance in terms of
accuracy by 75.90% and 88.90%, respectively.

An ensemble classifier-based technique for ASC was presented by [27]. First, the
signal was separated into the left and right mono channels, and then feature extraction
was carried out by applying wavelet scattering individually to the left and right channels.
Using these features, a separate random subspace classifier is trained for each mono (left
and right) channel. Each classifier’s output was sent to the fusion stage, which combines
them nonlinearly to improve accuracy. The parameters of this step were selected using a
genetic algorithm. This [27] technique has a greater classification accuracy of 95% on the
Dcase2017 dataset.

An acoustic spectrum transformation network that changed typical log-mel spectrums
into imagined visual features (IVF) was presented by [28]. The anticipated visual elements
were learned by taking advantage of the link between auditory and visual aspects in
video recordings. Images were encoded as visual features using an auto-encoder, and a
transformation network was learned to produce imagined visual features from log-mel. A
big dataset of YouTube videos was used to train the model. The suggested technique was
tested on the DCASE and ESC-50 scene classification tasks, and it outperforms existing
spectrum characteristics with an accuracy of 83.7%.

A method for investigating the advantages of deep scalogram representations, ex-
tracted in segments from an audio stream was presented by [29]. The presented method
first converts segmented acoustic scenes into bump and morse scalograms, as well as spec-
trograms; second, the spectrograms or scalograms are fed into pre-trained convolutional
neural networks; third, the features extracted from a subsequent fully connected layer
are fed into (bidirectional) gated recurrent neural networks, which are then followed by
a single highway layer and a softmax layer; and finally perform predictions. The sug-
gested technique is then evaluated using the acoustic scene classification dataset from the
DCASE2017. When fusing the spectrogram and the bump scalogram on the evaluation set,
bidirectional gated recurrent neural networks achieve an accuracy of 64%, an increase over
the DCASE 2017 baseline result of 61%.

For acoustic scene classification (ASC), an alternative representation framework to
the typically used time–frequency format was presented [30]. A pre-trained CNN with
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its different intermediary layers was used to represent a raw audio stream. The study
assumes that the representations obtained from the intermediate layers are fundamentally
low-dimensional. PCA was used to produce low-dimensional embeddings. The underlying
subspace is approximated using an artificial dictionary learning approach. Furthermore,
under the ensemble framework, the low-dimensional embeddings were aggregated in
a late-fusion way to integrate hierarchical information gained at multiple intermediary
levels. On a pre-trained 1-D CNN, SoundNet, the experimental evaluation was performed
on publicly accessible DCASE 2017 and 2018 ASC datasets. Deeper layers, empirically,
have a higher compression ratio than others. The performance was comparable to that
obtained without applying any dimensionality reduction at a compression ratio of 70%
across diverse datasets. The suggested framework outperforms techniques based on time–
frequency representation.

From the literature, it is evident that multiple researchers presented HADs that enable
hearing-impaired individuals. To deal with changes in environment and noise, the user
has to manually adjust and tune the device. This is a tedious and time-consuming practice.
Some of these HADs just amplify noises, including background noise, so the individual
cannot hear clearly. Some researchers classified acoustic scenes with a maximum accuracy
of 95% using the DCASE dataset. A system was needed to eliminate the manual switching
of the parameters. therefore, [22,25] proposed a system that classifies scenes and adjusts
the HAD settings appropriately. The [22] uses the user’s longitude and latitude parameters
in conjunction with the Google API to determine the user’s location. The method proposed
in [22] only amplifies the audio after identifying the scene/location. The research presented
in [25] gathers audio data in several university classrooms, classifies it, and then automat-
ically adjusts the HAD’s settings. The technique shown in [25] is limited to just a small
number of interior scenes due to the need for an AURIS device that gathers the acoustic
scene of the rooms. The study presented in this manuscript aims to eliminate this manual
switching and automate the BioAid (a HAD) using a scene classification algorithm so
that the system automatically recognizes the user-selected preferences based on adequate
training. For scene classification a benchmark dataset DCASE 2017 was used and merged
with the BioAid.

3. Methodology

The original BioAid algorithm was developed in MATLAB; the goal of the proposed
approach for the automatic user preferences selection of smart HAD system adapts the
BioAid algorithm code into Python.

The proposed system consists of two phases, the first comprises of scene classification
model and the second phase is to fuse scene classifier with BioAid. In the first phase,
a classifier is developed for the auditory scene classification and fused with the BioAid
algorithm to automate presets and subsets selection for the BioAid based on the auditory
scene. The TUT Acoustic Scenes 2017 dataset [31] from DCASE “Database for acoustic scene
classification and sound event detection” was used for scene classification. A lakeside beach,
a bus, a car, a café–restaurant, a city center, a forest trail, a grocery store, a home, a library, a
metro station, a train, a tram, an office, an urban park, and a residential neighborhood are
among the 15 audio scenes comprises acoustic dataset. Each scene has 312 audio files. These
scenes depict a diverse range of real-world sites and are split into two broad environmental
categories: “indoor” and “outdoor”.

Fifteen (15) audio scenes have 312 audio files of 10 s duration each. The audio files
were in “.au” format, but in order to extract features, they were converted to “.wav” format
before being imported into Python. To obtain MFCC features, the audio signals were
segmented and windowed into 40 ms short frames. MFCC features with 12 coefficients were
extracted using Librosa, a Python library, with pre-defined FFT and Mel-scale parameters.
Subsequently, the particular acoustic scene was divided into 432 frames with a window
length of 1024 and a hop size of 512. A 10 s acoustic audio signal has 432 frames. This
results in matrix “C” with 432 rows and 12 columns for a single audio file. Here, the rows
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are frames, and 12 columns are 12 MFCC coefficients. The final feature vector space “D” of
size 12 is obtained as follows:

F =

[
1
N

432

∑
i=1

ai1,
1
N

432

∑
i=1

ai2,
1
N

432

∑
i=1

ai3, . . . . . . . . .
1
N

432

∑
i=1

ai12

]
(1)

where i is the ith frame and N is the total number of frames, i.e., 432. The 13 entries of
dataset are 12 MFCC coefficients and the last entry is the label of that scene. Subsequently,
the D for all audio scenes is calculated and forms a matrix A, the final dataset.

Matrix A has the following size:

Number of rows = 15 × 312 = 4680

where 15 is the total number of scenes and 312 is the total number of files in each scene.

Number of columns = 13

where 12 is MFCC coefficients and the last entry is for scene label.
The same procedure is applied with 40 MFCC features to obtain another dataset B.
Figure 2 shows the scene classification model pipeline. Figure 3 shows the plots of

MFCC coefficients of all scenes from the dataset to demonstrate how effective MFCCs are
at extracting audio information. Dataset A was then separated into a training set and a test
set. On this dataset, various machine learning (ML) models that include random forest (RF),
multi-layer perceptron (MLP), extra tree classifier (ETC), and K-nearest neighbor (KNN)
were trained and tested on the datasets. The RF classifier that achieved highest level of
generalization with an accuracy of 99.7% was selected.
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Figure 2. Scene classification model.

Multiple clean speeches taken from LJ speech dataset were convolved with scenes from
the DCASE dataset. LJ speech dataset is a collection of 13,100 short audio clips of a single
speaker reading lines from seven non-fiction books. In the 2nd phase, the scene classifier is
fused with BioAid algorithm such that the predicted scene from scene classifier is fed into
BioAid. The whole system works in two stages, training and testing. A GUI is designed
as shown in Figure 4 to select any stage. A participant is asked to listen to the convolved
audios and select the best tuning combination of presets and subsets parameters for BioAid
based on participant experience. Ethical approval for this work was sought and approved
by the Khwaja Fareed University of Engineering and Information Technology. The hearing
impairment in a 31-year-old male patient was examined using standard audiometry and
tympanogram tests with the range of frequency and level in hospital under the supervision
of an audiologist and obtained the audiogram as shown in Figure 5.
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Figure 5. Subject audiogram chart.

A pure-tone audiometry test measures the softest, or least audible, sound that a person
can hear. The loudness of sound is measured in decibels (dB). A whisper is about 20 dB,
loud music ranges from 80–120 dB, and a jet engine is about 180 dB, for reference. The
tone of sound is measured in frequencies (Hz). Low bass tones range from 50–60 Hz, high-
pitched tones range from 10,000 Hz or higher. A normal hearing range is 250–8000 Hz at
25 dB or lower. Figure 5 shows hearing loss in high frequency ranges from 1 KHz to 8 KHz.

The participant selection of presets and subset combinations against the scene is stored
in CSV file. This file will then serve as training data for ultimate model for selection of
combination of presets and subsets based on the scene. This task was performed multiple
times with different convolved (speech and scene) audio input against each scene and
subsequently recorded. The recording process is carried out for all 15 scenes.

A structured dataset (user preferences dataset) was maintained that contains the
combination of presets and subsets as labels against each instance of scene. The combination
of presets and subsets is based on user preferences against each scene. Different ML
classifiers were trained and tested on the user preferences dataset as shown in Figure 6.

Post-training, the testing stage is in place. In the testing phase, a clean speech file is
convolved with the audio of a random scene, and the presets and subsets are automatically
configured in BioAid. Since the pauses in speech signal correspond to acoustic scene, the
MFCC features are extracted from the pauses presented in the input signal and are sent
through a pretrained scene classifier to forecast the scene in the input audio. Figure 7
shows the speech and scene convolved signal. Subsequently, the predicted scene is sent
into another classifier that predicts the combination of presets and subsets based on that
particular user’s previous history of preset and subset choices vs the specific scene. The
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predicted preset and subset are automatically tuned in the BioAid. The steps involved in
the automatic preset and subset selection are shown in Figure 8.
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4. Results

This section focuses on the results and performance of the different classifiers.

4.1. Results of Acoustic Scene Classification

The 12 and 40 MFCC features were retrieved from the audio dataset and labeled
datasets were maintained. The datasets were divided into 70% training data and 30%
testing data. Hyperparameters used to tune the classifiers are given in Table 1. Using a grid
search strategy, the function output for each of these hyperparameter values was calculated
and the most effective hyperparameters in terms of best accuracy for the available dataset
were chosen.

Table 1. Parameters used to tune classifiers.

Classifier Hyperparameters

RF Random_state = 0, max_depth = 150, n_estimators = 1000

MLP hidden_layer_sizes = (350, 300, 200, 100), activation = “relu”,
random_state = 0, max_iter = 500

ETC n_estimators = 100, max_depth = 200, random_state = 0

KNN Algorithm = “auto”, leaf_size = 5, metric = “minkowski”,
metric_params = None, n_jobs = 1, n_neighbors = 3

The dataset containing 12 MFCC features yields better results and is shown in Table 2.
RF performs better on this dataset than other ML models because tree-based classifiers
perform better on multiclass datasets [32,33]. RF trained with 12 MFCC features was
selected for scene classification. Confusion matrix of RF with 12 MFCC features can be seen
in Figure 9. The confusion matrix reveals that RF incorrectly predicted the lakeside beach,
train station, and metro station once.
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Table 2. Classification results of classifiers with 12 MFCC features.

Classifier Accuracy Precision Recall F1-Score

RF 99.7% 1.00 1.00 1.00

MLP 96.2% 0.96 0.96 0.96

ETC 95.8% 0.96 0.95 0.95

KNN 89.5% 0.90 0.89 0.89

4.2. Results of Preset Selection

The user’s preference dataset comprises 6006 rows and 2 columns, where columns
represent the scene and user response of preset and subset, respectively. The dataset
was then divided into a 70–30 ratio for training and testing. Several ML models were
trained and evaluated but RF with tuning parameters (random_state = 142, max_depth = 50,
n_estimators = 50) achieved an accuracy of 100%. The classification report is presented in
Table 3 and the confusion matrix can be seen in Figure 10. It can be seen in the confusion
matrix that there are only three classes, which means the user always selected from three
choices out of twenty-four presets and subsets. The proposed system is user-centric. Each
user will have his/her own dataset of presets and subsets choices against the acoustic scene.
For any other user, s/he will have his/her own dataset.

Table 3. Preset and subset selection accuracy of RF.

Precision Recall F1-Score

1.00 1.00 1.00

1.00 1.00 1.00

1.00 1.00 1.00
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Multiple users’ preferences will not comprise a single dataset. Subject B can get benefit
from the dataset and the model of A if the two subjects have equal hearing impairments
and acoustic scene scenarios.

The standard evaluation technique’s accuracy and ROC curve have been performed
and are shown in Figure 11. Since the area under the curve (AUC) is 1.00 for all subject
preference classes, the curves are at the top left corner and cannot be viewed since this
coincides with the top left corner. The more the ROC curve is positioned towards the top
left corner implies better model performance. The evaluation shows that the proposed
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system completely automates the preset and subset selection against scenes, as per subject
preferences. The automated preset selection and subsets combination show 100% accuracy,
based on the obtained datasets.
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4.3. Comparison with Related Work

The proposed method is compared with techniques presented by different investiga-
tors. Although the system presented by [22] also performs scene classification and amplifies
the parameters of HAD accordingly. The [22] relies on Google API for user localization
using the user’s longitude and latitude parameters. The system presented by [22] only am-
plifies the signal once it has the scene/location identity. Work in [25] collects acoustic data
in different rooms of a university setting and after classification autotunes the parameters
of the HAD. The system presented by [25] needs an AURIS unit that collects the acoustic
scene of the rooms and is thus limited to very few scenes mostly indoors. For the louder
acoustic scene (>85dB), it only generates an alert while the BioAid has a built-in feature of
instantaneous compression for an abrupt increase in the intensity in the acoustic signal. The
datasets collected by [22,25] are small in size. In contrast, the proposed method employs a
benchmark dataset containing audio from fifteen distinct scenes. It is evident from Table 4
that the proposed method outperformed in terms of accuracy in scene classification.

Table 4. Comparison of accuracies of different investigation.

Reference Accuracy in Scene Classification

[22] 88.89%

[25] 90%

Proposed Method 99.7%

5. Conclusions

A hearing aid or hearing assistive device provides numerous benefits to those who
need support with hearing loss, enabling them to freely converse and engage in daily living
activities without fear or embarrassment. A context-aware BioAid prototype has been
presented and is based on BioAid algorithm enhancement after its adaptation to Python.
The proposed method comprises the classification of auditory scenes and the selection of
BioAid tuning settings based on user experiences. An acoustic scene classification goal
is to identify a specified acoustic signature that best reflects the recorded environment.
Scene classification was performed using the DCASE2017 dataset. Multiple classifiers
were trained and tested, with RF surpassing the others with an accuracy of 99.7%. In the
second part, audio sets of clean speech from the LJ speech dataset were merged with scenes,
and the user was asked to listen to the resulting audio sets and adjust their presets and
subsets. A CSV file was maintained that contained the presets and subsets that the user
could hear clearly. Various classifiers were trained using the user preferences dataset. Clean
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speech audio was convolved with the scene and given to the scene classifier that predicted
the scene after training. The predicted scene was then sent to the preset classifier, which
predicts the user’s preference for preset and subset. The BioAid is automatically tuned to
the predicted choice. An accuracy of 100% was achieved by random forest in predicting
presets and subsets.
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