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Abstract— Corrosion may develop and grow on steel pipes under
layers of insulation and cladding. Inspection of the pipes through
these protective layers is of paramount importance. Pulsed eddy
current (PEC) is a primary non-destructive testing (NDT) tech-
nique candidate for this type of inspection as it requires no
contact with the inspection material. To overcome the variability
in PEC signals due to variations in the cladding thickness, a
large measurement set is analysed in this paper using principal
component analysis (PCA). The PCA approach decomposes the
signal set into a number of uncorrelated variables that explain
the maximum amount of the variance in the data set, in which,
in this respect, efficiently separate the influences contributed by
the difference in the material properties of cladding and pipe wall.
The feasibility of using PCA to quantify simulated steel pipe wall
independent of confounding cladding thickness variations is investigated. It is found that, with sufficient amount of
data, the approach can effectively separate the influences contributed by the wall thickness variations from the cladding
thickness variations.

Index Terms— non-destructive testing, pipe inspection, principal component analysis, pulsed eddy current.

I. INTRODUCTION

PULSED eddy current (PEC) is a non-destructive testing
(NDT) technique within the electromagnetic sector, and

is an extension of the conventional eddy current (EC) testing
technique. Instead of applying a single frequency for current
excitation like EC, PEC exploits the wide-band frequency
characteristic of a rectangular excitation current to allow
higher depth of penetration. It is known to offer the advantage
of non-contact inspection, particularly for aircraft [1]–[4] and
pipeline inspection [5]–[8].

In most pipelines, corrosion under insulation (CUI) is a
typical corrosion type that grows underneath layers of non-
conductive insulation and steel cladding. The multi-layered
structure of a pipe, as visualised in Figure 1, adds to the
complexity of inspection. PEC offers the potential to detect
such corrosion without disassembling the insulation.
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Fig. 1. Representation of corrosion growing under insulation and
cladding on a steel pipe.

Recent study in PEC measurement methods, specifically for
pipeline inspection, have included the proposition of an inver-
sion method to quantify thickness [8] and estimate the elec-
tromagnetic properties of pipe wall [9]. Data collected from a
PEC unit has also been used to estimate pipe wall thickness at
unmeasured locations by using predictive approach [10]. The
utilisation of the time-derivative feature, which offers lift-off
immunity, has paved way to the use of regression algorithm
to estimate wall thickness [11]. This feature has also been
proven useful for wall thickness estimation without insulation
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removal [12], [13]. However, the analysis of cladding thickness
variations in the context of pipeline inspection has not been
reported.

Principal component analysis (PCA) is a signal decomposi-
tion method that transforms large data sets into fewer dimen-
sions that summarise its variance. The employment of PCA is
not new in PEC research. Recently, it has been employed for
defect characterisation of multi-layered rivet structures [15].
An attempt at comparing PCA with Fast Fourier Transform
(FFT) as a method for signal decomposition has also been
carried out, which has revealed the benefits of both methods in
different aspects for the inspection of heat-treated bearing rings
[14]. PCA has also been used for probe parameter analysis for
pipeline inspection [16]. Another example that is close to the
work carried out here is the application of PCA to separate the
signal effects of tubes degradation with those of ferromagnetic
support, as reported by Buck et al. [17], owing to the large
difference in the ”relaxation times” for eddy current diffusion
in the tube compared to those of the ferromagnetic support.
Similar effort has also been carried out to detect loose parts
in steam generator [18] and cracks in inner wing spar of an
F/A-18 Hornet aircraft [19].

As briefly mentioned, the discovery of the time-derivative
feature affords the immunity towards lift-off and cladding
thickness variation; although this is the case, the operators
are still expected to manually interpret the raw PEC signals to
determine if there is lift-off and cladding thickness variations.
In a bid to move towards a more automated process of pipe
profiling, this paper explores the reliability of using PCA
method to quantify both cladding and pipe wall thickness on
a simulated multi-layered pipe structure. Since cladding thick-
ness variation influences the PEC signal differently from the
pipe wall variations, PCA signal decomposition is investigated
to distinguish between the two distinct signal influences. A
similar preliminary study has been done in one of the previous
works by using lift-off point of intersection feature to measure
coating thickness [20], but the analysis here differs by using
PCA. Since this analysis is intended as a feasibility study,
the insulation thickness variation is not considered here, as it
would add more complexity to the analysis.

The rest of the paper follows the sequential order the prob-
lem is approached. Theory, including the working principle of
PEC and PCA is introduced in Section II. The experimental
setup and development are described in Section III, while
Section IV discusses the experimental results. The paper is
concluded in SectionV.

II. THEORY

A. Pulsed Eddy Current

PEC extends the capability of conventional EC by supplying
a rectangular voltage pulse through the excitation coil, instead
of a sinusoidal voltage. The coil, placed above a conductive
test sample, induces transient eddy current in the sample. The
composite interaction of the eddy current and supply magnetic
field is sensed by a separate sensing coil.

Unlike EC, the analysis of PEC response is done by
evaluating the transient period of the rising/falling edge of

the excitation voltage. Over time, the generated eddy current
is diffused to the other side of the sample surface. Simulta-
neously, due to the sample’s resistance, the eddy current also
decays. The characteristic diffusion time, τD, for these eddy
currents in a material with σ conductivity, µ permeability, and
d thickness is given by [17], [18]

τD ∼ µσd2. (1)

In the case of a multi-layered inspection of CUI on a pipe,
the two materials of interest are the carbon steel pipe wall and
aluminium cladding. Considering the nominal thicknesses of
the materials, the estimated products of µσd2 are 6.375× 108

and 7.92 × 1010, for aluminium cladding and carbon steel
pipe, respectively. The diffusion time for eddy current in the
aluminium is of 2 orders of magnitude quicker than the carbon
steel. Because of this, besides the longer distance of the probe
to the pipe wall’s surface as compared to the cladding’s, it is
expected that the cladding influences the PEC signal at the
beginning of the signal, while the pipe wall contributes to the
effects at later times.

B. PCA

PCA is a statistical analysis method of summarising a
large set of correlated signal set into a low-dimensional
representation of the data (referred to as PCA scores) that
describes most of the variability of the original signals. For this
work, PCA is applied on a set of PEC signals V, comprising
N signals of P discrete samples, obtained by varying the
wall and cladding thicknesses. Each signal, v(n), makes up
the row vector of V, where the subscript n represents the
respective row in V. Note the bold and uppercase notation
of a matrix, and the bold and lowercase notation of a row
vector. In most PCA implementations, each row vector is
pre-processed by subtracting the row vector from the vector
mean (signal average), resulting in the difference signal set Z,
composed of row vectors z(n). The new data set U after PCA
transformation, which is made up of u(n), has a dimension of
N ×K, where K < P so that the dimension is reduced. The
PCA transformation is carried out by utilising a P -dimensional
weight vector of the k-th component, w(k) = (w1, ..., wp)(k),
using

uk(n) = z(n) ·w(k)

∣∣
n=1...N
k=1...K

. (2)

As previously mentioned, PCA re-organises the data set by
order of most variances in the data samples. The value of the
first weight w(1) can be expressed as

w(1) = argmax
‖w‖=1

{∑
n

(z(n) ·w)2
}
. (3)

Considering the unit vector property of w(1), (3) can be
rewritten in matrix form as

w(1) = argmax

{
wTZ>Zw

wTw

}
. (4)

From (4), the term in the curly bracket can be maximised by
finding the largest eigenvalue of the matrix V(q)>V(q), which
incidentally makes w to be the corresponding eigenvector.
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Fig. 2. (a) Block diagram of the PEC system and (b) experimental setup.

Further k-th components can be found by subtracting the
first k-1 principal components from W , resulting in

Ẑ(k) = Z−
k−1∑
s=1

Zw(s)w
ᵀ
(s), (5)

while the weight vector that gives the maximum variance from
this new matrix is

w(k) = argmax

{
wᵀẐᵀ

(k)Ẑ(k)w

wᵀw

}
. (6)

III. EXPERIMENTAL SETUP

A. Experiment
A PEC system as described in Figure 2(a)-(b) was developed

for the experimental investigations in this work. The system
consisted of three main elements: a probe, an excitation circuit,
and a data acquisition (DAQ) system, with a configuration
that followed the schematics in Figure 2(a). The probe was a
typical transmit-receive circular coil, where an excitation coil
was coaxially positioned in the circumference of the sensing
coil. The excitation circuit functioned to supply rectangular-
shaped voltage to the excitation coil, while sending a triggering
signal to the DAQ to initiate acquisition. The probe was
positioned on top of a thin sheet of aluminium (of σ = 25.5
MS/m), a non-conductive acrylic, and a carbon steel plate (of
σ = 5.5 MS/m) to simulate the multi-layered structure of
a pipe. Since this preliminary study was aimed to test the
feasibility of the PCA method, the experiment was carried out
in a controlled laboratory environment instead.

The probe had the following parameters: excitation coil
outer diameter, doe = 80 mm, excitation coil inner diameter,
die = 58 mm, excitation coil height, he = 12.5 mm, sens-
ing coil outer diameter, dos = 105 mm, sensing coil inner

Fig. 3. Cross-sectional image of the experimental setup (not to scale)

diameter, dis = 83 mm, sensing coil height, hs = 12.5 mm,
and sensing coil offset, Os = 2 mm, see Figure 3. The O
parameter represents the thickness of the coil former’s base.
PEC signals were acquired by sensing the potential difference
between the two ends of the sensing coil during the rising edge
of the 16 V, 8 Hz excitation voltage, with a 50% duty cycle.
During acquisition, 16 signals were acquired and averaged for
denoising. The number of turns of each excitation and sensing
coil was fixed at 210.

To simulate wall thinning on the internal surface of the pipe,
the carbon steel plate was varied from 4 mm to 12 mm, at
increments of 2 mm. The aluminium sheet was varied from
0.5 mm to 1.5 mm, at increments of 0.5 mm to simulate the
variations in cladding thickness. The acrylic thickness was
fixed at 40 mm. For each thickness change, five sets of signals
were obtained for reasons of repeatability.

B. Signal processing
Data pre-processing is essential prior to PCA, as the dif-

fusion and decay phases of the raw received signals are not
derivable in Cartesian domain [16], as seen in Figure 4(a). The
raw PEC signals were bi-symmetrically transformed, using

V bi−symlog(t) = sgn[V (t)] · log10[1 + |(V (t)|/10C ], (7)

where sgn(∗) is the standard mathematical Sign (or Signum)
function and C is a scaling constant to smoothly transform the
region near zero so that it remains finite. In this case, C was
chosen as -5, corresponding to the lowest order observed in
the PEC signals. The signal pre-processing amplifies the dif-
ferences caused by the diffusion of eddy current, represented
at only the trailing part of the received signal in Cartesian
domain, as can be seen in Figure 4(b).

IV. RESULTS AND DISCUSSION

A. Probe response
The obtained signals demonstrated the PEC system’s sen-

sitivity to the variations of both plate and cladding, as shown
in Figure 5. In a glance, the composite interactions between
the eddy current decay in the cladding with the plate made it
easy to distinguish the effects contributed by either material.
To be more specific, the PEC signals of 4 mm and 6 mm
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Fig. 4. Plot of raw PEC signals in a (a) linear plot, and (c) bi-symmetric
transformed PEC signals (equivalent to semi-logarithmic plot).

thick samples looked to be more separated in accordance with
their corresponding cladding thicknesses, as compared to the
8 mm, 10 mm and 12 mm signals. For the thick samples, the
signal separation corresponding to cladding thicknesses was
only more pronounced at the early times (t < 0.02s). This is
anticipated, as the product of µσd2 of the cladding is much
lower than its corresponding carbon steel plate, making the
influences of the eddy current decay to be noticeable at early
times. At the same time, since thin samples have relatively
lower µσd2 values, the PEC signals are highly correlated to
the eddy current decay in both the plate and cladding. The
eddy current in the cladding diffuses earlier than the plate,
resulting in the ”temporal shift” effect in the PEC signals only
at the early stage.

B. PCA

A total of 75 measurements were made, making up the test
data set containing PEC signals of 6250 data points covering
62.5 ms acquisition time, for five test repetitions of each of
the combinations of plate and cladding thickness variations.
Application of PCA to the data set resulted in the first four
eigenvectors shown in Figure 6(a) and the subsequent four
eigenvectors shown in Figure 6(b).

The first eigenvector accounts for 34.7% of the variability
explained, while the first and second eigenvectors accounts for
92.7%. When considering the third eigenvector, the cumulative
variability explained is 97.0%, while the data set can be
explained by its variability up to 98.8% when considering

Fig. 5. PEC responses (after bi-symmetric transformation) of different
plate and cladding thicknesses.

Fig. 6. Obtained (a) eigenvectors 1-4 and (b) eigenvectors 5-8.

all the first four eigenvectors. Thus, only the first four eigen-
vectors were considered in the analysis, since the remaining
eigenvectors were not significant at the 95% confidence level.
Figure 6(b) also shows that the subsequent eigenvectors after
the first four ones were heavily influenced by the noise at the
trailing edge of the PEC signals.

By evaluating Figure 6(a), the first eigenvector closely
corresponds to the mean of all the bi-symmetric PEC signals,
and exhibits a long trailing ”tail”, which shows its tendency to
be chiefly associated with the sample thickness, rather than the
cladding thickness. This is explained by the slower diffusion
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time of the carbon steel, which predominantly affects the PEC
signals at later times. The second eigenvector, on the other
hand, peaks at both 0.02 s and 0.04 s, with a steady slope at
the beginning. Owing to this, the second eigenvector can be
claimed to be closely associated with the influences of both
cladding and sample thickness. The third eigenvector seems
to be the most affected by cladding, where the negative peak
value exceeds -0.02 bi-log(V). However, the same eigenvector
also has a peak at time later than 0.02 s, indicating that it is
unlikely to contribute to discrimination of cladding and pipe
wall thickness. The fourth eigenvector has an almost similar
shape with the second eigenvector, except for the ”tail” that
peaks towards the end of the PEC signals.

The fifth, sixth, seventh and eighth eigenvectors, as shown
in Figure 6(b), indicate the inefficiency of the further compo-
nents in explaining the effects contributed by the sample and
cladding thicknesses. Hence, only the first four eigenvectors
are considered in subsequent analysis.

From the previous analysis of the eigenvectors, the PCA
scores corresponding to each eigenvector can be related to
either plate or cladding thicknesses. The first two eigenvec-
tors are plotted against the plate thicknesses in Figure 7(a),
while the third and fourth eigenvectors are ploted against the
cladding thicknesses in Figure 7(b). Figure 7(a) validates the
eigenvector interpretations, demonstrating the relation of the
first two eigenvectors with the sample thicknesses. Although
the spread of the first scores is higher for 4 mm, its relationship
with respect to sample thickness is more linear in comparison
to the second scores. This is not particularly surprising,
considering the relatively lower peak of the first eigenvector
at early times, indicating the higher association of the scores
with the plate thickness variations.

Figure 7(b) shows the low association of the third and
fourth scores with the cladding thicknesses. Although the
corresponding eigenvectors have high peaks at the early times,
the trailing data points at the later times are still affected by
the plate thickness variations. As a result, the variations in the
plate thickness introduce high standard deviation values when
attempting to relate the third and fourth eigenvectors with the
cladding thickness.

C. PCA rotation

As demonstrated in the subsection above, the first two
eigenvectors are the most associated with the sample thickness,
while the third and fourth eigenvectors can be associated
with the cladding thickness. This solution, however, is still
limited as the third eigenvector still accounts for the sample
thickness, owing to the second peak of the eigenvector at 0.025
s. Motivated by this, the solution can be rotated, so that the
variances are redistributed among the rotated components, as
was done in previous work [19]. Rotation in PCA is normally
done so that each eigenvector can be associated with at most
one factor only. In this case, varimax rotation was carried
out to maximise the sum of the variances of the squared
eigenvectors to represent the cladding thickness solely by the
third vector. Since the first four eigenvectors strongly correlate
to both sample and cladding thickness variations while the

Fig. 7. (a) First and second PCA scores plotted against plate thick-
nesses, and (b) third and fourth PCA scores plotted against cladding
thicknesses. The errorbar represents the standard deviations.

subsequent eigenvectors are largely influenced by noise, the
first four eigenvectors are rotated. This also ensures that the
variances are redistributed among the first four scores, without
considering the undesirable variances introduced by noise.
Apart from limiting the correlation of the cladding thickness
with only the third scores, the rotation would conceivably alter
the shape of the other eigenvectors.

The rotation matrix of a varimax rotation, RVARIMAX, can
be represented as

RV ARIMAX = argmax
R

(
1

N

P∑
p=1

N∑
n=1

(vR)4nk −
P∑

p=1

( 1

N

N∑
n=1

(vR)2nk

)2)
.

where v is the eigenvector unit value, R is the rotation matrix,
and the remaining notations follow the notations for computing
PCA as presented in (2)-(4). As previously mentioned, the
value of P is less than the dimension of the bi-symmetric PEC
signals (in this case, P = 4) so that only the eigenvectors that
account for most of the variances of the data are considered.

The new rotated eigenvectors are shown in Figure 8. As
a result, the first, second, and fourth eigenvectors are sig-
nificantly less affected by the cladding thickness variations,
judging by the amplitudes of the eigenvectors that reach almost
zero before 0.015 s. The first and fourth eigenvectors have the
most sample thickness influences, judging by the high peak



6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

Fig. 8. Rotated first four eigenvectors.

Fig. 9. (a) First, second and fourth PCA scores plotted against
plate thicknesses, and (b) third PCA scores plotted against cladding
thicknesses.

values at 0.03 s and 0.04 s, respectively. It can also be seen
that, the effect of the cladding thickness is to introduce an
early peak to the third eigenvector, with a marginal height
after 0.02 s.

The PCA scores, after eigenvector rotations, are plotted
in Figure 9(a)-(b). Different from the previous analysis, the
first, second and fourth scores are plotted against the plate
thickness in Figure 9(a), following the rotated eigenvectors
interpretation. The third PCA scores are plotted against the
cladding thickness in Figure 9(b).

The first, second and fourth rotated scores clearly indicte

the strong association of the corresponding eigenvectors with
the influence of the sample thickness. Another interesting
observation is the error bars for both first and second scores
for 4 mm that are relatively longer than the remaining sample
thickness. This is because, the PEC signals for 4 mm decay
the fastest, and for this reason, are the most affected by the
effects of eddy current diffusion in the cladding. The fourth
rotated scores, although still posses linearity with the sample
thickness, have a relatively long error bars, indicating the low
robustness of the fourth scores to the other influences in the
data. In view of the eigenvector direction, it can be noted
that the fourth rotated eigenvector is also highly influenced
by the noise at the later parts of the PEC signals. From
another perspective, the second rotated PCA scores strongly
represent the thin plate thickness, but the linearity deteriorates
for plates thicker than 8 mm. By analysing the second rotated
eigenvector, a peak can be identified at 0.02 s, which explains
the strong association of its scores with the thin samples.
In contrast, the first and fourth rotated eigenvectors peak at
later times, and this effect is strongly demonstrated with its
consistent association across the five distinct thicknesses. In
the case of quantifying cladding thickness, the third scores
were used. It can be seen in Figure 9(b) that the rotated scores
efficiently represent the cladding thickness, where there is no
visible overlap in the error bars.

D. Technique limitations

As noted previously, the conditions of the testing were such
that there was substantial data variation. Biases for different
cladding and sample thicknesses were purposely introduced,
to allow the PCA to favour detecting both cladding and sample
thicknesses. The technique could be used as a solution to
application-specific problems, such as inspecting pipes with
known geometry and properties, where the PCA can be trained
prior to the inspection process. With adequate data obtained
through various tests, the technique proposed can be used
to automate the analysis of PEC signals in discriminating
cladding and sample thickness influences. As for an in-situ
calibrated PEC process, PCA can only be used in cases where
the variations due to both cladding and pipe are severe.

The PCA was further trained for cases with limited varia-
tions in the data set. This second test supplied PCA with data
sets containing PEC signals corresponding to 0.5 mm cladding
of 4 mm, 6 mm, 8 mm, 10 mm and 12 mm samples, and 1.0
mm cladding of only 8 mm and 12 mm samples. The choice of
combinations of PEC signals was rather arbitrary, but should
serve the purpose of limiting the data set size. The rotated
eigenvectors from this data set are shown in Figure 10(a). As
can be seen, only the two eigenvectors are of potential interest,
i.e. the first and the fifth eigenvectors. The first eigenvector
peaks at 0.03 s with a peak value of -0.03 bi-log(V), while the
fifth eigenvector peaks at 0.01 s at 0.027 bi-log(V). The second
eigenvector peaks at 0.02 s, but can be associated with both
plate and cladding thicknesses. The remaining eigenvectors
are not very useful, since they can be claimed to be highly
associated with noise. In contrast to the previous case, the
fifth eigenvector endures the most variance due to cladding
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Fig. 10. (a) First and fifth rotated eigenvector for data set with additional
1.0 mm cladding for 8 mm and 12 mm sample, (b) first and third rotated
eigenvector for data set with additional 1.0 mm cladding for only 12
mm sample, (c) rotated first scores for both data sets against sample
thickness, and (d) rotated first scores for both data sets against cladding
thickness.

variations, instead of the third eigenvector. The reason for this
is that the new data set is biased towards the sample thickness
variations. Nevertheless, the fifth eigenvector still inadequately
represents the cladding thickness as the noise in the PEC
signals introduced a noisy long ”tail” in the eigenvector.

In the case of a more limited variation in the data set, the
third test used the data from 0.5 mm cladding of 4 mm, 6 mm,
8 mm, 10 mm and 12 mm samples, and 1.0 mm cladding of
only 12 mm sample. The rotated eigenvectors are shown in
Figure 10(b). For ease of visualisation, only the first three
eigenvectors are shown, since the remaining eigenvectors are
only influenced by the high frequency noise at the signal tails.
The third rotated eigenvector represents the cladding thickness
more poorly, considering the very weak peak at 0.01 s, as
compared to another peak at times more than 0.03 s.

The first scores, for both data sets, are shown Figure 10(c) to
represent the plate thickness. Notably, both scores show high
association with the thickness, and exhibit reliable relationship
with the sample thickness. On the other hand, as seen in
Figure 10(d), the fifth scores for the second data set separate
the two cladding thicknesses, but perform insufficiently. The
third scores for the third data set perform much more poorly,

where there is visible significant overlaps in the error bars. The
third eigenvector, as noted previously, appears to be highly
associated with the noise, hence, is unlikely to contribute to
discrimination of signals in the presence of different cladding
thicknesses.

This further investigation demonstrates the limitation of
using the PCA method. Further investigation is evidently
necessary, to provide a more comprehensive analysis of this
approach, but it can be concluded here that the PCA method
undoubtedly needs a large data set to be feasible in separating
the signal influences contributed by either plate or cladding.
It is also interesting to analyse the practicality of this method
on a more accurate representation of an industrial pipe.

The analysis thus far only considers the signal variations
introduced by cladding and sample thicknesses. The difference
in the diffusion times for the two distinct materials provides
significant temporal influences to the PEC signals. However,
in the case of insulation thickness variations, the change in
the lift-off would introduce amplitude influences to the PEC
signals, where thicker insulation contributes to a generally par-
allel shift in a downward direction, as shown in Figure 11(a).

To test the reliability of using the PCA approach on data

Fig. 11. (a) PEC signals corresponding to different sample and
insulation (notated as LO) thicknesses, and (b) their corresponding first
four eigenvectors.
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Fig. 12. (a) Eigenvectors 1-4 plotted against sample thicknesses, and
(b) insulation thicknesses.

sets with insulation thickness variations, a second data set was
prepared, containing PEC signals corresponding to 4 mm, 6
mm, 8 mm, 10 mm, and 12 mm sample thickness, for 30 mm,
32 mm, 34 mm, 36 mm, 38 mm and 40 mm insulation thick-
ness. The corresponding eigenvectors after PCA application
are shown in Figure 11(b). The shape of the eigenvectors can
be claimed to be almost consistent to those in Figure 6(a).
The first eigenvector, as with previous solutions, represents
the mean of the data set. The second and third eigenvectors
are influenced mostly by the late time ranges, while the fourth
eigenvector is mostly associated with noise. Unlike previous
analysis, the effect of lift-off is the change in amplitude
throughout the whole signal length. Since the first eigenvector
represents the mean of the data set, this amplitude shift effect
is inseparable from the effects contributed by the sample
thicknesses. Hence, as seen in Figure 12(a)-(b), the first scores
are indicative of sample thicknesses, but not of insulation
thicknesses. The second scores are also proportional to the
sample thicknesses, but, again, are not strongly associated with
the insulation thicknesses, as evidenced by the large value
of the standard deviations. The subsequent scores are largely
influenced by noises, so they are not shown in the figure.

V. CONCLUSION

Multi-layered structure of pipes introduces complexities in
interpreting PEC signals, due to the composite interactions of
the decay of eddy current in both cladding and pipe wall. This
paper has demonstrated that the variations in pipe and cladding
have quantifiable responses on PEC signals. Thanks to the
difference in the decay rate of different materials of cladding
and pipe wall, the PEC signals corresponding to varied plate
and cladding thicknesses can be differentiated. PCA has been
utilised to further separate the signal influences contributed by
pipe wall thickness from cladding thickness. The first, second
and fourth PCA scores, after rotation, have been shown to
posses the proportional relation with the plate thickness, while
the third rotated PCA scores provide the necessary discrim-
ination to separate signals of different cladding thicknesses.
However, the method is only applicable if a large data set is
available, where biases can be deliberately included.
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