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A B S T R A C T   

The manufacturing process strongly affects the electrochemical properties and performance of lithium-ion bat-
teries. In particular, the flow of electrode slurry during the coating process is key to the final electrode properties 
and hence the characteristics of lithium-ion cells, however it is given little consideration. In this paper the effect 
of slurry structure is studied through the physical and rheological properties and their impact on the final 
electrode characteristics, for a graphite anode. As quantifying the impact of the large number of interconnected 
control variables on the electrode is a challenging task via traditional trial-and-error approaches, an explainable 
machine learning methodology as well as a systematic statistical analysis method is proposed for comprehensive 
assessments. The analysis is based upon an experimental dataset in lab-scale involving 9 main factors and 6 
interest variables which cover practical range of variables through various combinations. While the predictability 
of response variables is evaluated via linear and nonlinear models, complementary techniques are utilised for 
variables importance, contribution, and first and second order effects to increase the model transparency. While 
coating gap is identified as the most influential factor for all considered responses, other subtle relationships are 
also extracted, highlighting that dimensionless numbers can serve as strong predictors for models. The impact of 
slurry viscosity and surface tension on electrode thickness, coat weight and porosity are also extracted, 
demonstrating their importance for electrode quality. These variables have been rarely considered in previous 
works, as the relationships are difficult to extract by trial and error due to interdependencies. Here we 
demonstrate how model-based analysis can overcome these difficulties and pave the way towards an optimised 
electrode manufacturing process of next generation Lithium-ion batteries.   

1. Introduction 

With increasing concerns around climate change, environment, and 
sustainability, the global electric vehicle stock is expected to expand 
from 11 million in 2020 to almost 145 million by 2030 [1]. Conse-
quently, demands for high quality and high-performance energy storage 
systems to support electric mobility is expected to rise significantly. 
Rechargeable lithium-ion battery (LiB) cells have proven to be a 
powerful technology due to their considerable energy, power density 
and long cycle life [2]. According to the literature, the Li-ion battery 
market value is expected to increase from about $34.2 billion in 2020 to 
$87.5 billion in 2027 [3]. Advancement of technologies for electrode 

manufacturing has been among one of the main factors in the reduction 
of LiB costs by nearly 90% and 5 times increase in its volumetric energy 
since 2008. The drop in prices only between 2019 and 2020 was found to 
be about 13% [4]. LiB manufacturing contributes about 25% of the LiB 
cost [5], and considering the cell manufacturing process to support the 
electric vehicle market as an example, it has been confirmed that the 
electrode production is responsible for more than 50% of the costs 
associated with a conventional LiB [6]. Since electrodes have a large 
contribution to the final characteristics of cell, improvements in their 
production process are critical for further cost reduction and cell per-
formance enhancement [7]. 

Battery electrode manufacturing is a complex process made up of 
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multiple stages that affect the characteristics of the electrode and the 
final LiB cell performance [8]. The current industrial electrode 
manufacturing process is based on slurry casting. This includes stages: 
(1) selection of the material and the decision of the formulation, (2) 
mixing the material and the solvents to form a slurry, (3) coating the 
current collector foils (typically aluminium for cathode, and copper for 
anode) with slurry, (4) drying the electrodes to remove solvent, (5) 
calendering the electrodes to achieve a prescribed porosity for a desired 
energy density, (6) cutting the electrodes and finally (7) assembling the 
cells. The main stages of electrode and cell manufacturing are visualised 
in Fig. 1, for further details of LiB manufacturing stages see [3,9]. 

Each stage mentioned above includes various control variables and 
parameters that impact the properties of intermediate products and the 
characteristics of the final cells [7]. Monitoring of these properties and 
controlling these variables is critical to optimise the process for desired 
cell characteristics such as high energy density or low internal resis-
tance. However, this optimisation is currently done by trial and error, 
which is costly in time and material. In order to reduce this cost, a 
predictive understanding of the impact of the manufacturing variables 
on the quality is required. This is made challenging as the variables are 
highly interconnected and so cannot be studied in isolation. For 
example, increasing the mixing speed during slurry preparation stage, 
has an impact on the shear degradation of the binder which later on 
increases the cracks on the electrode coating surface during the drying 
process [10]. 

Evaluating the effect of the electrode manufacturing control vari-
ables and parameters has been attempted in a number of research and 
studies during the last few years [11–13]. For example, the effect of 
calendering process conditions on the cathode characteristics is 
addressed in [14,15] and the slurry mixing procedure impact on the 
electrochemical characteristics of composite LiB electrodes is investi-
gated in [16]. However, these have mostly utilised trial-and-error ap-
proaches, bringing wastage and only qualitative understanding. 
Drakopoulos et al. [17] also looked at graphite electrodes, and an arti-
ficial intelligence (AI) approach to optimisation. However, it was based 
on a limited dataset and a full design of experiments was not performed. 
To avoid trial and error methods, quantification of the impact of the 
electrode manufacturing variables on the output variables, and their 
prediction via machine learning (ML) and advanced data mining algo-
rithms has been proposed in a number of studies recently [18–20]. 
Unlike conventional statistical methods or physics-based models, these 
approaches have the potential of dealing with large number of inter-
connected variables. Electrode drying, and electrolyte filling process 
variables are studied in [21,22], and the influence of calendering vari-
ables are discussed in [23,24]. Electrode coating variables including 
liquid-to solid ratio, active material and coating gap are addressed with 
respect to the electrode’s structural [25–27] and electrochemical fea-
tures [28,29]. A ML model is built in [30] to predict the cathode char-
acteristics via viscosity and coating gap. In silico electrode 
mesostructures characteristics are fed into an ML model to predict the 
calendared electrodes properties in [31]. Predictability of the energy 
capacity of half-cells at various coating conditions is studies in [32], and 
followed by comprehensive analysis of relative importance of the 
structural features of cathode and anode in [33,34]. In the broader 
concept of material design for lithium-ion batteries, comprehensive re-
views of the application of ML techniques are also provided by Liu et al. 

[35,36]. 
One area that has received limited attention is the impact of the flow 

in the coater on coating quality. This is a complex problem consisting of 
viscoelastic, viscocapillary and particle effects [10,7]. Studies have 
shown that these parameters are necessary to define a coating window, 
outside of which defects, such as air entrapment, occur when the 
Capillary number is too high, [37–39]. Considering the underlying 
physics, dimensionless numbers such as Capillary number can be used to 
characterise the flow and allow results to be transferred between sys-
tems [40,41]. While this defect free region can be easily observed to 
define coating window, it is less understood how both process variables 
and dimensionless numbers impact the coating quality, e.g., coat 
thickness, coat weight and porosity, within this window. This is vitally 
important as coating quality can significantly impact the electrode 
properties. On the other hand, most of the existing studies focus on 
correlation between the factors, or the predictability of the response 
variables, and still the influence of the control variables on the response 
is not quantified comprehensively. Generally, unlocking the relationship 
between the electrode characteristics and the manufacturing control 
variables is difficult [42] and therefore, a combination of advanced 
metrology techniques (e.g. slurry rheology, surface tension) [10,43] as 
well as data mining technologies is proposed here to eludicate the 
impact of slurry flow during the electrode manufacturing process. 

The objectives of this paper are:  

(i) To introduce a clear methodology of systematic analysis and 
model-based representation of LiB electrode manufacturing pro-
cess (using coating as a test system).  

(ii) To quantify the impact of key coating control variables on the LiB 
electrode properties and reveal the interconnection between the 
variables.  

(iii) To produce a framework that can be extended to other areas of 
the manufacturing process and contribute towards building a 
digital twin for LiB Manufacturing. 

The study has three main contributions and novelties, (1) to utilise 
advanced metrology to facilitate access to the key control variables 
during electrode coating, (2) to introduce novel control factors such as 
viscocapillary effects into models and (3) to develop Explainable ML 
models (XML) to not only predict the response variables given the 
control variables (predictors), but also quantify the impact of those on 
responses via interpretability and explainability techniques. Within this 
context, XML algorithms [44,45] are among well proven AI methods for 
improving the transparency of machine learning models [46]. While ML 
models have a general opacity due to complex model structures [47], 
XML offers several metrics to evaluate the models and shed light on the 
“black-box” [46]. Recently XML models have been applied to 
manufacturing process optimisation problems and examples include 
semiconductors [48] and automated composite production [49]. To the 
best of the authors knowledge, XML algorithms have not been 
comprehensively applied to battery and electrode manufacturing opti-
misation concepts before, therefore, this study is particularly concen-
trated at it. 

The structure of the paper is as follows. In Section 2, the methodol-
ogy of the study is given. This section includes the details of the ex-
periments, the list of the control and interest variables, and the 
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Fig. 1. Electrode and cell manufacturing main processes.  
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fundamentals of the statistical analysis and machine learning tech-
niques. In Section 3, the results are reported and discussed. This section 
includes linear regression, analysis of variance (ANOVA) and the ML 
predictions. XML-based analysis in the form of feature importance, 
contribution and impact are also given in this section. Section 4 is 
dedicated to summary, conclusions, and future works. 

2. Methodology and experimental 

2.1. Methodology 

A systematic set of experiments are conducted to represent a range of 
the slurry physical properties, and coating parameters. The variables of 
Table 1 are considered as control and response variables and deliber-
ately defined in Section 2. The parameters are selected to represent the 
physical properties of the slurry and electrode coating and to capture the 
key physical interactions during coating process, i.e. viscous and capil-
lary forces. The ranges for parameters are decided by experimentalists in 
the field based on previous works, to cover the practical cases encoun-
tered during the coating process. 

The collected data are then cleaned of outliers and concatenated for 
analysis and modelling activities. The linear regression and analysis of 
variance are then followed to determine the most important features of 
the process and to quantify the linear correlations between the response 
and control variables. In the next step, a ML model of random forest is 
built to evaluate the predictability of the response variables given the 
control factors. The model is then accompanied by two explainability 
indices of feature importance (FI) and the accumulated local effects 
(ALEs). While the former quantifies the relative importance of all the 
features for the response variables, the later quantifies the effect of each 
individual control factor on the response. It also highlights the effect 
coupled control variables on the response variables. The flowchart of the 
systematic analysis of the mixing and coating process is illustrated in 
Fig. 2. It is worth noting that all models developed here have multiple 
inputs and a single output as listed in Table 1. 

The methods and models in this study are selected such that they 
facilitate a pipeline for systematic data analysis of slurry coating process 
and building a hierarchical methodology. This hierarchical methodol-
ogy starts from investigating if there are any significant linear re-
lationships between the control and response variables and continues 
towards the possibility of uncovering the nonlinear dependencies. While 
ANOVA is an efficient approach to reveal linear relationships, the LR 
model relates the response and control variables via functions. It is a 
model with an affordable computational complexity and acceptable 
accuracy for linear dependencies. For nonlinear relations, the RF is 
preferred because of its voting system for decision making and its 
ensemble structure that is suitable for small to medium size of tabular 
dataset compared to single contributing models such as support vector 
machines and decision trees. 

This methodology via advanced metrology and systematic analysis 
paves the way towards an in-line control of the LiB electrode 
manufacturing process. It enables higher production efficiency by 
identifying the most significant influential factors and revealing the 

relationship of the physical and electrochemical characteristics of in-
termediate products such as slurry mix and coated electrodes, as well as 
the final products such as half or full LiB cells. This model-based pre-
diction is critical for saving time and resource during LiB manufacturing 
as well as research and development activities for its design. 

2.2. Experimental 

In this study, a range of research-scale experiments were performed 
using anode slurries as a test system as there is significant room for 
optimisation in water-based anode manufacturing [17]. 

Anode slurries were prepared using BTR S360-L2 graphite as Active 
material (AM), Imerys C45 carbon black as conductive additive (CA), 
Ashland Carboxymethyl Cellulose (CMC) as Binder 1 (B1) and Zeon 
Styrene-butadiene rubber (SBR) as Binder 2 (B2). The formulation used 
was AM:CA:B1:B2 95.25:1:1.5:2.25, prepared as different weight per-
centages between 30 and 50%. 

The slurries were prepared in a THINKY mixer, and the slurries 
characterised. Surface tension was measured using a Wilhelmy Plate 
Tensiometer, taking an average of 3 repeat measurements (Standard 
deviation ranged from 1–13%). Rheology was measured using a Netzsch 
Kinexus Pro+ rheometer equipped with 40 mm parallel plates at 25◦C. 
Flow curves were measured between shear rates from 10s-1 to 1000s-1 
and fitted using a power law of Eq. (1). 

η(γ̇) = Kγ̇fb− 1 (1)  

Where η (Pa.s) is the viscosity as a function of shear rate, γ̇ (s− 1), K is the 
flow consistency index and fb denotes the flow behaviour index, both 
fitted to the data. Shear rates from 10 s-1 to 1000s-1 were fitted and R2 
was >0.99. Oscillatory data was also collected, performing frequency 
sweeps from 0.1 Hz–100 Hz at 0.5% strain. Oscillatory data was not 
utilised for the model but was used to explain the trends. 

The slurries were coated using a RK K Paint applicator with a 
micrometer adjustable doctor blade geometry. Wet thickness was 
measured with a wet thickness comb. The coating was dried at 50 ◦C on 
a hotplate for 20 min, before being dried overnight at 120 ◦C in a vac-
uum oven. A 10cm2 disc was cut from the centre of each coating, which 
was weighed to calculate coat weight, and its thickness was measured at 
multiple points using a micrometer thickness gauge and averaged. Ca-
pacity was calculated based on coat weight and a theoretical capacity for 
Graphite of 320 mAh/g. Shear rate in the coater was calculated using 
Eq. (2), 

γ̇ =
v
h

(2)  

where v is the coating speed (m/min) and h is the gap (um) between the 
blade and the foil [50]. The value of viscosity at this shear rate was used 
in the dataset. This was extrapolated if necessary, using the power law 
fit, which was deemed as valid as the fits had high R2 and the extrap-
olated shear rates were close to the range of the data (the maximum 
shear rate was 3600 s− 1, and data was collected to 1000 s− 1). Density 
and dry density were calculated from the combined densities of the 
added components (with or without solvent respectively). 

In total 67 coating trials were used for this study, varying weight 
percentage, coating gap and speed according to Table 2 (the levels are 
given with three significant digits). The capillary number was calculated 
to capture the ratio of surface tension to viscous drag effects using Eq. 
(3), 

Ca =
vη
σ (3)  

where v is the coating speed (m/s), σ the surface tension (N/m) and η the 
viscosity (Pa.s) at the coating shear rate. Additionally, the Ohnesorge 
number, [51] was calculated as the ratio of viscous forces to both inertial 
and surface tension forces using Eq. (4), 

Table 1 
A summary of the variables involved in the modelling and analysis.  

Control Variables Response Variables 

Slurry Density (g/cm3) 
Slurry Viscosity (Pa.s) 
Slurry Solid Weight Percent (%) 
Slurry Surface Tension (mN/m) 
Coating Speed (m/min) 
Coating Gap (um) 
Coating Dry Density (g/cm3) 
Capillary Number 
Ohnesorge Number 

Capacity (mAh/cm2) 
Coat Weight (g/cm2) 
Dry Coating Thickness (um) 
Wet Coating Thickness (um) 
Coating Porosity (%) 
Coating Density (kg/cm3)  
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Oh =
η
̅̅̅̅̅̅̅̅
ρσL

√ (4)  

where ρ is the wet slurry density (kg/m3), σ the surface tension (N/m), L 
the coating gap (m) and η the viscosity (Pa.s) at the coating shear rate. 

2.3. Statistical analysis 

Here ANOVA and linear regression, [52], are employed to obtain the 
mathematical linear relationships between the control and output var-
iables. Consider, the control and response dataset defined asO =

{ (X1, z1) (X2, z2) ⋯ (Xn, zn) }, n = 1, ..., N, where X is the control 
vector, including xf,f = 1,...,F,with xf as the f th control variable, F is the 
number of various control features, n is the sample (experiment) index, 
and z is the response variable. Also, N refers to the sample size (the 
number of experiments). 

The LR model is of the form expressed in Eq. (5), where β is the 
regression coefficient and ε is the random error. Eq. (5) is expanded to all 
the F control variables per each single response z. 

z = β0 +
∑F

f=1
βf xf +

∑F− 1

f=1

∑F

j=i+1
βfjxf xj +

∑F

f=1
βff x

2
f + ε (5) 

Since not all the terms might be statistically significant in repre-
senting the response variable, model reduction based on ANOVA p- 
values is employed to obtain a reduced model containing only the sta-
tistically significant terms [53]. p_value is the probability of rejecting a 
null hypothesis. The null hypothesis is that the model coefficient for an 
input is statistically significant, which means it contributes to the pre-
sentation of the response variable significantly. The p stands for prob-
ability and measures the strength of the evidence against the null 
hypothesis. p-values are compared against a threshold of α which is a 
compromise between the complexity of the model and its accuracy in 
representing the input-output relationship. In the present work the α is 
0.1 and, p-values < 0.1 determine the statistical significance. In other 
words, p-values smaller than 0.1 mean that the probability of rejecting 
the null hypothesis is only 10% [54]. 

Based on LR and ANOVA it is possible to plot the residual intervals 
which can be used to determine the presence of possible outliers in the 
data set and to remove those during the analysis and modelling 
activities. 

The goodness of fit for linear model is determined by the value of the 
coefficient of determination R2. Coefficient of determination, as in Eq. 
(6) is a measure of explained variance in relation to the total variance. R2 

takes values within the range of 0 and 1. It is calculated as a relation 
between the sum of squared errors, and the total sum of squares between 
each data point and the whole average. The closer the R2 to 1 means that 
more variability has been captured by the model. In other words, it 
means that a change in the independent predictors predicts R2 (%) of the 

variance in the dependent response variable. 

R2 = 1 −

∑n
i=1(zi − ẑi)

2

∑N
n=1

(
zn −

1
N

∑N
n=1zn

)2 (6) 

The F-statistics value of the terms [55], computed from the ANOVA, 
is used to determine the feature importance for each of the output var-
iables. ANOVA is a case of a linear regression with the ability to process 
categorical features. While both models are linear representation of re-
lationships, they have different versions of reported results [56]. 

2.4. Machine learning 

Further to the statistical analysis, a state-of-the-art approach based 
on machine learning is utilised to demystify the relationship between the 
control and response variables. The advantage of machine learning 
model over the linear analysis is its ability to capture nonlinear and 
complex relationships between inputs and output. Furthermore, an ML 
model can be used to explain the impact of inputs on the response via 
Explainable Machine Learning techniques which is detailed in the next 
section. 

Here state-of-the-art RF model is utilised with the inputs and outputs 
of Table 1. Random forest [57] is a powerful machine learning model 
based on the ensemble learning method for prediction. It is built upon a 
multitude of components called ‘weak learners’ to form a ‘strong 
learner’. The weak learners are individual decision trees, and a RF 
usually outperforms each individual decision tree and overcomes the 
common issue of overfitting [58]. By growing an ensemble of trees and 
averaging the prediction of them, significant improvements in regres-
sion accuracy can be achieved. The ensembles are grown by generating 
random vectors to govern the growth of each tree. One popular 
approach for growing the trees is bagging, where each tree is grown 
based on a random selection of data points available for training [58,59] 
which is utilised here as well. 

The RF model that is meant to perform predictions, need to be 
validated so that it can be utilised for prediction of the electrode char-
acteristics related to other similar data set to this study. Validation is an 
essential step of the model development to make sure the analysis is 
generalisable to an independent dataset. For this purpose, the cross 
validation (CV) approach is utilised [60]. CV is a validation technique 
that divides data into multiple portions of training and validation (test) 
and then builds and evaluates the model performance using each portion 
in an iterative way. In each iteration, the whole dataset is categorised 
into K different portions of equal size via random sampling, K-1 portions 
are used for training the model and the remaining portion is used for 
testing. In the next iteration, the random resampling is repeated, and 
different portions are used for training and test. Based on the trained RF 
model, the results of the predicted response variables are obtained, and 
accuracy of model is evaluated through an arithmetic average of the 

Fig. 2. Procedure for the systematic analysis.  

Table 2 
Variable range for experiments.  

Variables and units Slurry Density Slurry Viscosity Slurry Solid Weight Percent Slurry Surface Tension Coating Speed Coating Gap Coating Dry Density  
(g/cm3) (Pa.s) (%) (mN/m) (m/min) (um) (kg/cm3) 

Minimum 1.17 0.15 30.0 44.0 2.00 70.0 2.14 
Maximum 1.38 2.00 52.0 76.6 15.0 350 2.19 
Number of Brake Points 5 - 5 8 10 8 4  
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accuracy and model performance indices for all iterations. 
In order to quantify the accuracy of the model, two indices are uti-

lised, root mean square error (RMSE) and coefficient of determination 
(R2). RMSE, Eq. (7), is the root of mean squared error (MSE) or de-
viations of the models, which averages the squared difference between 
the measured and predicted values. It is strictly positive and has the 
same unit as the predicted variable. 

RMSE =
1
N

∑N

i=1
(zi − ẑi)

2
, (7) 

RMSE represents the variance of the estimator and it bias which 
means how the predicted values are spread from one data point to 
another and how far the predicted value is from each data point. Smaller 
values of RMSE mean better predictions. RMSE is not alone enough to 
judge the accuracy of predictions and hence the R2 is also necessary. R2 

is obtained by Eq. (6). When the two indices are used to evaluate the 
performance of model for prediction, they usually have conflicting 
values. Therefore, a balance between the two would be required to 
decide about the capability of models. 

2.5. Explainable machine learning 

The Random Forest model built for predicting the response variables 
of the coating process is a black box model that does not reveal its in-
ternal mechanisms and cannot be understood completely by looking at 
its parameters. Explainable or interpretable machine learning [44] of-
fers techniques that make the model’s behaviour understandable. 

XML supports data scientists and manufacturers when not only a 
good prediction is required but also there is an intention to know why a 
specific decision is made by the model. XML techniques clarify how the 
features affect the predictions and how the model comes to a decision 
[61]. They help gaining information regarding the relations in between 
control and response variables. The effect of each individual control 
variable on the response is referred to first order effect and the influence 
of two joint predictors on the response is referred as second order effects. 
XML highlights whether the relationship between the response and a 
feature is linear, nonlinear, monotonic or nonmonotonic. 

For increasing the explainability and interpretability of the RF model 
in this study, two model agnostic analysis of feature importance [62], as 
well as accumulated local effects are performed [44]. The advantage of 
the model-agnostic methods is that they can be freely applied to any ML 
models and widely extendable from this research to similar ones. 

Feature importance analysis is performed to quantify the weight and 
impact of the features on the response variables that are predicted via 
the model. Feature importance helps to rank the control variable in 
relation to each other and make key decisions regarding the improve-
ment of the coating process. 

In order to perform the feature importance analysis, the mean 
decrease in impurity index, (MDI) [63,64] has been used here. To reduce 
the bias of the MDI algorithm, the control variables have been normal-
ised prior to analysis. For each individual tree of the RF model, each 
node splits the data from its parent node based on the information 
provided by a feature that best improves the MDI. The relative feature 
importance value (gain) of a single feature is obtained by adding up the 
impurity improvements [63,64], obtained from the nodes using that 
feature. 

The second explanation of the results is achieved via ALE. ALE de-
scribes how the features influence the predicted variables on average 
[65]. ALE is particularly applicable to cases with dependant features 
such as the control variables of this the mixing/coating study where the 
dependency between variables such as density and viscosity is certain. 

In order to calculate the ALEs for a single feature,xf ∈ X, f = 1,2,...,F,
first the feature space is segmented into intervals ofNf (l)with limit 
values ofwl,f ∈ X, l = 1, 2, ..., Lf .N is selected by the ML engineer 
considering the computational complexity and the data range. Then, for 
the data points within each interval, the difference between the 

prediction via the model M, when the feature value is replaced with the 
upper and lower limits of the interval is calculated. the differences are 
later on accumulated as shown in Eq. (8). 

M̃f ,ALE
(
xf
)
=

∑Lf

l=1

1
nf (l)

∑

n:x(n)f ∈Nf (l)

[
M
(

wl,f , x(n)− f

)
− M

(
wl− 1,f , x(n)− f

)]
(8) 

Herex(i)
− f refers to all features except the one ALE is calculated for, 

(feature f), n refers to individual samples, andx(n)
f are samples of the 

feature f. nf (l)refers to the number of samples in each 
neighbourhoodNf (l). ALE by Eq. (8) is then centred via Eq. (9) so that the 
mean effect is zero. 

Mf ,ALE
(
xf
)
= M̃f ,ALE

(
xf
)
−

1
N
∑N

n=1
M̃f ,ALE

(
x(n)f

)
(9) 

Fig. 3 shows the feature space intervals and limits for the ALE 
calculation for two correlated features of x1 and x2 described in the 
formulations above. 

The value of the ALE is the effect of the specific feature, f at its certain 
value on the response variable compared to the average prediction of 
that response variable. The ALE for a single feature can be considered as 
a first order effect, and when calculated for two features is referred as 
the second order effect of features on the response variable. 

3. Results and discussions 

This section includes the results of the statistical analysis of the 
experimental data and data-based modelling and representation of the 
manufacturing processes. The statistical analysis provides insights 
regarding the significance of factors on the response variables and in-
cludes the results of the ANOVA and linear regression. The section then 
continues with the results of the ML modelling and explanations. The 
full experimental data can be found in Supplementary Information. 

ANOVA results and the coefficients are given in Table 3 for the 
example output of wet coating thickness. The table contains the values 
of the estimated model coefficients, the p-value, F-statistics (F-value), 
and additional parameters used in the evaluation of the statistical sig-
nificance of the control variables (standard error of the coefficients, t- 
statistics, sum of squares and mean-squared error). The t-statistics helps 
in the evaluation of the significant features. Larger t-scores imply larger 
differences associated with a given control variable (feature). The F- 
value is the ratio of two mean squares, in this case one for the terms of 
the model (or features) and one for the error. The mean squares are the 
variances considering the degrees of freedom. Higher values of the ratio 
of the mean squares indicate larger differences in the variances and as 
such an indication that the null hypothesis can be rejected. 

Fig. 4 shows an example of outliers for wet coating thickness and 
capacity detected via the residuals obtained during the linear regression 
analysis. 

The linear regression models containing the statistically significant 

Fig. 3. Feature space segmentation for ALE calculation.  
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control variables (at significance level of 0.1; i.e. p-value < 0.1) are 
presented in Table 4. 

In general, the models are satisfactory in representing the experi-
mental data as shown in the values of R2. Coating density and porosity 
showed a lower level of correlation (R2 ~ 0.73) but still satisfactory for 
linear modelling. It can be appreciated from the model coefficients in 
Table 4 that coating speed, coating gap, slurry density and viscosity are 
the most significant input variables out of the 9 studied variables. 

As Table 4 shows, coating weight, coating density and porosity are 
modelled by first order terms, while second order terms are additionally 
required for wet/dry coating thickness and capacity. Detailed modelling 
results and planes are shown in Fig. 5 for example outputs. The figures 
indicate the response surface for the (a) wet thickness of the coating, (b) 
the capacity, (c) the porosity and (d) the density of the coatings as a 
function of two interest factors. Here the dots refer to the experimental 
points from the designed experiments and the planes are graphical 
representations of the functions obtained by linear regression method. 
The graphs confirm a good agreement between the experimental data 

and predicted results. The planes can be used to predict the output 
variables given the control variables, which are alternatives to the 
equations reported in Table 4. 

To further highlight the impact and importance of factors on re-
sponses, a deeper analysis is followed via ML. Fig. 6 shows the distri-
bution of the predicted vs measured datapoints for all response variables 
via RF. The results are obtained for a cross validation with K = 5 par-
titions, which means that at each CV iteration, 80% of the datapoints are 
used for training and 20% is left for test, which is a common approach in 
ML applications [66]. It is worth mentioning that all the results are a 
fusion of multiple, 40, runs of the model for a more robust representa-
tion of model performance. The number of runs has been selected as a 
compromise between the run time of algorithms and the stability of 
results. 

According to Fig. 6, the distribution of data is almost a combination 
of two normal distributions and two peaks for all responses. The dis-
tribution does not contain any information by itself as the design of 
experiments has had more than one control factor varying at a time. 
According to this graphs, the distribution of the predicted responses 
follows the distribution of the observations (the experimental mea-
surements). This confirms that the ML model is capable of representing 
the input-output relationships. The compatible predictions and obser-
vations also imply that given the set of coating control variables, the 
electrode features can be predicted or estimated with a reasonable ac-
curacy. This is important when predicting the response variables related 
to control variables that are not in the experimental dataset. 

To get a better view of the goodness of fit and the datapoints at which 
the prediction is most accurate, a closer look at the results is required 
(Figs. 7 and 8). While Fig. 7 highlights the error between each data point 
and its predicted value, Fig. 8 gives a broader view of the variability of 
predicted values in whole range. The solid lines of Fig. 8 are perfect 
predictions and the more data points clustered around that line the 
better the prediction. 

A summary of the goodness of fit indices are given in Table 5, the 

Table 3 
Model coefficients and ANOVA output for wet coating thickness.  

R2 =

0.9829 
Estimate Standard error of the 

coefficients 
t-statistics p-value 

Intercept 19.958 9.8187 -2.0327 0.0532 
Coating 

Gap 
1.2110 0.1366 8.8643 4.97E- 

09 
Coating 

Gap^2 
-0.0007 0.0003 -2.3551 0.0270  

Sum of 
squares 

Degrees of 
freedom 

Mean squared 
error 

F-value 

Coating 
Gap 

15,732 1 15,732 78.575 

Coating 
Gap^2 

1110.5 1 1110.5 5.5465 

Error 4805.3 24 200.22 -  

Fig. 4. Residual vs data points plot to identify possible outliers (in red), (a) porosity, (b) Capacity.  

Table 4 
Models for the output variables and R2values.  

Model R2 

Wet Thickness (um) = − 19.95834+ 1.21108× Coating Gap − 0.000759× Coating Gap2 0.982 
Dry Thickness (um) = 5.97422 − 1.14973 × Coating Speed + 0.159083 × Coatign Gap + 15.75046×

Viscosity + 0.000644 × Coatign Gap2 
0.937 

Coatign Weight (g/cm2) = − 0.001667 + 0.000098 × Coatign Speed + 0.00004 × Coatign Gap+
0.001573 × Viscosity 

0.936 

Capacity (mAh/cm2) = − 1.8875 + 0.006308 × Coating Gap + 1.72082 × Density + 0.000016×
Coating Gap2 

0.937 

Coating Density (kg/cm3) = − 0.886332+ 0.000599× Coating Gap+ 1.23009× Slurry Density 0.734 
Porosity (%) = 138.54699 − 0.027867× Coating Gap − 54.91441× Slurry Density 0.733  
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Fig. 5. Experimental (dots) and linear regression modelling results for (a) wet coating thickness, (b) capacity, (c) porosity, (d) coating density.  

Fig. 6. The distribution of prediction and observations, (a) Capacity, (b) Coat Weight, (c) Dry Thickness, (d) Wet Thickness, (e) Porosity, (f) Coating density.  
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Fig. 7. The prediction vs observations data points, (a) Capacity, (b) Coat Weight, (c) Dry Thickness, (d) Wet Thickness, (e) Porosity, (f) Coating density.  

Fig. 8. The total variability, (a) Coat Weight, (b) Capacity, (c) Dry Thickness, (d) Wet Thickness, (e) Porosity, (f) Coating density.  

Table 5 
The accuracy metrices for coating and mixing response variables.  

RF Response Variables(units) Capacity (mAh/cm2) Coat Weight(g/cm2) Dry Thickness(um) Wet Thickness(um) Porosity(%) Coating Density(g/cm3)  

RMSE (Mean) 0.356 0.001 12.28 17.43 3.022 0.376  
RMSE (Std) 0.0912 0.0004 2.5558 7.3248 0.3575 0.0607  
R2 (Mean) 0.885 0.891 0.880 0.942 0.758 0.746  
R2 (Std) 0.0712 0.0624 0.0854 0.0449 0.0907 0.1318 

GBT RMSE (Mean) 0.506 0.002 16.551 18.446 3.088 0.623  
RMSE (Std) 0.1011 0.0004 2.6835 11.8097 0.5605 0.0780  
R2 (Mean) 0.774 0.788 0.791 0.936 0.578 0.642  
R2 (Std) 0.0857 0.1514 0.1419 0.1209 0.2721 0.1340  
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table includes the mean value of indices for multiple runs, 40, as well as 
the standard deviations. In order to provide a basis to show the perfor-
mance of the random forest model, the results are compared with the 
gradient boosted tree (GBT) model [67]. This model is also based on a 
collection of weak learners, decision trees, similar to random forest but 
utilises a different mechanism, which is based on gradient boosting, for 
obtaining the final results from the outcome of each weak learner. In 
order to facilitate a fair comparison, the number of weak learners has 
been set equally for both methods and they have been iterated for the 
same number of runs. 

Considering the results in Table 5, generally the RF performs better 
that the GBT model for all response variables, it is also showing smaller 
standard deviations in the results. Here after only the results of the 
random forest model are reported in detail and further investigates are 
based on that as well. 

According to the results of Table 5 and Figs. 6–8, the models have all 
R2 coefficients larger than 0.7, which shows that at least 75% of the data 
are well represented by models. For the capacity, coat weight this pre-
dictability is higher than 88% and for wet thickness higher than 94%. 
The lowest predictability belongs to porosity and coating density with 
about 75%. This is believed to be due to the higher levels of measure-
ment noise associated with porosity and coating density data as those 
are calculated features based on coating weight and coating thickness 
and have an uncertainty imposed by two measured values. 

At this level and after the reviewing the model performance and the 
accuracy indices, it is concluded that the models can predict the re-
sponses, but still further analysis are required to provide insights about 
the manufacturing processes and the impact of control factors on re-
sponses. This highlights the necessity of XML techniques. 

The feature importance graphs obtained via MDI approach described 
in Section 2 are plotted for the response variables as Fig. 9. Each figure 
shows the relative importance of control factors on the response. The 
horizontal axis has values in percent and the longer the bar the stronger 
the effect of that variable. It is obvious each factors’ importance is 
different for each responses. So, the immediate finding is that a detailed 
analysis of the impact on factors on responses is necessary. In fact, the 
ranking of features for one response would not be generalisable to other 
responses of electrode manufacturing process. 

According to the graphs of (a)–(d), the coating gap is the main factor 
with +70% contribution to the coating weight, capacity, dry and wet 
thickness of the electrodes. For coating weight, capacity, and dry 
thickness the capillary number and viscosity are the next important 
factors, while for the wet thickness, coating speed is also very 
contributing. 

The importance graphs for (e) and (f) are slightly different in terms of 
the contribution of factors. While still coating gap is the main factor, but 
the contribution of it is only about 20% and the rest of the factors have 
an importance at the same range and only slightly less. The graphs imply 
that while the coating weight, capacity, dry and wet thickness values are 
highly dependent to the coating gap and this factor masks the others, for 
porosity and coating density there is a much complex interaction of 
responses and factors. 

Coat weight, dry coating thickness and porosity are chosen as three 
key response variables and analysed by ALE (Figs. 10, 13 and 14, 
respectively). The results are shown for six of the input variables 
(coating gap, viscosity, coating speed, surface tension, slurry solid 
weight and dry density). 

According to Fig. 10, coating gap shows a linear relationship with 

Fig. 9. The total variability, (a) Coat Weight, (b) Capacity, (c) Dry Thickness, (d) Wet Thickness, (e) Porosity, (f) Coating density.  
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coat weight, as would be expected, as a higher gap leads to more slurry 
deposited on the current collector and hence a higher mass loading. 
Viscosity appears to affect coat weight at lower values but reaches a 
plateau, having little effect on coat weight above 1 Pa.s. This may be due 
to slumping, where the lower viscosity slurries spread out more imme-
diately after coating, leading to a thinner coating with lower coat 
weight, once the slurry is sufficiently thick to avoid this, a plateau is 
reached. 

A higher coating speed also appears to increase the coat weight, the 
reason for which is unclear, as a faster speed may be expected to leave 
less material on the current collector. One possibility is that the slurry 

behaved elastically, as the slurry is viscoelastic at all weight percent-
ages. This can be seen in the oscillatory rheology, where the elastic 
modulus, G’ is close to the viscous modulus, G’’ at all measured fre-
quencies (Fig. 11). The higher speeds could have increased the tendency 
of the coating to ‘spring back’ giving a thicker coating than the gap set 
(and many of the wet thicknesses observed are slightly higher than the 
gap set), causing this trend. 

Surface tension also appears to increase the coat weight at higher 
values. This could also be linked to slumping, a higher surface tension 
will likely increase the contact angle of the slurry on the current col-
lector, which gives the slurry a tendency to bead up, rather than spread 
on the surface. In the extreme this could cause coating defects such as 
pinholes, as the slurry beads up around a nucleation point (e.g. a speck 
of dust or irregularity in the current collector), however these were not 
observed within the conditions used for the dataset. So, an increased 
surface tension could reduce the amount of slumping and increase the 
tendency to ‘spring back’ after coating, leading to higher coat weights. 

Solid weight percent only appeared to impact the coat weight at 
higher values. It would be expected that a higher weight percentage 
would lead to higher mass loadings (as there is less solvent deposited, 
which is removed during drying). 

Dry density, which is the predicted theoretical density of the com-
ponents in the coating without solvent, will not vary between weight 
percentages of slurry and hence did not vary significantly during the 
experiments. However, there is a small fluctuation due to errors in 
weighing out components. Because it was constant, within experimental 
error, it has a much smaller impact on the results than other variables. 
According to Fig. 10 and considering the range of the ALEs for the coat 
weight on left axis, it is quite clear than the trend of the mixing control 
variables is quite nonlinear for most response variables. Also, the range 
of the effects is varying from one to another implying their different 
importance. The ALE graphs magnitude range is fairly compatible with 
the importance analysis provided on Fig. 9 (a) having the order of 
impact as coating gap, viscosity, coating speed, slurry solid wight 
percent Surface tension, and dry density. 

As shown in Fig. 12, the relationships with dry thickness are very 
similar to those with coat weight (as a thicker coating has a higher mass 
loading). Hence the trends follow almost the same patterns for Coat 
weight. 

As Fig. 13 shows, electrode porosity decreases with coating gap, but 

Fig. 10. First order effects of mixing and coating variables on the electrode Coat Weight (kg/cm3).  

Fig. 11. Oscillatory rheology of slurries at three weight percentages of the 
study, frequency sweeps measured at 0.5% strain. 
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this is most pronounced at lower gaps. This is because a lower gap 
produces a thinner coating, and thin coatings have little freedom to 
rearrange under capillary forces during drying. Thicker coatings have 
both more time and more spatial freedom to perform rearrangements to 
reduce the overall porosity [68]. 

Viscosity follows an inverse relationship with porosity to that with 
coat weight, implying that the effect of coat weight on porosity is the 
dominant effect, for the reasons given above. High viscosity could be 
expected to impair rearrangement and increase porosity, but this is not 
observed, implying that the coating thickness is much more important to 
this process. (However, the second order plot, Fig. 16 reveals more about 
this). 

Coating speed has a similar relationship; however, the trend does not 
exactly follow the inverse of the trend in coat weight, in particular, at the 

highest speeds, coat weight plateaus, but porosity continues to decrease. 
This implies that faster coating speed promotes the lower porosity, 
possibly due to reduced air entrapment or faster rearrangement of 
components. 

Surface tension shows what appears to be a minima in porosity at 
intermediate values. This could be due to the competing effects of the 
coat thickness (which increases with surface tension so may be expected 
to give a decrease in porosity) and the capillary forces. Higher surface 
tension will also increase the resistance to capillary forces and hence the 
rearrangements possible during drying, leading to a higher overall 
porosity. 

Porosity also appears to decrease with weight percentage, most 
dramatically at lower weight percentage (unlike the trend with thick-
ness, which is flat in this region). The pore structure is created by the 

Fig. 12. First order local accumulated effects of mixing and coating variables on the electrode Dry Thickness (um).  

Fig. 13. First order local accumulated effects of mixing and coating variables on the electrode Porosity (%).  
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evaporation of solvent, so it follows that the more solvent the higher the 
overall porosity. 

Finally increasing dry density also decreases porosity, which is ex-
pected as again a higher density of components should lead to a higher 
density in the coating, i.e., fewer voids. Although it should be noted that 
this is over a small range as the formulation was not varied in these 
experiments. 

While first order effect graphs show the influence of each individual 
factor on the response, the second order ALEs, quantify the impact of a 
pair of features. Second order ALEs shed light on the interaction of 
control variables and its impact on the responses. In order to capture the 
second order effects, a similar approach to what described via Eqs. (8) 
and (9) is taken [44] and instead of intervals in Fig. 3, rectangular cells 
were created to cover both dimensions. It should be emphasised that, 
when interpreting the second order ALEs, not only adjustments for the 
overall mean effect, but also adjustments for the first order effects of 
individual features are performed. This means that the second order 
effects do not include the effects of individual features and only capture 
the additional interaction effects. The second order effects are 2 
dimensional graphs in the form of heatmaps, x and y axis show the 
features and the colour bar is related to the response variable. The colour 
intensity shows the strength of the correlation. In fact, cells with lighter 
colour indicate an above average prediction value while darker coloured 
cells suggest below average predictions. 

All the second order effects for responses are calculated considering 
the coating gap as the first feature, and one of the four features of vis-
cosity, coating speed, surface tension and slurry density. Fig. 14 gives 
heatmaps for the predicted coat weight, while Figs. 15 and 16 provide 
results for dry thickness and porosity of the electrode, respectively. 
Similar to first order ALEs, the values are centred to the mean of the 
response variable. 

Fig. 14 (a) suggests that higher coating gaps and lower values of 
viscosity have an additional positive effect on the predicted coating 
weight. Similarly, when interpreting the cells, of Fig. 14 (b), high 
coating gaps, and high coating speeds have a negative effect on the 
predicted coating weight. In all results, when a cell value is almost zero 
the coupled features do not influence the predicted response. To 

understand the total effect of two features on the predicted value, three 
figures should be considered, two of the first order ALE Figs. 10–13 plus 
the values of the heatmaps in the Figs. 14–16, these three values should 
then be added to the average predicted response (as all calculations are 
centred and normalised). 

Fig. 14 (b) shows that a high coating speed decreases the coat weight 
for coatings at larger coating gaps. Also, high surface tension increases 
coat weight at larger gaps (Fig. 14 (c)), as a high surface tension would 
give a higher contact angle on the current collector and a lower tendency 
to slump or spread on the surface. Slurry density-coating gap heatmap 
interestingly shows an opposite relationship at low coating gaps 
compare to higher gaps, Fig. 14 (d). 

Following Fig. 15 (a) shows that a high viscosity gives increased 
thickness at large coating gaps, which is opposite to the coat weight 
results, although if the highest coating gap/viscosity is ignored the 
general second order trends in coat weight and dry thickness are similar. 
The trend in coating speed and coating gap, with dry thickness, Fig. 15 
(b), appears broadly similar to that with coat weight. There is also a near 
identical trend in dry thickness with surface tension/coating gap as coat 
weight, Fig. 15 (c). Slurry density shows a less clear second order trend 
with coating gap, Fig. 15 (d), but it does reverse between low and high 
gaps as with the coat weight. 

The next heatmaps are dedicated to porosity. High viscosity favours 
higher porosity at large gaps, whereas at small gaps a lower viscosity 
decreases porosity, (Fig. 16 (a)). This is believed to be because a high 
viscosity impairs rearrangement to reduce porosity, which is most 
important at small gaps where the components have less space and a 
smaller drying time to rearrange. When the gap is increased, this trend 
reverses, which is believed to be due to the high viscosity preventing 
slumping, which leads to a thinner coating with higher porosity. 

There is a complex relationship between coating speed, coating gap 
and porosity as demonstrated in Fig. 16 (b). There appears to be a 
decrease in porosity at intermediate speeds for gaps of 200 and above, 
but for 70, this inverts, becoming an increase. Higher speeds may be 
expected to leave a thinner coating, which generally have higher 
porosity, but it could be that at the lower speeds, more air entrapment is 
possible and there is a balance between these effects. For the smallest 

Fig. 14. Second order effects of mixing and coating variables on the electrode Coating weight (kg/cm3).  
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gap the shear rate is higher, and thus the slurry is more likely to behave 
elastically, i.e. spring back to give a thicker coating at faster speeds, with 
a higher porosity. Once the speed is high enough to induce this behav-
iour, further increases may just reduce air entrapment and reduce 
porosity again. 

Surface tension again shows a different relationship between 70 (um) 
and higher coating gaps, Fig. 16 (c). This could be as slumping is more 
likely for the thicker coatings, which is reduced by a higher surface 

tension, giving thicker coatings with higher porosity. For the smallest 
coating gap, the ability of the components to rearrange and reduce 
porosity is more critical (due to smaller space and drying time) and 
hence it might be expected that the higher capillary forces that come 
with higher surface tension would impede this, leading to a higher 
porosity. However, the opposite trend is observed. This could be due to 
the higher surface tension favouring a minimisation of the air-slurry 
interfaces, thus reducing air incorporation in the slurry. This follows 

Fig. 15. Second order effects of mixing and coating variables on the electrode Dry Thickness (um).  

Fig. 16. Second order local accumulated effects of mixing and coating variables on the electrode Porosity (%).  
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the trend in dry thickness in Fig. 15. 
Slurry density generally increases porosity, as a denser slurry is more 

resistant to slumping giving thicker coatings and more likely to entrap 
air. However, there are outliers at low density, Fig. 16 (d). 

4. Conclusions 

This study focuses on the lithium-ion battery slurry coating process 
and quantitatively investigating the impact of physical properties on 
coating procedure. Slurries are characterised with advanced metrology 
and, the statistical analysis together with the explainable machine 
learning techniques are applied to reveal the interdependency and re-
lationships between inputs and outputs. In fact, understanding the 
impact of control variables on the responses is only possible through 
local interpolation techniques such as ALE and traditional methods 
would not be applicable when there is only limited experimental data 
and the cost of experiments with the approach of changing one-variable- 
at-time is very high. 

Conventional statistical analysis is the first choice for uncovering 
linear interconnections while machine learning models and explain-
ability techniques are necessary for capturing the nonlinear relation-
ships. The linear models can represent the slurry coating response 
variables with an accuracy between 73% and 98% for different vari-
ables. The prediction accuracy via random forest model is between 74% 
and 94%. For response variables of wet and dry thickness, coating 
weight and density, the validation scores of linear model are slightly 
higher than random forest and this implies that the responses have a 
nearly smooth and almost linear dependency on the control variables. 
For these responses, linear models are a better choice due to less 
complexity and easier optimisation compared to random forest. For 
porosity and density, the nonlinear models of random forest provide a 
better accuracy and are recommended models for predictions and 
analysis. But regardless of the accuracy, ML models are necessarily to 
offer the explanation via XML. 

An acceptable prediction accuracy obtained via ML confirms that the 
presented approach and methodology can provide an opportunity to 
determine product quality through model-based analysis specially 
where experiments are hard or costly to run. In other words, the models 
can predict the product properties for various combinations of control 
factors that fall in the same range for which the model has been trained 
for. This would eliminate the need to perform a manufacturing run for 
that combination as it would lead to almost the same response predicted 
by model. The results here concern a current industrial process for 
manufacture of water-based Graphite anodes, for which there is still 
significant room for optimisation and the models here show promise for 
reduction of costly trial and error setup. However, the results also 
demonstrate the utility of ML more generally in battery manufacturing, 
and similar approaches could provide substantial benefit in the devel-
opment of new technologies, such as solid-state and dry processing, 
where the available data is smaller and experiments, particularly on 
scale, will be even more costly to run. This approach provides a method 
for extracting the most information from that experimental data. 

With the support of explainable ML techniques, key results are found 
regarding viscosity and surface tension. According to the results, vis-
cosity is necessary to be kept above a minimum threshold to prevent 
slumping, low coat weights and high porosities. Surface tension, a 
metrology option rarely considered for electrode slurries is also shown 
to be an important variable that can be used to optimise coating. Low 
surface tensions, like viscosity, promote slumping, however high surface 
tensions promote air entrapment that increases porosity, therefore there 
lies an optimum intermediate value for coating. This is an important 
additional parameter to measure for slurry coating, which may provide 
opportunity to identify issues earlier and reduce optimisation time for 
industrial lines. The importance of dimensionless numbers of the pre-
dictability of the responses is also among the findings of this research. 
The importance graphs reveal that the capillary and Ohnnesorg numbers 

can both serve as strong predictors to estimate the response variables. 
They are more contributing to the coat weight, dry thickness and ca-
pacity compared to porosity and coating density. 

One of the main findings of this study is that the importance of 
control variables is different from one response to another, as is the 
linearity or nonlinearity of the dependencies. The results can facilitate 
an efficient design of experiments for a comprehensive representation of 
the manufacturing processes involving coating processes. The impor-
tance graphs show that the coating gap factor is better to be set at a 
constant value, in order to reveal the impact of factors such as viscosity 
and surface tension that appear at a lower rank. In this way the coating 
gap will not mask the other factors. Furthermore, the ALE graphs show 
that in the regions that the control factor is fairly linear with the 
response, (such as coating gap and dry thickness), only a few number of 
breakpoints for control variables would be enough for training a model. 
On the contrary a finer breaking is necessary to represent a nonlinear 
dependency such as surface tension and porosity. 

Although the analysis presented here have revealed the in-
terdependencies in the complex process of slurry coating, future works 
are still required to consider a wider variety of control and output var-
iables in the model at different stages, such as formulation, drying, 
calendering and cell making via a comprehensive design of experiments. 
It is also necessary move towards an online and closed-loop decision 
making procedure based on the analysis [69]. This extension is critical 
for a predictive digital twin of the LiB coating process and is currently 
under study by the authors. This study has been a proof of concept 
performed in the lab and via lab-scale production methods, therefore 
further studies addressing the transition from lab to higher scales of 
manufacturing specially industry scale is still required. It is worth noting 
that the modelling system, the methodology of the systematic process 
analysis, and the feature contribution approach that are proposed here 
are all independent of the nature of the dataset. Therefore, the meth-
odology is highly transferable from one process to another and also from 
one electrode to another as long as the general requirements of the 
dataset quality in terms of the variability and the ranges are met. The 
specific part of this study that has been tailored to the graphite 
manufacturing process is the design of the experiments which include 
the ranges and the number of break points for each variable. Conse-
quently, for any other processes or material combination, the DoEs need 
to be revised. It is also fair to consider that the hyperparameters of the 
ML models are also dependent to the dataset and their distributions, 
therefore, while the modelling methodology is applicable to other sce-
narios, their hyperparameters need to be tuned and the model robust-
ness of models to the shift in the data needs to be quantified. 

Supplementary information 

The experimental data of this study has been included as supple-
mentary information. Please contact the authors for further details. 

To increase the reproducibility of the results, the model details and 
the range of the hyper-parameters used for optimising the model are 
mentioned as below, all analysis are performed in MATLAB 2020b and 
Python 3.  

- Random Forest: Number of estimators = [1000 5000], Minimum 
samples leaf = [2 5], minimum samples split = 2, Criterion =
[Squared error Absolute error].  

- Gradient boosted tree: Number of leaves = [2 5], Maximum depth =
-1, Learning rate = [0.005 0.5], Number of model estimators = [1000 
5000], Sample bin size= [20 50], Minimum child samples= [1 5], 
Min child weight=0.01. 
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